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Notch signaling in glioblastoma: a developmental
drug target?
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Abstract

Malignant gliomas are among the most devastating tumors for which conventional therapies have not significantly
improved patient outcome. Despite advances in imaging, surgery, chemotherapy and radiotherapy, survival is still
less than 2 years from diagnosis and more targeted therapies are urgently needed. Notch signaling is central to
the normal and neoplastic development of the central nervous system, playing important roles in proliferation, dif-
ferentiation, apoptosis and cancer stem cell regulation. Notch is also involved in the regulation response to
hypoxia and angiogenesis, which are typical tumor and more specifically glioblastoma multiforme (GBM) features.
Targeting Notch signaling is therefore a promising strategy for developing future therapies for the treatment of
GBM. In this review we give an overview of the mechanisms of Notch signaling, its networking pathways in glio-
mas, and discuss its potential for designing novel therapeutic approaches.

Introduction
Gliomas are defined as brain tumors of glial origin.
Based on histology, gliomas have been classified into
astrocytoma (70%), oligodendroglioma (10% to 30%),
mixed oligoastrocytoma and ependymoma (<10%). Low-
grade gliomas, mostly astrocytomas (World Health
Organization (WHO) grade II) are progressively trans-
forming into malignant gliomas, that is, anaplastic
tumors (WHO grade III) and ultimately into glioblas-
toma multiforme (GBM; WHO grade IV). However,
most GBM are diagnosed without any prior record of a
tumor of lower grade [1,2]. GBM is a complex mixture
of cell types that includes astrocyte-like and stem-like
cells, characterized by rapid growth and diffuse invasive-
ness into adjacent brain parenchyma. Resectability
depends on tumor location and only the nodular com-
ponent can be surgically controlled. The infiltrative
component of the tumor, however, is left to unspecific
and cytotoxic chemotherapy and radiotherapy that can
impede tumor progression for a limited time only. GBM
patient survival is of less than 1 year [2,3]. GBM has a
severe mutator phenotype that consists of large chromo-
somal alterations [4,5]. At the genetic level, the most

frequent mutations affect genes involved in the control
of cell cycle, growth, apoptosis, invasion and neovascu-
larization [6,7]. In the past few years, it has become
apparent that Notch signaling, a major player in normal
development of the central nervous system, is often mis-
regulated in GBM. In this review we will focus on the
role of Notch in gliomagenesis and discuss potential
therapeutic opportunities.

Notch: genetics, biology and signaling
Pioneer observations on Notch in Drosophila
The Notch mutation was discovered by Thomas Morgan
in 1917 in the fruit fly Drosophila melanogaster, with an
adult phenotype consisting of ‘notches’ at the wing mar-
gin. Genetic analyses of Notch loss-of-function muta-
tions also revealed an embryonic phenotype with an
expanded population of neuroblasts at the expense of
epidermis cells. These mutations provided the first clue
that during neurogenesis, wild-type Notch regulates the
cell fate decision by preventing ectoderm cells from dif-
ferentiating into neuroblasts rather than into epidermis,
and have been therefore qualified as neurogenic muta-
tions [8]. Further identification of antineurogenic gain-
of-function mutations completed the description of the
allelic series of Notch [9,10]. Both loss-of-function and
gain-of-function Notch mutations are dominant in Dro-
sophila, where loss and gain of a single gene copy is suf-
ficient to mimic hypomorphic and hypermorphic
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mutations [9-11]. Thus, the Notch expression level is
likely to be critical to ensure the subtle balance between
neuroblast and epidermal cell fate decision during Dro-
sophila development.

Cloning of Notch genes
Cloning of the Drosophila Notch gene [12] revealed a
type I transmembrane receptor consisting of 36 epider-
mal growth factor (EGF)-like tandem repeats and 3
cysteine-rich LIN-12/Notch (LIN) repeats in the extra-
cellular domain. The extracytoplasmic juxtamembrane
region forms both N-terminal and C-terminal hetero-
dimerization domains (HD-N and HD-C, respectively).
The cytoplasmic part contains an RBPJk-binding
(RAM) domain, six tandem ankyrin (ANK) repeats, a
transcription activation domain (TAD) and a proline/
glutamate/serine/threonine-rich (PEST) sequence.
Post-translational cleavage of the single Notch receptor
chain at site S1 located between HD-N and HD-C
domains and subsequent heterodimerization between
HD-N and HD-C generates a functional receptor
[13,14]. Notch1 ligands, receptor domains and proces-
sing are illustrated in Figure 1. Vertebrate genomes
encode four Notch paralogs, where Notch1 and
Notch2 show strong structural homology with Droso-
phila Notch. Notch3 and Notch4 are more distantly
related, with 34 and 29 EGF-like repeats, are and
devoid of TAD domains [15-18].

