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Abstract

allodynia.

Bonferroni post hoc test was used.

temporarily reversed the tactile allodynia.

Background: Spinal Toll-like receptors (TLRs) and signaling intermediaries have been implicated in persistent pain
states. We examined the roles of two major TLR signaling pathways and selected TLRs in a mononeuropathic

Methods: L5 spinal nerve ligation (SNL) was performed in wild type (WT, C57BL/6) male and female mice and in
male TIr2”" TIr3”, Tlr4”", Tirs”", Myd88”", Trif?*, Myd88/Trif**?, Tnf”", and Ifnar1”” mice. We also examined L5 ligation in
TIr4” female mice. We examined tactile allodynia using von Frey hairs. Iba-1 (microglia) and GFAP (astrocytes) were
assessed in spinal cords by immunostaining. Tactile thresholds were analyzed by 1- and 2-way ANOVA and the

Results: In WT male and female mice, SNL lesions resulted in a persistent and robust ipsilateral, tactile allodynia. In
males with TLR2, 3, 4, or 5 deficiencies, tactile allodynia was significantly, but incompletely, reversed (approximately
50%) as compared to WT. This effect was not seen in female TIr4”" mice. Increases in ipsilateral lumbar Iba-1 and
GFAP were seen in mutant and WT mice. Mice deficient in MyD88, or MyD88 and TRIF, showed an approximately
50% reduction in withdrawal thresholds and reduced ipsilateral Iba-1. In contrast, TRIF and interferon receptor null
mice developed a profound ipsilateral and contralateral tactile allodynia. In lumbar sections of the spinal cords, we
observed a greater increase in Iba-1 immunoreactivity in the TRIF-signaling deficient mice as compared to WT,

but no significant increase in GFAP. Removing MyD88 abrogated the contralateral allodynia in the TRIF
signaling-deficient mice. Conversely, IFN3, released downstream to TRIF signaling, administered intrathecally,

Conclusions: These observations suggest a critical role for the MyD88 pathway in initiating neuropathic pain, but a
distinct role for the TRIF pathway and interferon in regulating neuropathic pain phenotypes in male mice.
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Background

Clinical symptoms arising from physical injury to the
peripheral nerve include initiation of a pain behavior
phenotype by otherwise innocuous stimuli (allodynia)
[1]. Though complex, a number of components have
been identified as associated with this pain phenotype.
Such a behavioral phenotype has been identified in
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preclinical mononeuropathy models (e.g., spinal nerve
ligation (SNL)), where a robust tactile allodynia [2-4]
and evidence of an aversive state [5] have been noted.
Based on these preclinical behavioral models, many con-
tributors to the post-nerve injury pain state have been im-
plicated, including changes in dorsal root ganglion (DRG),
transcription factor expression, and activation of spinal
glia [6-9], along with the appearance of inflammatory me-
diators such as tumor necrosis factor (TNF) [6,10-13].
Thus, after ligation of the L5 nerve, expression of activa-
tion transcription factor 3 (ATF3) in the DRG is increased
[14,15]. In the spinal cord, microglia and astrocytes display
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morphological signs of activation in the ipsilateral lumbar
enlargement of the spinal cord [16,17]. The reduction of
injury-evoked hyperalgesia, with intrathecal (IT) inhibitors
of glial activation, supports the contribution of glia as a
possible target [18-22].

Toll-like receptors (TLRs) are a family of 14 identified
receptors that play a key recognition role in the innate
immune response. Several TLRs activate multiple down-
stream cascades that variously activate NF-kB dependent
cytokine production and NF-kB independent interferon
(IFN) induction [23,24]. These receptors are expressed
on cells active in innate immunity, but are also found on
glial (microglia and astrocytes) and non-glial (spinal and
DRG neurons) CNS cells [25-27]. The role of peripheral
and central glial activation in the neuropathic pain state
raises the likelihood that TLRs may play a role in medi-
ating spinal sensitization, initiated by peripheral nerve
injury [28-30]. Current research indeed supports the im-
portance of TLR signaling in neuropathic pain [31-36]
and in persistent arthritic models where a neuropathic
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transition has been hypothesized [37-39]. In particular,
TLR4 has been implicated as playing a critical role in the
development of neuropathic pain in male rodents, but this
may not be universally true in females [34,40-42]. While
these studies indicate that TLRs play a role in these
models, the cascades through which they mediate behav-
iorally defined pain states remain unclear.

As indicated schematically in Figure 1A, TLRs signal
through a limited number of adaptor proteins that con-
verge in signaling through myeloid differentiation primary
response gene 88 (MyD88) or TIR-domain-containing
adapter-inducing IFNP (TRIF). The MyD88 activation
pathway, common to all TLRs except TLR3, leads to acti-
vation of NF-kB, producing pro-inflammatory cytokines
such as TNF and IL-1B [43]. In contrast, the TRIF path-
way is shared only by TLR3 and TLR4 signaling, and can
result, by activation of IFN regulatory factors (IRF), in
IENP secretion [44-46].

