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Abstract

Radiation therapy has come a long way from treatment planning based on orthogonal radiographs with large margins
around tumours. Advances in imaging and radiation planning software have led to three-dimensional conformal
radiotherapy and, further, to intensity modulated radiotherapy (IMRT). IMRT permits sparing of normal tissues and
hence dose-escalation to tumours. IMRT is the current standard in treatment of head and prostate cancer and is being
investigated in other tumour sites. Exquisitely sculpted dose distributions (increased geographical miss) with IMRT, plus
tumour motion and anatomical changes during radiotherapy make image guided radiotherapy an essential part of
modern radiation delivery. Various hardware and software tools are under investigation for optimal IGRT.

Introduction

The delivery of radiotherapy has changed significantly
over the last few decades. We have moved from conven-
tional radiotherapy using simple rectangular treatment
fields to increasingly conformal radiotherapy techniques
such as three dimensional conformal radiotherapy (3D-
CRT) and intensity modulated radiotherapy (IMRT).
These changes in the delivery of radiotherapy have come
about as result of trying to improve the delivered dose to
tumour bearing tissues, and reduce irradiation of organs
at risk (OARs), hence improving the therapeutic ratio of
the radiation treatment. The radiation dose is prescribed
to the planning target volume (PTV), which includes the
gross tumour volume (GTV) plus areas of microscopic
spread (clinical target volume, CTV) and a margin
around it to account for the systematic and random
errors plus physiological organ changes that occur during
the treatment planning and delivery process [1,2]. Using
three-dimensional conformal radiotherapy to deliver a
radical dose to the PTV, results in a significant dose to the
OARs. There is robust evidence from several tumour
sites, such as head and neck, prostate and lung, support-
ing dose-escalation and/or altered fractionation for
improved outcomes [3-6]. Reducing the dose to the
OARs using techniques such as IMRT and reducing the
size of the PTV using image guided radiotherapy (IGRT)
enables radiation dose-escalation to be done, to improve
the treatment outcomes.
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IMRT
IMRT is an advanced approach to three-dimensional
treatment planning and conformal therapy. It optimizes
the delivery of irradiation to irregularly-shaped volumes
and has the ability to produce concavities in radiation
treatment volumes. IMRT can be delivered using linear
accelerators with static multi-leaf collimators (MLC, step
and shoot IMRT) or dynamic leaf MLCs, tomotherapy
machines or volumetric arc modulated therapy (VMAT).
The simultaneous boost IMRT allows for varying doses to
be delivered to various target volumes in a single phase
and obviates the need for field matching and the use of
electrons, thus minimizing the dosimetric uncertainties.
When treating head and neck cancers, IMRT allows for
a greater sparing of normal structures such as salivary
glands, upper aero-digestive tract mucosa, optic nerves,
cochlea, pharyngeal constrictors, brain stem and spinal
cord [7-9]. Salivary gland sparing using IMRT in various
head and neck sub-sites has been demonstrated in ran-
domized and non-randomised trials. The multi-centre
study (PARSPORT), that compared parotid sparing
IMRT with standard radiotherapy in patients with
oropharyngeal and hypopharyngeal cancer, showed a sig-
nificant reduction (40% versus 74%) in the rate of grade 2
xerostomia (LENT-SOMA) in the IMRT arm at 1 year
post-radiotherapy [10]. IMRT also enables the sparing of
the pharyngeal constrictor muscles, which are important
for a normal swallow, and therefore has the potential to
reduce acute and late radiation induced dysphagia [9]. By
virtue of its ability to spare the cochlea, IMRT has the
potential to reduce the incidence of radiation induced
hearing loss [11]. The significant increase in the burden
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of toxicity resulting from radiotherapy can be reduced
using IMRT. The reduction in the normal tissue toxicity
permits dose-escalation to improve outcomes.

Escalation of radiation dose to greater than 68 Gy using
hypofractionation has been shown to improve outcomes
in localized carcinoma of the prostate [4,12]. The dose to
the prostate is limited by gastro-intestinal and genitor-
urinary tolerance. The use of IMRT has resulted in the
safe delivery of hypofractionated escalated doses to the
prostate with reduced acute and late rectal and bladder
toxicity [6,13,14]. In patients with a high risk of pelvic
lymph node metastases, pelvic nodal irradiation
improves outcome [15]. The prostate, seminal vesicles
and the pelvic nodes can be treated using IMRT, with
acceptable gastro-intestinal and genitor-urinary toxicity
[16,17].

In gynaecological cancers, whole pelvic radiotherapy
provides improved outcomes but at a cost of increased
gastro-intestinal and haematologic toxicity. IMRT has
been shown to reduce the acute and late toxicity without
affecting treatment outcomes [18-21].