Expression pattern in mammalian brain
In rodent late embryonic and postnatal brain, Notch1,
Notch2 and Notch3 transcripts are commonly present
in germinal zones, but with distinct patterns and later
postembryonic expression of Notch2 [19,20]. In postna-
tal mouse brain, Notch2 expression persists in glial cells
harboring markers of immature phenotype: high vimen-
tin and low glial fibrillary acidic protein (GFAP) [21].
Consistent with expression in immature glial cells in the
germinal zones, Notch signaling is required for prevent-
ing neuronal differentiation and promoting neural stem
cell (NSC) maintenance for further commitment into
glial lineage. Maintenance of the NSC population by
Notch signaling prefigures a possible role of Notch sig-
naling in the maintenance of glioma stem cell (GSC)
population [22-26].

Notch signaling mediators
In mammals, Notch receptors are activated by five type
I transmembrane ligands, three Delta-like (Dll1, Dll3
and Dll4) and two Serrate/Jagged (Jag1 and Jag2) recep-
tors (Figure 1). All contain a cysteine-rich ‘Delta, Ser-
rate, Lag’ (DSL) motif found in Drosophila respective
orthologs Delta and Serrate/Jagged and in Caenorhabdi-
tis elegans Lag2. Numbers of EGF repeats vary between

Dll and Jag ligands (6-8 and 15-16, respectively) [27]
Recently, epidermal growth factor-like domain 7
(EGFL7) has been identified as a soluble antagonist of
Notch signaling [28]. Ligand-dependent cleavage at site
S3 within the transmembrane domain (Figure 1) of the
membrane-bound receptor releases a Notch intracellular
(N-IC) form, which translocates to the nucleus. There, it
binds Su(H)/CSL/CBF1/RBPJk to trans-activate target
genes such as the hairy/enhancer of Split HES and HEY
families of basic helix-loop-helix transcription factors
[27,29,30]. These successive events are dissected in the
upper part of Figure 2. An additional ligand-dependent
cleavage at extracellular site S2 (Figure 1) leads to the
release of a soluble form of Notch named Notch extra-
cellular truncation (NEXT) [31].

Figure 1 Ligands, structure and processing of Notch1 receptor.
Left: the Delta-like ligand (Dll) and Serrate-Jagged ligand (Jag)
structural subsets of Notch ligands. Right: structure of Notch1
receptor resulting from post-translational cleavage at site S1 and
heterodimerization of the cleaved parts. Ligand-dependent
cleavages at sites S2 and S3 generate soluble Notch extracellular
truncation (NEXT) and cytosolic Notch intracellular domain (N-IC)
forms, respectively. Notch1 and Notch2 are highly similar. Notch3
and Notch4 contain 34 and 29 epidermal growth factor (EGF)-like
repeats, and are devoid of trans-activation domain (TAD) domains.
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Further, a non-canonical RBPJk-independent and Del-
tex-dependent alternative pathway has been described in
humans and in Drosophila [32,33]. Together with this
observation, in T helper (Th) cells, Jagged induces Th2
cell differentiation by triggering the RBPJk-dependent
canonical pathway, while Delta-like instructs Th1 com-
mitment through a RBPJk-independent alternative path-
way, presumably Deltex-dependent [34].
Physical interactions between Notch target gene pro-

ducts HES1 and HEY1 with Stat3 point to crosstalks
between Notch and Stat3-activating pathways such as
Gp130/Jak2/stat3 and Sonic hedgehog (Shh) [25,35,36].
In parallel, Shh is also capable of stimulating HES1 tran-
scription [37]. In addition, b-catenin has been shown to
interact with Notch and RBPJk to induce HES1 tran-
scription, indicating also crosstalk between Wnt and
Notch pathways [26]. Levels of crosstalks between
Notch and these pathways are discussed in Hansson
et al. [38].

