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Abstract

Background: Bowing and/or pseudarthrosis of the tibia is a known severe complication of
neurofibromatosis type | (NFI). Mice with conditionally inactivated neurofibromin (Nfl) in the
developing limbs and cranium (NflPrxl) show bowing of the tibia caused by decreased bone
mineralisation and increased bone vascularisation. However, in contrast to NFI patients,
spontaneous fractures do not occur in NflPrx| mice probably due to the relatively low mechanical
load. We studied bone healing in a cortical bone injury model in NfIPrx| mice as a model for NFI-
associated bone disease. Taking advantage of this experimental model we explore effects of
systemically applied lovastatin, a cholesterol-lowering drug, on the Nfl deficient bone repair.

Methods: Cortical injury was induced bilaterally in the tuberositas tibiae in NflPrx| mutant mice
and littermate controls according to a method described previously. Paraffin as well as
methacrylate sections were analysed from each animal. We divided 24 sex-matched mutant mice
into a lovastatin-treated and an untreated group. The lovastatin-treated mice received 0.15 mg
activated lovastatin by daily gavage. The bone repair process was analysed at three consecutive time
points post injury, using histological methods, micro computed tomography measurements and in
situ hybridisation. At each experimental time point, three lovastatin-treated mutant mice, three
untreated mutant mice and three untreated control mice were analysed. The animal group
humanely killed on day 14 post injury was expanded to six treated and six untreated mutant mice
as well as six control mice.

Results: Bone injury repair is a complex process, which requires the concerted effort of numerous
cell types. It is initiated by an inflammatory response, which stimulates fibroblasts from the
surrounding connective tissue to proliferate and fill in the injury site with a provisional extracellular
matrix. In parallel, mesenchymal progenitor cells from the periost are recruited into the injury site
to become osteoblasts. In NfIPrx| mice bone repair is delayed and characterised by the excessive
formation and the persistence of fibro-cartilaginous tissue and impaired extracellular matrix
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mineralisation. Correspondingly, expression of Runx2 is downregulated. High-dose systemic
lovastatin treatment restores Runx2 expression and accelerates new bone formation, thus
improving cortical bone repair in NflPrx| tibia. The bone anabolic effects correlate with a
reduction of the mitogen activated protein kinase pathway hyper-activation in Nfl-deficient cells.

Conclusion: Our data suggest the potential usefulness of lovastatin, a drug approved by the US
Food and Drug Administration in 1987 for the treatment of hypercholesteraemia, in the treatment
of Nfl-related fracture healing abnormalities. The experimental model presented here constitutes
a valuable tool for the pre-clinical stage testing of candidate drugs, targeting Nfl-associated bone

dysplasia.

Background

Long bone pseudarthrosis, usually of the tibia, is a well
known and serious complication of neurofibromatosis
type 1 (NF1) [1-3]. The condition presents within the first
years of life either as bowing of the affected bone, or with
an hourglass constriction and subsequent spontaneous
fracture. The aetiology of the condition has never been
well established, and its exact cause is unknown. Thera-
peutic programs have been largely based on conceptual
considerations for the treatment of post-traumatic non-
unions. These forms of treatment, however, are often
futile when applied to pseudarthrosis of the tibia indicat-
ing that systemic problems interfere with normal healing.
In some cases amputation is the only option.

In order to better understand neurofibromin (Nf1) func-
tion in bone we recently generated mice bearing a
homozygous Nf1 inactivation in the embryonic limb and
in the cranial mesenchyme. The affected cell types include
endothelial cells, chondrocytes and osteoblasts but not
osteoclasts, which are of haematopoietic origin. Interest-
ingly, early limb bud specific Nf1 inactivation results in
tibia bowing similar to that observed in NF1 patients [4].
However, since in the mouse model the affected extremi-
ties are not subjected to excessive mechanical force, bone
fracture and the expected pseudarthrosis never occur
spontaneously. In order to study the role of Nf1 in the reg-
ulation of bone repair we applied a previously described
bone injury model, which has been designed for the com-
parative analysis of the bone healing in wild-type versus
knock-out mice [5,6]. The model involves drilling 0.5 mm
holes through the entire diameter of the tibial diaphysis,
which does not lead to bone shaft breakage, as the
remaining cortical structure stabilises the bone collar.
Despite the small size of the injury, the experimental
model enables both qualitative and quantitative analysis
of the complex process of bone repair. At the same time it
causes the least possible distress to the tested animals. The
normal repair process involves stages of haematoma for-
mation, connective tissue fibroblast and mesenchymal
stem cell recruitment followed by osteoblast differentia-
tion. Consequently, bone formation in the course of the
injury repair relies on the timely recruitment and differen-