The dosimetric benefit of IMRT in sparing OARs has
been proven in cancer of pancreas and stomach (liver,
kidneys, spinal cord and small bowel) and anus and rec-
tum (small bowel, bladder and pelvic bone marrow).
However, there is limited clinical data on the outcomes in
terms of tumour response and late normal tissue toxicity.
Trials are currently underway to address this issue [22].

IMRT can be used when delivering post-operative
radiotherapy for breast cancer as single phase or for boost
after 3D-CRT. This is of particular value in women with
large or irregular breasts and improves late cosmesis and
reduces the dose to the heart and the lung [23-25].

IGRT

The sharp dose gradients that exist with IMRT plans
could result in a geographical miss of the tumours or
overdose to the OARs. Optimal IMRT delivery therefore
relies on accurate image guidance. In tumours which
exhibit a large physiological motion the margins around
the CTV can be quite large. Reduction in this margin
allows for a reduction in dose to the organs at risk. This
gives a scope for an improvement in the therapeutic ratio
by altering the dose, dose per fraction and also dose-esca-
lation to take advantage of the steep portion of the radia-
tion dose response curve. IGRT is a useful tool that can
detect and correct random and systematic errors that
occur during treatment delivery. Portal imaging and digi-
tally reconstructed radiographs is a basic form of IGRT.
More advanced IGRT techniques are being introduced in
clinical practice which allow for target oriented position-
ing as opposed to the patient oriented positioning that is
currently used. Image guidance can be used for improved
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tumour delineation and/or to correct for intra and/or
inter-fraction motion during radiotherapy.

Image guidance for delineation

Computed tomography (CT) scans are the standard
imaging modality used in radiation treatment planning as
they provide a three-dimensional view of the tumours
and normal anatomy, along with the electron density data
which enables dose calculations. However CT scans are
inferior to magnetic resonance imaging (MRI) scans in
the detailed definition of soft tissues (microscopic
tumour extension) and tissue planes and can be affected
by artifacts such as dental amalgam and hip arthroses.
CT-MRI fusion should be considered for radiotherapy
planning wherever possible, especially in central nervous
system and skull base tumours. Positron emission tomog-
raphy (PET) enables biological imaging of tumours. Ini-
tial studies using [(18)-F] fluoro-2-deoxy-D-glucose
positron emission tomography (FDG-PET), which high-
lights the proliferating areas of the tumour, have been
reported [26]. These have shown that FDG-PET can aid
delineation of the GTV and PET guided dose escalation
using IMRT [27-32]. Hypoxic regions of tumours are
radio resistant and increasing the radiation dose might
help overcome the radioresistance. PET scanning using
two radioactive tracers, namely fluorine-18-labelled fluo-
romisonidazole (F-MISO) and copper(Il)-diacetyl-
bis(N(4)-methylthiosemicarbazone) (Cu-ATSM) have
been shown to highlight the hypoxic areas of tumours.
Preliminary studies escalating the radiation dose to the
hypoxic areas have demonstrated the feasibility of this
approach in terms of acute toxicity [33,34]. The PET
images could be fused with the planning CT scans and
these could be used for biological dose optimization (as
opposed to the currently used dose-volume hostogram
based optimization) during inverse planning IMRT. How-
ever, follow-up data for outcomes and toxicity from larger
studies using PET guided dose escalation are required
before this approach can be used in standard clinical
practice.

IGRT for PTV margin reduction

Reduction in the size of the tumour and change in the
local anatomy lead to an inter-fraction change in both the
target volume to be treated and the OARs. Significant
intra-fraction motion can occur when treating prostate,
rectal, gynaecological cancers and head and neck
tumours. Regular in-room images can be obtained using
'CT on rails, kilovoltage cone beam CT (kVCBCT),
megavoltage cone beam CT (MVCBCT) or using a tomo-
therapy machine. CT on rails consists of a CT scanner in
the treatment room, at the opposite end of the linear
accelerator. KVCBCT consists of a kilovoltage X-ray tube
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combined with a flat panel image detector mounted
orthogonally to the therapy X-ray beam on a linear accel-
erator. MVCBCT uses an electronic portal imaging
device (EPID) mounted on the gantry and the mega-volt-
age photon beam for image generation. Tomotherapy
uses a machine which integrates helical megavoltage CT
with a linear accelerator. The images obtained from these
in-room modalities are fused with the CT used for plan-
ning, using bony and soft tissue contrast and changes in
the treatment plan or patient position, can be made to
account for the inter-fraction motion. In addition,
tumours can be tracked using infra-red markers placed
on the patient's skin and aligning these to bony land-
marks or fiducial markers in order to make changes to the
treatment plan based on the changes in the internal anat-
omy [35,36].