Notch germline mutations, human diseases and knockout
models
In humans, Notch mutations have been associated with
dominant developmental disorders and diseases that
include brain/neurological, cardiovascular and/or kidney
defects. Notch1 in aortic valve disease [39]; Notch2 in
Alagille syndrome [40]; Notch3 in Cadasil syndrome [41]
and possibly Notch4 in schizophrenia [42]. In mice, glo-
bal Knockouts of Notch1 or Notch2 are embryonic and
perinatal lethals with vascular and kidney defects
[43,44]. Surprisingly, Notch3 and Notch4 null mice
showed normal development, viability and fertility.
Although Notch1/Notch4 double mutants had more
severe defects in angiogenic vascular remodeling, there

is no evidence of a genetic interaction between Notch1
and Notch3 [45,46]. Hemizygosity of Dll4 as well as Jag1
and Rbpjk Knockouts consistently result in embryonic
death due to vascular defects [47].
In fact, occurrence of disorders with embryonic or

perinatal lethality are likely to mask the involvement of
Notch signaling in later developmental or biological
events. This includes GBM progression, onset of which
occurs in human adults at the mean age of 62 [2].
Nevertheless, the fact that inactivation of Notch signal-
ing results in constant defects in angiogenesis shows its
role in vascular morphogenesis and remodeling during
embryonic development, and reveals a possible involve-
ment of Notch signaling in tumor neovasculature.

Notch and cancer
Notch signaling plays a pivotal role in the regulation of
many fundamental cellular processes such as prolifera-
tion, stem cell maintenance, differentiation during
embryonic and adult development and homeostasis of
adult self-renewing organs [27,48]. Therefore, it is easy
to see how perturbation of Notch signaling may often
lead to tumorigenesis.

Notch and malignancy
The first evidence for a role of Notch in tumorigenesis
came from the finding that the acute T cell lymphoblas-
tic leukemia translocation (T-ALL) t(7;9)(q34;q34.3)
breakpoint generated the fusion of the gene for the ß
chain of the T cell receptor at 7q34 and the TAN1/
NOTCH1 gene at 9q34.3, giving rise to a constitutively
active N-IC-like domain [49]. More generally, acquired
gain-of-function Notch mutations in T-ALL cluster at
HD domains to form constitutively active receptors, and

Figure 2 Sequential events and control of Notch signaling. Activating and inhibitory mechanisms are depicted in red and blue, respectively.
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at the PEST domain to stabilize active N-IC [50]. Simi-
larly, a fraction of B cell lymphomas harbor mutations
in the PEST domain of Notch2 [51]. Further, Notch
proteins have been shown to be involved in tumors of
various origins. However, oncogenic or tumor suppres-
sive activities of Notch depends on the cellular context
[52] or might be a matter of Notch expression level, as
observed in neural stem cells [53]. In other neoplasms,
such as non-small cell lung cancer and skin cancer,
Notch has a tumor suppressor function [6,7].
As discussed in the next section, Notch signaling is

one of the major pathways involved in GBM develop-
ment. Notch signaling has been shown to maintain pro-
liferation of normal neural precursors and has been
defined as a survival marker in gliomas [23-25,54]. Its
oncogenic function in gliomas is based on cell prolifera-
tion and invasion [55,56]. Data on other tumor cell
types showing the role of Notch in epithelial-to-
mesenchymal transition (EMT) in response to hypoxia
may be extrapolated to GBM [57,58].

Notch and GBM
GBM is the most aggressive central nervous system
(CNS) tumor, with the poorest clinical prognosis. This
tumor consists of cells that are astrocyte-like but with a
complex genetic make-up and expression patterns in
which the presence of stem-like cells has been proven
[2,3,59]. Notch2 has been suggested to drive embryonic
brain tumor growth, whereas Notch3 has been impli-
cated in choroid plexus tumors [23,60]. In GBM and in
medulloblastoma, the frequency and the intensity of
Notch2 expression is higher than that of Notch1 [55,61].
As a consequence of local genomic amplifications at the
Notch2 locus in both brain tumor types, this may also
be linked to the later persistence of Notch2 expression
in postnatal mouse brain [21]. In fact, in medulloblas-
toma, Notch2 is preferentially expressed in proliferating
progenitors, while Notch1 in postmitotic differentiated
cells [61]. Interestingly, Purow et al. showed that
Notch1 regulates transcription of the epidermal growth
factor receptor gene EGFR, known to be overexpressed
or amplified in GBM, through TP53 [62]. Consistently,
transcription of Notch signaling mediator genes are sig-
nificantly overexpressed in the molecular subset of
GBM with EGFR amplification [63]. This new link
places Notch signaling as an activator of the major
GBM pathway and further clarifies the implication of
Notch signaling in cancer and development.
In contrast, a minor GBM subset with local haploidy