tiation of mesenchymal progenitor cells within the injury
site. These processes appear disturbed in NflPrx mice
leading to a delay of cortical bone regeneration accompa-
nied by the accumulation of the fibro-cartilaginous tissue
in the site of injury. The findings match patho-histological
descriptions of the NF1 pseudarthrosis in the literature,
where pseudarthrotic tissue is characterised as osteoid-
rich, fibro-cartilaginous and highly vascularised tissue
[7,8]. In the search for a possible therapeutic intervention
as well as for the molecular mechanism of the disease, we
tested the influence of statins on the process of bone
repair in the Nf1Prx1 mouse model.

Statins are inhibitors of 3-hydroxy-3-methylglutaryl coen-
zyme A reductase, broadly used for the reduction of serum
cholesterol. As statins inhibit the initial enzyme of the
mevalonate pathway, they also reduce prenylation and
farnesylation of signalling molecules, such as Ras and Ras-
related proteins [9-11]. It has been well documented that
statins induce a direct bone anabolic effect, which trans-
lates into accelerated bone healing in rats and mice [12-
14]. In particular, simvastatin, mavastatin, fluvastatin and
lovastatin have all been shown to stimulate bone forma-
tion [12]. Statin-induced bone formation is associated
with increased osteoblast differentiation as measured by
alkaline phosphatase, bone morphogenic protein 2
(BMP-2) and osteocalcin expression [15]. In addition,
results of in-vitro experiments indicate that statins might
inhibit bone resorption by interfering with osteoclast
function in a similar way as bisphosphonates [16]. Both
drug groups inhibit the mevalonate pathway albeit at dif-
ferent synthesis pathway levels, thus their mechanisms of
action overlap. The clinical relevance of this remains
unclear as several independent studies were published
presenting contradictory results on the fracture risk reduc-
tion assessment in lovastatin-treated patients [17]. Inde-
pendently of the bone anabolic and putative anti-
catabolic properties, a potential usefulness of statins in
the treatment of NF1 was suggested by the improvement
of learning dysfunction in Nfl+/- mice [18]. Conse-
quently, statins became our first choice for the treatment
of the delayed bone injury repair in Nf1Prx1 mice. Here
we present data showing that a high dose of systemically
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applied lovastatin improves bone repair in Nf1Prx1 mice.
This is probably a result of normalisation of mitogen acti-
vated protein kinase (MAPK) signalling and enhanced
Runx?2 expression.

Methods

Animal procedures

The Nf1flox and Prx1Cre lines were maintained by contin-
uous backcrossing to wild-type C57BL/6] mice to mini-
mise genetic drift. The female Nflflox mice were crossed
to male Nflflox heterozygous Prx1-Cre positive males.
Mice were genotyped as described previously [19]. We
used 12-14-week-old mice for cortical bone injury exper-
iments, essentially as described in [5] with minor modifi-
cations. In brief, mice were anaesthetised by
intraperitoneal injection of ketanest/rompun. The skin
was shaved and skin incision made over the medial aspect
of the proximal end of the tibia. Soft tissue was cleared
away and a hole (500 pm diameter) through the tibia was
made with a 0.5 mm stainless steel drill. The drill site was
placed at the level of the distal end of the tibial crest
through the entire diameter of the tibia, that is, through
medial and lateral cortices and the intervening medulla.
The skin was closed using acrylic histo-glue. Lovastatin
was converted into its active sodium salt form as described
previously [20]. In brief, 50 mg mevinolin in the lactone
form (Sigma) was dissolved in 1 ml prewarmed (55°C)
ethanol and 500 pl of 0.6 M NaOH was added. The solu-
tion was briefly vortexed and 10 ml of water was added.
The solution was incubated for 30 minutes at room tem-
perature. The final mevinolin solution (4 mg/ml) was
adjusted to pH 8 with HCI and stored in multiple aliquots
at -20°C. The treated group received daily oral gavage of
0.15 mg activated lovastatin in 150 pl end volume gavage.
The same dose was shown to be effective in the treatment
of the learning and attention deficits in the NF1 hetero-
zygous knock-out mice [18]. All experimental procedures
were approved by the Landesamt fiir Gesundheitsschutz
und Technische Sicherheit (LaGeTSi), Berlin, Germany.