Larger PTV margins have to be used for tumours of the
lung and intra-abdominal tumours to allow for the
motion during respiration. The development of four-
dimensional CT with multi-slice detectors and faster
image reconstruction has enabled image acquisition
while the patient breathes. CT slices are obtained during
every phase of the respiratory cycle, which are then com-
bined to quantify the respiratory motion [37]. The four-
dimensional CT can be used to generate PTV margins
using the free-breathing technique, where the composite
tumour volume over the entire breathing cycle is created
and a margin is applied to allow for microscopic spread
and set-up uncertainties. Alternatively, it can be used to
deliver radiation using the breath-hold technique where
the beam is switched on with the patients holding their
breadth in the expiratory or the inspiratory phase [37]. In
patients who find voluntary breath control difficult, a
ventilatory gating approach can be used where the
patient's chest movements are tracked using a fiducial
marker on the body surface and the beam is switched on
in the pre-determined phase of the respiratory cycle.

Image guidance for treatment verification

Verification is a vital cog in the radiation treatment deliv-
ery cycle. Verification is undertaken before treatment
starts, and regularly during treatment, and ensures that
under-dosing to the tumour and over-dosing to the OARs
is avoided by minimizing the systematic and random
errors. Advanced forms of EPID have been developed. In
addition to the conventional two-dimensional verifica-
tion, modern devices also enable three-dimensional volu-
metric verification (using kVCBCT) and in vivo
dosimetry. The CT- detector array systems on tomother-
apy machines can also be used for verification and in vivo
dosimetry [35]. Combining the information obtained
from in vivo dosimetry of normal tissues and the moni-
toring of normal tissue toxicity (common toxicity criteria
for adverse events, CTCAE) enables the calculation of
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normal tissue complication probabilities which would
provide information on the therapeutic ratio of a particu-
lar treatment technique and aid setting dose constraints
for IMRT.

Stereotactic radiotherapy

Hypofractionated accelerated radiotherapy is thought to
improve outcomes by reducing the impact of tumour cell
repopulation. Stereotactic radiotherapy enables the deliv-
ery of exquisitely conformed radiation in large fraction
sizes, which also enables improved tumour control while
limiting the normal tissue toxicity. Due to the exquisite
dose sculpting, robust image-guided technologies (gating
or chasing) have to be coupled with the radiation delivery
systems [38]. Stereotactic radiotherapy can be delivered
using linear accelerator systems or Cyberknife’ (Accuray
Inc, CA, USA). This technique is currently widely used
for treating intra-cranial oligometastases [39]. There is
increasing evidence supporting its use for the radical
treatment of stage I lung cancer, renal cell carcinoma,
hepato-cellular carcinoma, spinal tumours and prostate
carcinoma (as a primary treatment or a post-treatment
boost). It can also be used for treatment of lung and
hepatic metastases [38].

Particle therapy

Charged particles, such as protons, deposit little energy
until they reach the end of their range (depending on
their energy), at which point most of the energy is depos-
ited in a small area known as the Bragg peak. This has
advantages in terms of normal tissue sparing, better dose
homogeneity and a reduced dose bath effect (low radia-
tion dose to normal tissue). Intensity modulated proton
therapy (IMPT) allows for the modulation of the fluence
and the position of the Bragg peak, permitting three-
dimensional dose distributions. There are no randomized
trials comparing IMPT with IMRT. The delivery of pro-
ton therapy on a wide scale is restricted by the limited
availability of proton therapy machines due to the high
financial resources required. Newer technologies, such as
laser-accelerated proton therapy, could replace the cur-
rent cyclotron facilities for proton therapy, which will be
a compact, cost-effective way to deliver energy-and inten-
sity-modulated proton therapy (EIMPT) [40]. The cur-
rent role of proton therapy lies in tumours close to the
skull base, spinal cord and in paediatric patients [41]
where proton therapy provides the maximum benefit in
terms of normal tissue sparing.

Future directions

The role of IMRT in normal tissue sparing is well estab-
lished. Future research into the optimization of IMRT
should focus on improvements in the time required for
planning and delivery using techniques such as VMAT.
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Improvements in therapeutic ratio could be achieved by:
reducing the low dose to normal structures (dose-bath
effect) using techniques such as IMPT; investigating
dose-escalation to tumours using biological volumes; and
increasing the effective dose to tumours using altered
fractionation (linac based or using stereotactic radiosur-
gery). Using imaging modalities, such as MRI and CT, for
better treatment verification and development of sophis-
ticated software solutions for online and off-line plan cor-
rections would help to reduce errors during treatment
delivery.

Summary and conclusions

The last two decades have seen significant technological
advances for radiation delivery in terms of more precise
dose delivery using IMRT and IGRT. The result has been
improved sparing of normal tissue and, hence, the poten-
tial to improve cancer outcomes using dose-escalation
and/or altered fractionation. Last, but not least, none of
the advances in radiotherapy planning and delivery would
have been possible without the availability of faster, more
powerful computer systems that enable the efficient run-
ning of the advanced softwares required for planning and
delivery.
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