In a recent publication, we showed that a prominent
tactile allodynia was produced by IT TLR agonists in

A
TLR5]| |TLR2| |TLR4
_____ i
I TLR3:
MyD88  TRIF
(NF-KB)l (NF«B) (IRF3)
Proinfl. Proinfl.  Type I IFN
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B
Target Genotype . . .
Protein | Nomenclature Type of Protein Deficiency
TLR2 Tir2" TLR2 whole-body knock-out
TLR3 TIr3" TLR3 whole-body knock-out
TLR4 Tirg" TLR4 whole-body knock-out
TLRS TIrs" TLRS5 whole-body knock-out
TNF Tnf”" TNF whole-body knock-out
TRIF adaptor protein point-mutation on the
TRIF Trif*? _ plorp P
ticam1 gene
MyD88 | Mydgs” MyD&8 whole-body knock-out
MyD88 MyD8&8 whole-body knock-out and TRIF
and Myd88"/Trif*s? adaptor protein point-mutation on the ticam1
TRIF gene
Py Alpha chain of the IFN receptor whole body
IFNAR Ifnar” ) .
knock-out, which binds both IFNa and IFNG

studies and the nomenclature used throughout the paper.

Figure 1 Schematic of the TLR pathways. (A) This figure highlights the key TLRs and their relevant pathways in this paper. TLR2, TLR4, and
TLRS are found on the cell surface, while TLR3 is in the cell endosomes. MyD88 is a key adaptor protein for all TLRs except TLR3. TLR3 and TLR4
signal through TRIF, resulting predominantly in type | interferon production. (B) This table summarizes the strains of mice used in the presented
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male mice. These actions had several defining character-
istics, namely i) spinal TLR2, 3, and 4 ligands initiate ac-
tivation, though their respective receptors, and produce
allodynia through TIRAP and TRIF signaling; ii) spinal
TLR4 allodynia-inducing signaling is TNF dependent
and TLR3 is TNF independent; and iii) unexpectedly,
TRIF pathway activation repressed TLR4-induced allody-
nia, likely by an effect evoked by IFNP production and sig-
naling [47]. In the following study, we have extended this
systematic assessment of the roles of individual spinal
TLRs and the MyD88 and TRIF adaptor proteins in tactile
allodynia and surrogate marker activation associated with
the L5 SNL mononeuropathy model in male mice. The re-
sults herein, regarding the respective TLR-null male mice,
show a strong correlation with the hypothesized role of
spinal TLRs in initiating and regulating a persistent hyper-
algesic state. Over the course of this work, it was observed
that the nerve injury-induced tactile allodynia was com-
parable in male and female mice; however, given the re-
cent report of a difference in TLR4 mediated spinal pain
state [41], we also examined L5 SNL in T/r4”" females.

Methods

Animals

All animal experiments were carried out according to
protocols approved by the Institutional Animal Care and
Use Committee of the University of California, San Diego
(under the Guide for Care and Use of Laboratory Animals,
National Institutes of Health publication 85-23, Bethesda,
MD, USA). Mice were housed up to four per standard cage
at room temperature and maintained on a 12-hour light/
dark cycle (lights on at 07:00 AM). Testing was performed
during the light cycle; food and water were available ad [ibi-
tum. C57BL/6 mice (male, 25-30 g; female 20-25 g) were
purchased from Harlan (Indianapolis, IN, USA). T2,
Tlr3”, Tlr4”", and Myd88”" mice were a gift from Dr. S.
Akira (Osaka University, Japan) [48-50] and were bred for
10 generations onto the C57BL/6 background. Trif?**> mice
were a gift from Dr. B. Beutler (UT Southwestern, TX,
USA) and were directly generated on the C57BL/6 back-
ground [51]. The appropriate strains were intercrossed to
generate Myd88/Trif***> mice. TlrS”" and Tuf’ mice were
purchased from The Jackson Laboratory. Ifuarl”” mice
were originally obtained from B&K Universal Limited
(Hull, UK) and backcrossed over 10 generations onto
the C57BL/6 background. Irf3”" and Irf7” were a gift
from T. Taniguchi (University of Tokyo, Japan) [52,53].
Figure 1B lists the mouse genotypes and nomenclature
used throughout the paper. Additional studies were per-
formed with female C57BL/6 female Tlr4”" mice.

L5 spinal nerve ligation model for neuropathic pain
Ligation of the L5 spinal nerve was performed as previ-
ously described [3]. Briefly, mice were anesthetized in a
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box of 2.5% vaporized isoflurane, with 2% oxygen and
2% room air, then placed in a nose cone for breathable
anesthetic (2% isoflurane). The L5 spinal nerve root was
surgically located, exposed and permanently ligated. The
surgical opening was sutured and the mouse was closely
monitored and allowed to recover in a heated cage until
all reflexes were normal. Each mouse was assessed for
any mobility impairments, and if none were present,
then cleared for study. For the sham operation, the L5
spinal nerve is surgically exposed, but not ligated. Tactile
threshold testing is carried out on days 7, 9, 12, and 14
post-surgery.

Behavioral tests

Mechanical sensitivity was assessed using the von Frey
up-down method. Filaments with values ranging from
2.44 g to 4.31 g (0.03 g to 2.00 g) were applied to the
paw as previously described [54]. The 50% probability
withdrawal threshold (in principal, the calculated force
to which an animal reacts to 50% of the presentations)
was recorded. The results from the ipsilateral (left) and
contralateral (right) paws are graphed separately to show
the unilateral tactile allodynia that results from the L5
SNL. Baseline tactile thresholds for all mouse strains
used were compared via 1-way ANOVA and no signifi-
cant differences were found in baseline thresholds.