Histological analysis

Tibiae were dissected with the surrounding soft tissue and
fixed over night in phosphate buffered 4% paraformalde-
hyde (PFA). Subsequently tissue samples destined for cal-
cified bone histology and micro computed tomography
(n1CT) analysis were processed according to the Technovit
9100 Kit manual (Heraeus Kulzer GmbH, Germany).
Serial sections of 5 um were cut with a hard tissue micro-
tome and stained according to the VonKossa/Toluidine
procedure. For paraffin embedding, tibiae were decalci-
fied for 14 days while rotating at 4°C in phosphate buft-
ered 4% PFA/0.5% ethylenediaminetetraacetic acid
(EDTA) with one change of solution at day 7. Serial, 6 um
thick paraffin sections were prepared and used for Mas-
son-Goldner staining, in situ hybridisation and tartrate-
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resistant acid phosphatase (TRAP) staining. TRAP histo-
chemistry and TRAP-positive regions quantification was
performed on the paraffin sections as described previ-
ously [4].

In situ hybridisation

In situ hybridisations with Collagen1 and Osteopontin
probes were performed using digoxigenin labelled cRNA
probes as described previously [21]. The probes were
amplified from the mouse embryonic day E17.5 cDNA
library using the following primers:

Collagen1F: 5'-GGTACATCAGCCCGAACCCCAAGG-3'
Collagen1R: 5'-GTCTGGGGCACCAATGTCCAAGGG-3'
OsteopontinF: 5'-GATGAATCTGACGAATCTCAC-3'
OsteopontinR: 5'-CTGCTTAACCCTCACTAACAC-3'

The Runx2 expression was detected using 32P labelled
cRNA probes as described previously [22]. The Runx2
probe was derived from mouse embryonic stage 14.5
cDNA library with the following primers:

Runx2F: 5'-GTGTTCTGTGGTCTCTGAG-3'
Runx2R: 5'-GGCAAAAGCTTGCAGAACTC-3'

Radioactive probe signals were photographed in dark field
and the tissue histology was visualised using inverse phase
optics.

Three-dimensional imaging by ©CT

Methacrylate embedded tibiae were scanned in plastic
blocks using a vivaCT40 scanner from ScancoMedical. The
following instrument settings were chosen for the meas-
urements: voxel size 0.1 mm x 0.1 mm x 0.5 m; scan
speed of 2 mm/second; contour mode 1; cortical thresh-
old 350 mg/cm3. The cortical injury was located and a vol-
ume of interest (VOI) was defined comprising the
complete injury site. To analyse bone formation within
the bone marrow cavity, another VOI, comprising 90 con-
secutive scan slices, was selected reaching from the proxi-
mal to the distal callus end. All VOIs were analysed under
identical settings with the Scanco evaluation software.
Results of the pCT morphometric analysis were expressed
as the mean + standard deviation and statistical signifi-
cance was examined using an unpaired t-test (*P < 0.05;
**P < 0.01).