at 1p12 has been identified and has been associated
with better patient prognosis. Reminiscent of the better
outcome of oligodendroglioma patients harboring 1p/
19q loss, the minimal area of loss in GBM and the
detection of homozygous deletions in oligodendroglioma

converge to the Notch2 gene [54]. This provided an
initial clue that subsets of gliomas (even with distinct
histologies) with impaired Notch signaling result in
slower progression. A single loss-of-function mutation
in the RAM domain of Notch2 has been identified in
the glioma line Hs683. This mutation has been further
shown to impair Notch-mediated trans-activation, and
subsequently tenascin-C (TNC)-mediated invasion, as
detailed below [55].

Effect on proliferation and apoptosis by Notch
modulation in GBM
Genomic amplification of EGFR is the most frequent
genetic alteration occurring in GBM, a fraction of which
undergoes a further deletion that generates the constitu-
tively active vIII variant [64,65]. Consistently, EGF is the
major proliferation pathway in GBM, mediated by acti-
vation of the RAS-RAF-MEK-ERK and the PI3K-AKT-
mTOR cascades [66]. Interestingly, mTOR has recently
been shown to activate Notch signaling in lung and kid-
ney tumor cells through induction of the Stat3/p63/
Jagged signaling cascade [67]. If true in GBM, this
potentially creates a positive feedback loop between
Notch and EGF signaling. The most frequent GBM sub-
set consists of the association of EGFR amplification
together with homozygous deletions at the CDKN2A
(cyclin dependent kinase) locus, and mutually exclusive
of TP53 mutations [5]. Since Notch has been shown to
activate expression of EGFR via TP53 [62], Notch is
expected to stimulate the main GBM proliferation path-
way. Of note, the gene for the EGFR-related ERBB2 is
also trans-activated by Notch, but in a DTX1-dependent
manner [68].
Notch pathway inhibition by g-secretase inhibitors

(GSIs) reduced GSC proliferation and increased apopto-
sis associated with decreased AKT and Stat3 phosphory-
lation [69]. Conversely, expression of an active form of
Notch2 increased tumor growth and in vivo delivery of
GSI consistently blocked tumor growth, and significantly
prolonged survival [69]. Taken together, these results
open inhibition of Notch signaling as a promising strat-
egy to control GSC growth.

EMT and invasion
EMT represents the transition through which a benign
tumor becomes malignant. Underlying molecular
changes lead to decreased cell adhesion and acquisition
of tumor invasiveness [70]. Together with transforming
growth factor (TGF)b, the Jag1-Notch pathway activates
HEY1 to trigger EMT of epithelial cells of human, mur-
ine and canine origins [71]. The Jag1-Notch-Snai2 cas-
cade has also been showed to induce EMT in human
breast tumor cell [57]. Unlike these tumors in which
invasion results into remote metastases, GBM invade
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adjacent brain tissue. Further studies may validate the
same molecular mechanism in GBM local invasion.
TNC, highly expressed in invasive GBM, is an extra-

cellular matrix glycoprotein [72] that induces prolifera-
tion and migration of neuronal precursors in embryonic
and postnatal mouse brain neurogenic zones [73], and
ensures neuronal regeneration in injured adult brain
[74]. TNC levels increase during progression of GBM,
such that it can be used as a prognostic marker for
GBM patient survival [75]. The molecular mechanism
through which Notch signaling induces TNC-dependant
glioma cell motility is based on the trans-activation of
the TNC promoter by Notch-RBPJk [55]. It is note-
worthy that a parallel study in childhood ependymomas
has shown an association between tumor recurrence
and frequent amplification of the 9qter, precisely at the
location of both NOTCH1 and TNC genes [76].

Glioma differentiation and stem cells
In recent years, it had been suggested that within a
tumor, only a subset of cells called cancer stem cells
(CSCs), are endowed with tumorigenic capacity [77-79].
These cells are self-renewing and multipotent with
tumor initiating potential. The alternative hypothesis
that transformation and dedifferentiation of more
mature brain cells contributes to tumorigenesis may be
a parallel pathway towards tumorigenesis [80]. Notch
signaling is crucial for the in vivo maintenance of self-
renewing stem cells in varieties of lineages such as
neural, but also hematopoietic or mammary [81-83].
Similar to Notch-RBPJk, Stat3 trans-activates GFAP and
induces normal neural precursor cells to differentiate
into astrocytes in association with HES1, HES5 or
HEY1. At the molecular level, HES1 physically interacts
with Jak2 and Stat3 to induce Stat3 phosphorylation and
relevant activation [25,35,84]. Conversely, the association
between Notch, RBPJk and b-catenin maintains the pre-
cursor cell status [26].
Notch2 and HES1 have been shown to maintain the