Intrathecal (IT) injection and drug delivery

The intrathecal needle placement procedure for the IT
IFNP (100 ng/5 pL) and IT vehicle (0.1% BSA) treatment
was performed as previously described [36,55]. Briefly,
mice were induced with 3% isoflurane (with 2% oxygen
and 2% room air) in a chamber until a loss of the right-
ing reflex was observed. A 1” 30-gauge needle attached
to a 50 pL Hamilton syringe was inserted between the
L5 and L6 vertebrae, evoking a tail flick reflex. Following
recovery from anesthesia, as evidenced by a vigorous
righting reflex and spontaneous ambulation, typically
around 1-2 minutes, mice were evaluated for motor co-
ordination and muscle tone. Tactile thresholds were
measured using the up-down application of von Frey
hairs along the following time course: 0 (baseline), 120-,
and 240-minutes, and 24-h after IT treatment. IFNP
(Chemicon, 100 ng/5 pL in 0.1% BSA) was administered
intrathecally as a post-treatment, 12 days after L5 SNL.
In a separate group of mice, IFNP (7,500 U/100 pL) or
vehicle was administered i.p. on day 12. Tactile thresh-
olds were measured using the up-down application of
von Frey hairs along the following time course: 0 (base-
line), 120-, and 240-minutes, and 24-h after i.p. treat-
ment. In a third cohort of mice, IFNP (7,500 U/100 pL)
or vehicle was administered ip. as a pre-treatment on
day O (before L5 SNL), and days 2, 3, 4, 5, 6, and 7 after
L5 SNL.
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Immunohistochemistry

Mice were deeply anesthetized with euthasol and per-
fused intracardially with 0.9% saline followed by 4%
paraformaldehyde. The lumbar spinal cord and L4-L6
DRGs were removed, post-fixed in 4% paraformalde-
hyde over-night, and cryoprotected in 30% sucrose.
Spinal cord sections (L4—L6) of the spinal cord were cut
as free-floating sections (30 pm). Tissue sections were
incubated with anti-GFAP antibody (1:20,000, Chemi-
con), and anti-Ibal antibody (1:1,000, Wako). Binding
sites were visualized with secondary antibodies conju-
gated with fluoro-Alexa-488 and Alexa-594 (1:500, Mo-
lecular Probes). Images were captured by Leica TCS SP5
confocal imaging system and quantified using ImageJ64
v.1.47 software. Glia reactivity is characterized by an in-
crease in the number of cells and in the cell morphology
(rounding of the cell bodies and thickening of pro-
cesses) leading to an increase in labeling with increasing
glia reactivity. Staining for microglia (Ibal) and astro-
cyte (GFAP) were each quantified by measuring the
total integrated intensity area of pixels divided by the
total number of pixels in a standardized area of the
dorsal horn (background). The investigator was blinded
to experimental conditions during the quantification.
Staining intensity was examined in laminae I-III of the
superficial dorsal horn with four to five sections (sepa-
rated by at least 180 pm) examined per animal and three
to four animals per experimental condition. Only the
areas above a background pixel intensity threshold were
included. An increase in the integrated intensity/pixel
area for Ibal and GFAP staining was interpreted to sig-
nify microglia and astrocyte reactivity, respectively. All
data are presented as fold change from the background
sample. Each mouse had its own background sample
taken per tissue section from the deeper lamina to con-
trol for staining variation. Background values were ini-
tially divided into ipsilateral and contralateral halves
and assessed for staining intensity as described above.
The ipsilateral value was divided by the contralateral
value to ensure that the background sample was consist-
ent with an ipsi/contra value of 1. Iba-1 background
values were 1.04 +0.04 and GFAP values 0.98 +0.08,
confirming an even background staining. Statistics were
performed on raw data values.

ATEFS3 staining was assessed by counting the number of
cells with ATF3 positive nuclei. The L5 ipsilateral and
contralateral DRGs were cut in transverse sections
(10 pm) and mounted on glass slides. DRGs were incu-
bated with anti-ATF3 (1:1,000, Santa Cruz) and DAPIL
Binding sites were visualized with secondary antibodies
conjugated with fluoro-Alexa-488. All quantified sec-
tions were separated by at least 60 pm. ATF3 positive
nuclei were counted (one section per animal) and three
to four animals are included for each group.
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Statistics

Data are presented as group mean + SEM. Tactile thresh-
old time course curves (plotted as the mean + SEM vs.
time after treatment) were analyzed with a one-way ana-
lysis of variance (ANOVA) with repeated measures over
time, followed by Dunnett’s post hoc test to compare each
time point to the same group’s baseline. Second, to com-
pare behavior between the two mouse strains, a 2-way
ANOVA and Bonferroni post hoc test was used comparing
mouse group and treatment. For staining intensity data
was compared across mouse strains and ipsilateral vs.
contralateral with a 2-way ANOVA followed by Bonferroni
post hoc test. All analyses employed Prism statistical soft-
ware, CA, USA.