granule neuron progenitor cell population and inhibit
further neuronal differentiation [23]. Reciprocally, brain-
derived EGFL7 regulates Notch-dependent proliferation
and differentiation of NSC of the subventricular zone
into neurons and oligodendrocytes [28]. Further, neu-
ron-induced Jag1-Notch1 signaling upregulates expres-
sion of the radial glia marker brain lipid binding protein
(BLBP) [68]. In addition, the gene for Nestin, a marker
for neural precursors, is trans-activated by Notch signal-
ing [85]. Consistently, in ependymoma cells, the fraction
of CD133-positive cells shows significant coexpression
of Notch2 and HES1 [72]. This supports a function of
Notch signaling in maintaining the GSC population
within a tumor. However, Notch signaling has also been
shown to trans-activate the gene for GFAP [86] and to

drive the differentiation of glial progenitor cells into
astrocytes therefore preventing differentiation into oligo-
dendrocytes [87]. This is consistent with the observation
that Notch1 and Notch2 are present at high levels in
GBM and astrocytoma [55]. These distinct activities sug-
gest multiple roles for Notch signaling in the course of
gliomagenesis, in particular in GBM and astrocytoma
development, that remain to be dissected. In oligoden-
drogliomas, Notch2 is frequently deleted and the corre-
sponding protein is not detectable [54,55].
MicroRNAs (miRNAs) are short single-stranded RNAs

that negatively regulate gene activity by targeting
mRNAs for cleavage or translational repression [88].
The miRNA miR-199b-5p has been recently identified
as a regulator of the Notch pathway by targeting the
transcription factor HES1. Its overexpression blocks
expression of several CSC genes and decreases the
medulloblastoma stem-cell-like (CD133+) subpopulation
of cells [89]. Similarly, treatment of ependymoma neuro-
spheres with GSI-IX results in decrease sphere number,
size, proliferation and induced cell-surface adhesion
[76]. GSI have been proved to significantly reduce radio-
resistance of glioma stem cells through inhibition of
Notch [90].
GSCs represent a critical therapeutic target to control

glioma growth and progression. However, the molecular
mechanisms that regulate the stem cell pool are poorly
understood. The vascular, perinecrotic and hypoxic
niches of the tumor constitute a microenvironment that
contributes to the regulation of CSC. Hypoxia plays a
key role in the regulation of the CSC phenotype through
hypoxia inducible factor (HIF)-2a and subsequent
induction of specific CSC signature genes, including
mastermind-like protein 3 (Notch pathway), nuclear fac-
tor of activated T cells 2 (calcineurin pathway) and
aspartate b-hydroxylase domain-containing protein 2
[91].
MicroRNA-34a (miR-34a) is a transcriptional target of

TP53 that is downregulated in GBM and even more in
GBM carrying a TP53 mutation, as compared to normal
brain. Transient expression of miR-34a in GBM cells
strongly inhibited glioma xenograft growth in vivo by
targeting c-Met and Notch [92].

Hypoxia and angiogenesis
GBM possesses a chaotic tumor structure consisting of
accumulating tumors cells, abnormal vessel and necrotic
debris. The increasing tumor mass leads to pressure gra-
dient leading to capillary and venous collapse [66]. The
new formed vessels are structurally and functionally
abnormal, and leaky, giving rise to edema, high intersti-
tial fluid pressure and, consecutively, low oxygen tension
[93]. In contrast to high O2 tension, which degrades
HIF-1a (hypoxia inducible factor) and promotes
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differentiation or apoptosis of NSCs, lower O2 tension
HIF-1a facilitates signal transduction pathways that pro-
mote self-renewal [94]. This hostile microenvironment
selects for a more malignant phenotype by clonal out-
growth of hypoxia-resistant tumor cells.
Genetic models have shown the role of Notch in nor-

mal arteriogenesis and neoangiogenesis [95]. Its influ-
ence is also crucial for neovascularization in cancer
contributing to the aggressive clinical behavior of
tumors expressing high levels of Notch ligands [96,97].
Recently, Notch1 has been shown to upregulate HIF-1a
expression in breast cancer. In turn, HIF-1a binds and
stabilizes activated Notch to enhance Notch signaling
[73,97,98]. Thus, O2, HIF and Notch regulation may
play together a crucial role also to the normal architec-
ture and dynamics of NSC regulation.