Results

Contributions of TLR signaling to allodynia in spinal

nerve ligation

Unilateral L5 SNL model produces a robust ipsilateral
reduction (i.e., from 1.7 g to <0.2 g in the ipsilateral paw
(Figure 2A), versus 1.7 g to 1-1.5 g in the contralateral
paw). Similar results were observed in the wild type
(WT) female mice in the tactile stimulus required to
initiate a withdrawal of the stimulated paw (Additional
file 1: Figure S1). In TIr2”", Tir3”", and TIr5” mice,
there was no change in pre-surgery tactile baselines as
compared to WT mice (Figure 2); however, in such
mice, there was a persistent and significant reduction in
tactile allodynia (Figure 2B-E). Tlr4”" mice had more
severe allodynia on days 7 and 9 and then recovered to
the 50% level on days 12 and 14 (Figure 2E). In contrast
to the male TIr4”" mice, the female T/r4”" mice did not
show a reduction in the observed tactile allodynia
(Additional file 1: Figure S1).

TLR2 and TLR5 signal through MyD88, and TLR3
signals through TRIF. TLR4 utilizes both the MyD88
and TRIF pathways (Figure 1A). Both Myd88”/Trif??
and Myd88”" mice after SNL had an ipsilateral paw
threshold that was significantly higher than C57BL/6 mice
(Figure 3A,C). Surprisingly, mice deficient in TRIF signal-
ing produced a robust tactile allodynia in both the ipsilat-
eral and contralateral paws following SNL (Figure 3B).
This suggests that the TRIF pathway is involved in the
absence of bilateral effects produced by an otherwise
unilateral mononeuropathy. Since the Myd88”/Trif?
mice only developed ipsilateral pain-like behavior,
MyD88 is required for contralateral allodynia to develop
(Figure 3C).

Since these mice are deficient in immune response sig-
naling, we wanted to ascertain that surgery itself was not
initiating the observed hypersensitivity. C57BL/6 and
Trif?*? mice underwent a sham SNL procedure, similar
in all respects to the protocol followed for the SNL, ex-
cept that the L5 spinal nerve was surgically exposed, but
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Figure 2 Unilateral tactile allodynia observed following L5 SNL in C57BL/6 mice reduced in TLR signaling deficient mice. L5 SNL was
performed on (A) C57BL/6, (B) TIr2”", (C) TIr3”", (D) Tir4”", and (E) TIr5”" mice. Mice were allowed to recover and were tested at days 7,9, 12 and
14 post-SNL. The solid black line and dashed line represent the C57BL/6 ipsilateral and contralateral thresholds, respectively, on B-E. (A) C57BL/6
mice show a robust tactile allodynia in the ipsilateral paw beginning 7-days post-surgery. The (B) TIr2”, (C) Tir3”, (D) Tlr4”", and (E) TIr5”" all pro-
duced a reduction in the ipsilateral paw tactile threshold following L5 SNL, but none completely reversed nerve injury-induced allodynia. Data are
expressed as mean + SEM (n = 5-8 mice/group) and analyzed via 2-way ANOVA, followed by Bonferroni post hoc test to compare each time point
to the respective WT C57BL/6 group, ipsilateral or contralateral (*P <0.05 or **P <0.01).
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not ligated. This resulted in no significant change in
tactile thresholds following the procedure or any differ-
ence between the two mouse strains (Additional file 2:
Figure S2).

Dorsal horn glial activation

Spinal Iba-1 and GFAP have previously been shown to
be upregulated in the lumbar spinal cord ipsilateral to
the nerve injury in C57BL/6 mice. Lumbar spinal tissue
was collected at 14 days post-L5 SNL and incubated
with antibodies for both Iba-1 and GFAP. Quantification
of both Iba-1 and GFAP show distinct increases in im-
munoreactivity ipsilateral to the side of injury in laminae

[-III at this time point (Figure 4A,B). There was no sig-
nificant difference among the C57BL/6 animals and any
of the specific TLR deficient animals; representative
stained images show this ipsilateral increase (Figure 4C-F,
Additional file 3: Figure S3). The Myd88”" mice showed
less ipsilateral Iba-1 activation as compared to the C57BL/
6 ipsilateral activation, while there was no difference in
GFAP (Figure 5A,B,E,F). The Trif?*? mice, which devel-
oped both ipsilateral and contralateral tactile allodynia,
showed a significant increase in the ipsilateral Iba-1 ac-
tivation and a numerical increase in the contralateral
Iba-1 immunoreactivity that did not reach statistical
significance and no difference in GFAP on either side
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Figure 3 TRIF is important for unilateral tactile allodynia
phenotype following L5 SNL. L5 SNL was performed on (A)
Myd88”", (B) Trif**?, and (C) Myd88”/Trif"* mice. Mice were allowed
to recover and were tested at days 7, 9, 12, and 14 post-SNL. The
solid black line and dashed line represents the C57BL/6 ipsilateral
and contralateral thresholds, respectively. Both (A) Myd88” and (C)
Myd88”/Trif” ipsilateral tactile thresholds were significantly differ-
ent from the C57BL/6 thresholds beginning 7 days post-L5 SNL.
Surprisingly, the (B) Trif”? mice displayed a tactile allodynia in both
ipsilateral and contralateral paws. The Trif”*? ipsilateral paw thresh-
olds were not significantly different from the C57BL/6 mice, but the
contralateral paws were significantly different beginning at day 12
post-L5 SNL. Data are expressed as mean + SEM (n =5-8 mice/
group) and analyzed via 2-way ANOVA, followed by Bonferroni post
hoc test to compare each time point to the respective C57BL/6
group, ipsilateral or contralateral (*P <0.05 or **P <0.01 for ipsilateral
group; ##P <0.01 for contralateral group).
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(Figure 5A,B,G,H). Representative staining images, which
were used for the Iba-1 and GFAP quantification, are
shown in Additional file 3: Figure S3.

Dorsal root ganglia ATF3 expression

To assess the afferent response to nerve injury following
SNL, DRGs were incubated with antibodies for ATF3. In
the absence of injury, very few C57BL/6 DRGs showed
ATF3 expression. However, following surgery, approxi-
mately 40% of the ipsilateral L5 DRG neurons displayed
ATF3 positive nuclei (Figure 6A). In the DRGs from
Myd88”" mice, the percent of ATF3-positive DRG neu-
rons fell to around 20% suggesting that inhibition of
MyD88, or all TLR signaling, except TLR3, diminished
the consequence of the SNL. The signaling mutation in
TRIF did not affect the number of ATF3 positive nuclei
(Figure 6A). In the TRIF deficient animals there was also
no increase of ATF3 positive nuclei in the contralateral
DRGs. Representative stained images are presented with
white arrows labeling examples of ATF3 positive nuclei
(Figure 6B-J; Additional file 4: Figure S4).

Type | interferon mediates TRIF regulation of
contralateral allodynia

To further delineate the pathway responsible for the
contralateral drop in thresholds in the Trif”*? mice, we
compared two strains deficient in IFN regulatory factors
(IRF) that are known TLR signaling regulators. IRF3 is
downstream of TRIF (TLR3 and TLR4), and IRF3 signal-
ing deficient mice (Irf3”") have the same contralateral and
ipsilateral allodynia profile following L5 SNL (Figure 7A).
This confirmed the effect of the Trif"*? mice previously
observed (Figure 3B). TLR7 and TLRY signaling through
MyD88 and IRF7 can also produce type I IFNs, primarily
IFNo. In Irf7” mice following L5 SNL, a robust ipsilateral
tactile allodynia was observed and the basal contralateral
paw threshold was maintained, just as in the C57BL/6 and
Myd88”" mice (Figure 3A and Figure 7B).

These results indicated that the expression of the
contralateral pain phenotype after unilateral nerve injury
was regulated by the TRIF-IRF3 pathway. Stimulation of
TLRs through MyD88 and TRIF can result in proinflam-
matory cytokines such as TNF through NF-kB or type I
IFNs via IRF3, respectively. Thus, we looked at the L5
SNL model in mice deficient in TNF and type 1 IEN re-
ceptors (Figure 7C and D). These Tnf”" and Ifuar”™ mice
exhibited the same tactile allodynia profile as the mice
deficient in MyD88 and TRIF signaling, respectively.

Since Trif?™%, Irf3”", and Ifuar”" mice displayed both
ipsilateral and contralateral allodynia following SNL, we
further hypothesized that IFNPB could be a regulatory
mediator in the nociceptive processing initiated by nerve
injury. C57BL/6 mice treated with IFN intrathecally
(100 ng/5 pL) at day 12 post-L5 SNL produced a
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L5 SNL the lumbar region of the spinal cord was harvested and incubated with antibodies against Iba-1 and GFAP. Both (A) Iba-1 and (B) GFAP
immunoreactivity were consistently significantly elevated in the ipsilateral side of the dorsal horn compared to contralateral within each group.
Data expressed as mean + SEM (n = 3-5 sections per mouse, with 3-4 mice/group) and analyzed via 2-way ANOVA followed by Bonferroni post
hoc test. The Iba-1 Trif"*? and Myd88”" ipsilateral groups are statistically different from the C57BL/6 ipsilateral group (**P <0.01; ****P <0.0001). No
significant difference was found among the contralateral groups. Representative stained images are presented from C57BL/6 mice with (C) Iba-1
and (D) GFAP, Myd88”" mice with (E) Iba-1 and (F) GFAP, and TrifP2 mice with (G) Iba-1 and (H) GFAP, which support the quantified
immunoreactivity results.
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(n =4-8 mice/group) and analyzed via 2-way ANOVA followed by Bonferroni post hoc test. The Myd88”" ipsilateral group is statistically different
from the C57BL/6 ipsilateral group (**P <0.01). Representative stained images from the DRGs of C57BL/6 (B-D), Myd88'/' (E-G), and Trif**? (H-J)
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transient reversal (lasting longer than 4 hours but less
than 24 hours) in the L5-SNL-induced tactile allodynia
(Figure 8A). When IFN was administered i.p. (7,500 U/
100 pL), no effect on tactile thresholds was observed
(Figure 8B). In other models, IFNp is often administered
not in a single dose, but as a multi-dose pretreatment.
Thus, we gave C57BL/6 mice six doses of IFNp ip.
(7500 U/100 pL) beginning at day 0, before L5 SNL, and
continuing daily through day 7. This prolonged IFN i.p.
treatment regimen also had no effect on tactile thresh-
olds (Additional file 5: Figure S5).