Manipulating the Notch network in brain tumors for
therapeutic benefit
Manipulating the Notch pathway would directly and
indirectly influence all the downstream and collateral
pathways that interact with the complex Notch family
signaling.

Notch signaling target genes
As described above, Notch signaling trans-activates and
upregulates genes expressed in gliomas. Canonical
Notch/RBPJk-dependence has been shown for GFAP
[86], HES1 [87], HEY1 [71], BLBP [99], NESTIN [85],
TNC [55] genes while non-canonical DTX1-dependent
trans-activation has been shown for ERBB2 [68]. Finally,
Notch1 induces TP53-dependent EGFR expression [62].
However, the molecular genetic mechanism of this latter
cascade remains to be elucidated. Thus, the oncogenic
role attributed to Notch signaling is acting through a
complex array of effector genes.

Notch signaling regulation
Interestingly, TNC and HEY1 are commonly trans-acti-
vated by Notch and TGFb signaling [71,100,101]. In
fact, Notch is also upregulated by sex determining
region Y box 2 (SOX2), SOX2 by SOX4, and SOX4 by
TGFb [93,102,103], while JAG1 is upregulated by TGFb
and Wnt [104,105]. This shows the different levels
through which Notch, TGFb and Wnt pathways act in a
concerted and synergistic manner.

Clinical studies using Notch inhibitors
Notch signaling has emerged as a specific therapeutic
target for T-ALL [50] and colon cancer [106], as well
as a potential target against tumor angiogenesis
[105,107,108]. Blocking of Notch pathway induces apop-
tosis and depletes cancer stem cells in medulloblastoma
[109]. A phase I study of GSI MK0752 for adult and

pediatric patients with relapsed or refractory acute t-cell
lymphoblastic leukemia and lymphoma is ongoing
(NCT00100152). More recently, a phase I study of
MK0752 was initiated in patients with metastatic or
locally advanced breast cancer and other solid tumors
(NCT00106145). A new clinical trial has just started for
treating patients with recurrent or progressive GBM
using GSI RO4929097 (NCT01122901) http://clinicaltrials.
gov/ct2/show/NCT01122901?term=notch&rank=14.
The difficulty of distinguishing Notch1 and Notch2

specific activities from one another in GBM modulating
proliferation, angiogenesis, invasion and cancer stem cell
maintenance suggests by default that both are mostly
redundant. Indeed, the pharmacological approaches
using GSI do not discriminate for a specific Notch
receptor and cause gastrointestinal toxicity as side effect
[106]. However, based on the specific role of Dll4-
Notch1 in neovascularization, anti-Dll4, and similarly
anti-Notch1 and anti-Notch2 antibodies have been pro-
posed as sharper therapeutic agents devoid of side
effects against various tumor types in mouse xenograft
models [107,110]. The use of mouse glioma models put
into specific Notch mutant backgrounds may help to
solve this issue. Further downstream, the role of non-
canonical Notch pathway has not been clarified yet and
more in-depth studies will be needed to define the effect
on Notch canonical pathway.

Concluding remarks and discussion
GBM is the most prevalent and the most aggressive
brain tumor against which conventional therapies, that
is, radiotherapy, chemotherapy and surgery have led
until now to only transient clinical response followed by
tumor recurrence, with no significant improvement of
patient survival. Notch signaling has recently been iden-
tified to cumulate oncogenic activities in GBM prolifera-
tion, apoptosis inhibition and invasion. Additional
functions in maintaining non-neoplastic neural stem
cells and in neovascularization and in EMT switch of
other malignancies remain to be demonstrated in GBM.
With the development of novel therapies interfering
with identified cancer pathways, Notch pathway there-
fore holds a promise of being a particularly appropriate
target to fight against GBM.
Prerequisites need to be fulfilled by a compound poten-

tially designed for targeted GBM therapy. The drug needs
to be harmless for healthy cells and to be able to pass the
blood brain barrier to penetrate the tumor. Further, as
previously shown in vitro [111,112], combinations of
compounds that target non-redundant GBM pathways or
with cytotoxic agents may synergize to induce GBM cell
death. Such combinations that would include Notch sig-
naling inhibitors are hoped will provide promising thera-
pies to substantially improve patient outcomes.
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