Discussion

This study examines the role of TLRs and their respect-
ive adaptor proteins on tactile allodynia associated with
L5 SNL mononeuropathy. There are several pivotal
observations:

i) The robust unilateral tactile allodynia initiated by L5
SNL was incompletely reversed in MyD88, or
MyD88/TRIF signaling-deficient male mice. These
mice displayed only a partial reduction in withdrawal
thresholds and slightly reduced ipsilateral Iba-1
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A

immuno-reactivity. This indicates that the partial re-
duction in tactile allodynia, as compared to C57BL/6
mice, reflects events other than those mediated by
TLRs alone. This is consistent with the observation
that TIr2”", Tlr3”", Tlr4”", and TlrS”" mice showed a
comparable partial reduction in tactile allodynia, as
compared to C57BL/6 mice.

ii) Tnf’~ male mice showed only a partial reduction in
the L5 SNL-induced tactile allodynia indicating alter-
nate/additional downstream cytokine mediators for
tactile allodynia following L5 SNL.

iii) T7if”*? male mice developed profound ipsilateral and
contralateral tactile allodynia, suggesting an enhanced
response to the L5 SNL. Disruption of MyD88
prevented contralateral tactile allodynia in the
Myd88”"/Trif"*> male mice, suggesting a critical role
for the MyD88 pathway in initiating neuropathic pain.

iv) IENpB administered intrathecally transiently reversed
the L5 SNL, suggesting a distinct role for the TRIF/
IRF3 pathway and interferons in regulating the
expression of the neuropathic pain phenotype.

v) In contrast to the male Tlr4”" mice, the female
Tlr4”" mice did not show a reduction in the
observed tactile allodynia following L5 SNL.

The partial effects of L5 SNL on tactile allodynia in
Tlr2”" and Tlr4”" male mice are comparable to previous
reports [31,56]. The lack of TNF signaling diminished,
but did not prevent, L5 SNL induced nociception, a
finding also comparable to other reports where TNF ab-
lation alone was insufficient to completely inhibit nerve
injury-induced allodynia [57]. These results, however,
show that MyD88 signaling is required for the develop-
ment of nerve injury evoked tactile allodynia. Conversely,
TRIF is important not only for recovery following nerve
injury-induced allodynia, but also in the absence of TRIF
signaling a unilateral nerve injury yields an unexpected bi-
lateral effect. This TRIF action in developing neuropathy
is mediated at least in part through IENP (Figure 9), sug-
gesting an intrinsic regulatory action upon nerve injury-
induced changes in nociceptive processing.

Spinal TLR signaling and allodynia

As noted above, we have previously characterized down-
stream signaling and behavioral effects arising from the
activation of spinal TLR2, 3, or 4 [47]. IT delivery of the
respective agonists evoked a robust and persistent tactile
allodynia by a specific action on their respective TLRs.
Consistent with their downstream signaling cascade
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Figure 8 IT IFN transiently reverses L5 SNL induced tactile
allodynia. Twelve days following L5 SNL, C57BL/6 mice received
IFNG either (A) intrathecally or (B) intraperitoneally. (A) IT IFN3

(100 ng/5 pL) transiently reversed the tactile allodynia present at

12 days post-L5 SNL in C57BL/6 mice. (B) IFNB i.p. (7,500 U/100 pL)
did not affect the tactile allodynia present at 12 days post-L5 SNL in
C57BL/6 mice. Data expressed as mean + SEM (n = 3-4 mice/group)
and analyzed via 2-way ANOVA. Following IFNf treatment there was
a significant effect of the IT treatment (A) (P <0.05), but not the i.p.
treatment (B).

(Figure 1A), in TIRAP signaling-deficient mice (down-
stream to TLR2 and TLR4), allodynia after IT TLR2 ligand
and TLR4 ligand was abolished. Unexpectedly, however,
in TRIF (Trif**) signaling-deficient mice (downstream of
TLR3 and TLR4), TLR3 mediated tactile allodynia was
abolished, but spinal TLR4 activation produced an unex-
pectedly persistent and robust enhancement (>21 days) in
tactile allodynia. Consistent with a role of IFNB (down-
stream to TRIF) in regulating recovery after IT TLR4
ligand, a persistent tactile allodynia was also noted in IFN
signaling-deficient mice. Additionally, through the use of
Tnf” mice, we noted that spinal TIRAP and TRIF cas-
cades differentially lead to robust tactile allodynia by
TNEF-dependent and -independent pathways, respectively.

We believe that these previous studies provide a
mechanistic framework for interpreting the results ob-
served in the SNL mononeuropathy-mediated tactile
allodynia. Thus, we emphasize the following: i) disrup-
tion of TRIF/IFN signaling leads to an enhanced and
prolonged spinal response, suggesting that the TRIF

__Nerve injury induced activation >

"TLR3|

v

TIRAP TRAM

\
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(IRF3)

v
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(NF«B)

v
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!

Allodynia

Figure 9 Hypothesis for the development of tactile allodynia
following nerve injury. TLR 2 and 4 are expressed on the surface
membrane (solid outline), signal through the adapters TIRAP and
MyD88 resulting NF-kB activation and proinflammatory cytokine ex-
pression such as TNF. Alternatively, TLR4 can signal through adaptors
TRAM and TRIF. TLR3 is expressed in the endosome (dotted outline)
and signals through TRIF. TRIF can activate IRF3 and initiate IFN
transcription. We hypothesize that there is an initial endogenous TLR
activation signal following nerve injury that results in: i) concurrent
activation of multiple TLRs; ii) the TLR2 and TLR4 TIRAP-MyD88 path-
way and production of TNF produces an ipsilateral and contralateral
tactile allodynia; and iii) the TLR3-TRIF pathway suppresses contralat-
eral allodynia development associated with interferon release (dot-

IFN

ted square) and downstream interferon receptor signaling.

pathway is involved in the recovery following nerve in-
jury; ii) disruption of MyD88 signaling blocked the ef-
fects of the respective TLRs, completely preventing
contralateral tactile allodynia in the Myd88”/Trif?*
mice; thus, MyD88 is required for contralateral tactile
allodynia to develop; and, iii) IT IFNf indeed produced
a transient reversal of the observed L5 SNL-induced
tactile allodynia.

Contralateral allodynia and unilateral nerve injury

The development of a bilateral effect as a result of MyD88
signaling in the male T7if”** mice is of particular interest.
While the common mononeuropathy pain phenotype in
humans and in experimental animal models is an ipsilat-
eral change in sensitivity and dysesthesia, contralateral
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(bilateral) effects have been described. Such bilateral ex-
pression has been noted in the earliest clinical reports
[58-65]. In preclinical models, examples of peripheral
mononeuropathy producing contralateral effects are pri-
marily limited to the homotopic contralateral segments
[58,66,67]. Thus, chronic unilateral compression of the L4
and L5 DRGs in mice produced a strong mechanical and
thermal hyperalgesia, as well as tactile allodynia in the
ipsilateral paw, which has been reported to spread to
the contralateral regions along the same time course
[68]. In a rat model of chronic post-cast pain, two-week
immobilization due to casting resulted in induced atro-
phy and inflammatory changes and widespread hyper-
algesia that lasted 5 to 10 weeks after cast removal [69].

The mechanism of this onset of bilaterality is not
known. As noted, in these studies, the homolaterality ex-
cludes a systemic humoral signal. In a model of unilat-
eral intraplantar capsaicin, the c-fos activation pattern of
spinal glycineric and GABAergic neurons increased on
the opposite spinal relative to the injection [70]. Follow-
ing unilateral nerve ligation there was a long lasting loss
of PGP9.5" cutaneous innervation contralaterally to the
unilateral nerve injury, suggesting that transcellular sig-
nals link homologous neurons on opposite sides of the
body [58]. Alternatively, such bilateral actions may re-
flect the aberrant activation of the bulbospinal facilitator
pathways [71,72]. In the present study, the absence of an
increase in ATF3, however, suggests that there was no
bilateral effect on afferent nerve integrity. The present
studies offer an important potential underlying mechan-
ism. Here, we show that Trif"*? mice developed strong
contralateral allodynia while Myd88™/Trif** mice only
developed ipsilateral allodynia, indicating that MyD88 is
required for contralateral allodynia to develop. These re-
sults offer the provocative hypothesis that following uni-
lateral nerve injury a bilateral effect mediated by several
mechanisms may be the normal occurrence, in the ab-
sence of a TRIF-IFN dependent inhibition.

Since both Trif?*? and Ifinar”” male mice produced both
ipsilateral and contralateral allodynia, we hypothesize that
type I IFN could play a major role in endogenous pain
management following nerve injury. Other reports support
this hypothesis since IFNP induces MHC class I leading to
enhanced axonal growth and motor function recovery fol-
lowing nerve injury [73]. C57BL/6 mice were treated with
IT IFN( at day 12 post-L5 SNL, which transiently reversed
tactile allodynia. However, here, i.p. IFNp treatment in both
single dose and repetitive doses over 6 days early in the
time course, did not improve the tactile thresholds.

Role for endogenous ligands in nerve injury-induced
allodynia

These studies display the complex cascades activated by
nerve injury and reveal the likely role of endogenous
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ligands for the TLRs, which would be present in the
DRG and spinal cord secondary to signaling generated
by an injury of the peripheral axon in male mice. Prod-
ucts potentially released by neuraxial cells include high
mobility group box 1 (HMGB1), tenacin C, peroxiredoxin
(Prx) family proteins, B-amyloid (Ap), hyaluronan, DNA
or RNA immune complexes, heat shock proteins, and
heparan sulfate [74-83]. An intriguing hypothesis is that,
in addition to spinal glia and neurons, non-neuronal cells
such as macrophages, which migrate into the spinal cord
and DRG after peripheral nerve injury, could serve as one
source of such neuraxial TLR activation [7].

An interesting observation was that after L5 SNL in
C57BL/6 mice, the ipsilateral L5 DRG shows nearly 40%
ATF3 positive nuclei. The DRG from Myd88”" mice
showed only around 20% of ATF3 positive nuclei, suggest-
ing that inhibition of MyD88, results in less DRG reactiv-
ity to the nerve injury. TNE, TRIE, or IFNR knockout
alone did not affect the number of ATF3 positive nuclei.
In terms of nerve injury recovery, the TRIF protein has
been implicated in the activation of microglia and p38
MAPK to clear axonal debris following peripheral insult
[84,85]. This would suggest that without the TRIF protein
there would be more axonal debris present with the ability
to activate local TLRs, which detect endogenous materials.
More specifically, products such as HMGBI, Prx proteins,
and other damage-associated molecular pattern molecules
previously mentioned, can stimulate TLR2 and TLR4
[80,86]. It is important to emphasize that while the TLRs
play a defined role in the inflammatory and injury-
initiated components of the classical innate immune
response, the research outlined here and elsewhere em-
phasizes that these TLR cascades play a role in the normal
processing of sensory information generated by distant in-
jury and inflammation.

Sex

In the present work, the primary model examined the
role of TLR receptors and adaptor proteins in the male
mouse. As reviewed above, an evident role for the TLR
cascade in this nerve injury induced allodynia was noted.
Sorge et al. [41] reported that in female mice, knockout
of TLR4 had no effect on mononeuropathic allodynia. In
the present work, female T/r4”" mice also continued to
display a robust tactile allodynia following nerve injury.
Accordingly, these results are in agreement with those
reported previously. Additional studies will be required
to consider the role of other TLR cascades in the post-
nerve injury pain state and whether or not this effect is
observed in models of both poly- and mono-neuropathy.
Additionally, Sorge et al. [41] reported that spinal TLR4
binding sites were unaltered. This finding suggests sev-
eral possible alternatives, including the lack of release of
endogenous TLR4 agonists. However, the fact that Sorge



Stokes et al. Journal of Neuroinflammation 2013, 10:148
http://www.jneuroinflammation.com/content/10/1/148

et al. [41] reported that IT Lipopolysaccharide (LPS) had
no pro-allodynic effect in the female mice (in contrast to
the male) argues against the simple explanation that en-
dogenous agents initiating a hyperpathic state through
the TLR4 after nerve ligation were absent in the female.
Future work addressing these sex differences for other
TLR components will be of considerable interest. Until
that time, it is necessary to explicitly note that the present
results (and that of others in the area) apply to the male
sex, until otherwise shown.

Conclusions

The present studies uncovered three important roles of
the TLR pathway in mononeuropathy in the male mouse:
i) individual TLRs only modestly contribute to the allody-
nia present after nerve injury; ii) TRIF plays a dual role
mediating allodynia arising from TLR3 activation and
regulating, through an IFNf pathway, the recovery follow-
ing nerve injury-induced allodynia; and iii) the MyD88
pathway is required for the development of contralateral
allodynia. Characterization of the agents activating these
TLRs and the parameters governing their release will be of
particular interest in defining the role of TLRs in noci-
ceptive processing as illustrated by these studies. The
roles of these cascades in the female mouse remain to
be determined.

Additional files

Additional file 1: Figure S1. Unilateral TA observed following L5 SNL
in C57BL/6 female mice was not reduced in TLR4 signaling-deficient fe-
male mice. L5 SNL was performed on female (A) C57BL/6 and (B) Tira”"
mice. Mice were allowed to recover and were tested at days 7, 9, 12, and
14 post-SNL. The solid black line and dashed line represent the C57BL/6
ipsilateral and contralateral thresholds. (A) C57BL/6 mice showed a robust
TA in the ipsilateral paw beginning 7 days post-surgery. The (B) Tir4”"
mice showed no effect upon the ipsilateral paw tactile threshold follow-
ing L5 SNL. Data are expressed as mean + SEM (n =5 mice/group) and
analyzed via 2-way ANOVA, followed by Bonferroni post hoc test to com-
pare each time point to the respective WT C57BL/6 group, ipsilateral or
contralateral (###P <0.01 vs. contralateral paw; ***post vs. baseline).

Additional file 2: Figure S2. L5 SNL Sham produced no significant
effect on tactile thresholds. C57BL/6 and Trif*? mice underwent L5 SNL
sham surgery and tactile thresholds were measured. There were no
significant differences between the tactile thresholds of the four groups
as assessed by 1-way ANOVA.

Additional file 3: Figure S3. Iba-1 and GFAP immunoreactivity
following L5 SNL. At day 14 following L5 SNL, the lumbar region of the
spinal cord was harvested and incubated with antibodies against Iba-1
and GFAP. Iba-1 immunoreactivity is visualized with Alexa-488 (green) in
the left panel and GFAP with Alexa-594 (red) in the right panel. Quantifi-
cation for the Iba-1 and GFAP immuno-reactivity is found in Figure 3 and
Figure 5.

Additional file 4: Figure S4. ATF3 immuno-reactivity following L5 SNL.
At day 14 following L5 SNL, the L5 right and left DRGs were harvested
and incubated with an antibody against ATF3. ATF3 immuno-reactivity is
visualized with Alexa-488 (green) and recognized as an intense fluores-
cent mark in the nuclei region. The white arrows point to examples of
ATF3 staining. Quantification for the ATF3 immuno-reactivity is found in
Figure 6.
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Additional file 5: Figure S5. Repetitive treatment with IP IFNB had no
effect on tactile thresholds following L5 SNL. C57BL/6 mice received i.p.
IFNB (7,500 U/100 pL) or vehicle (0.1% BSA) as a pre-treatment on day 0
(before L5 SNL) and days 2, 3, 4, 5, and 6 after L5 SNL. Tactile thresholds
were measured on days 7, 9, 12, and 14. No significant differences were
found between the i.p. vehicle and i.p. IFNB groups as assessed by 2-way
ANOVA followed by Bonferroni post-hoc test.
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