Western blot

Calvarial bones (parietal and frontal bone) were har-
vested 7 days post injury. Bones were dissected free of con-
nective tissue and muscles and homogenised in 300 pl
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radio immuno precipitation assay (RIPA) buffer supple-
mented with protease and phosphatase inhibitors using
tissue homogeniser (Fisher Scentific). Homogenates were
centrifuged for 5 minutes at 13000 rpm and the superna-
tants were collected. Whole-cell lysates of calvarial bones
were resolved by electrophoresis in sodium dodecyl sul-
phate (SDS)-polyacrylamide gels and transferred onto
polyvinylidenefluoride (PVDF) membranes (Amersham).
For Western blot analysis, membranes were probed with
the following antibodies: phospho-p42/44 (pERK1/2)
#9102 Cell Signaling (diluted 1:1000), p44 (ERK1) #4372
Cell Signaling (diluted 1:1000).

Serum deoxypyridinoline determination

Serum deoxypyridinoline (D-PYD) was measured with a
METRA Serum PYD EIA Kit (Osteomedical GmbH)
according to the supplied protocol.

Results

The process of bone repair was examined 7, 14 and 28
days post injury in transverse serial sections of decalcified
as well as calcified tibia (Figures 1 and 2). In addition,
serial longitudinal sections were prepared in order to ver-
ify the location of the injury site and to follow bone heal-
ing in another plane (Additional file 1). The process of
cortical and medullary defect healing was quantified with
pCT at day 14 after injury (Figure 3).

Day 7 post injury

In control mice the drill site was populated by connective
tissue fibroblasts and mesenchymal progenitor cells at day
7 post injury. In agreement with data reported previously,
new bone formation was initiated at the periosteal surface
and in the bone marrow cavity (Figures 1A and 2A) [5].
The woven bone within the marrow cavity exhibited ini-
tial mineralisation as detected by VonKossa staining and
small islands of mineralised tissue were detectable in the
cortical region (white arrow in Figure 2A). Cartilage was
also detected, indicating some degree of endochondral
bone formation (Figure 1A and 1A'). In Nf1Prx1 mice
connective tissue fibroblasts (f) were present in the injury
site but the deposition of extracellular matrix associated
with osteoblast differentiation did not occur (Figure 1B').
Consequently, the mineralisation process was delayed in
the marrow cavity and only marginally present in the cor-
tical region (Figure 2B and Additional file 1). Quantifica-
tion by uCT showed that the bone volume to total volume
fraction (BV/TV) in mutants was decreased by 40% in the
bone marrow cavity (0.086 + 0.034 versus 0.051 + 0.005)
and reduced five fold in the cortical regions (0.028 +
0.015 versus 0.004 + 0.007) when compared with con-
trols (Figure 3A). Cartilage (*) was formed excessively and
fibro-cartilaginous tissue accumulated on the margins
(Figure 1B'). In addition, bone surrounding the drill site
in Nf1Prx1 mice was generally unmineralised (Additional
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file 1 and Figure 1B). Unmineralised bone was detectable
in all tested animals on the 7th and 14th day post injury
(n = 9) but it was consistently absent in the non-injured
Nf1Prx1 tibiae. Interestingly, this phenomenon was also
observed at locations distant from the injury, suggesting
the involvement of long-range and/or systemic signalling
(longitudinal VonKossa/Toluidine stained sections, Addi-
tional file 1). In situ expression analysis showed a
decreased level of Runx2 expression in the bone marrow
cavity at day 7 post injury indicating impaired osteoblast
formation and/or recruitment of progenitor cells (Figure
4B).

Day 14 post injury

At day 14 post injury the drill site in control animals was
filled with newly formed bone, osteoid and a few blood
vessels (Figures 1D, 1D' and 2D). Mineralisation islands
had developed to trabeculae by replacing cartilage and
fibrous tissue. The newly formed trabeculae were thicker,
and lined with a thin osteoid indicating timely minerali-
sation of the newly formed matrix (Figure 2D). In the
mutant mice lamellar bone was formed within the bone
marrow cavity and in the cortical defect. However, its min-
eralisation was retarded, as most trabeculae remained cov-
ered with a thick layer of osteoid (Figure 2E). In addition,
trabeculae within the cortical regions appeared scarcer
and the cartilaginous and fibrotic tissues persisted (Figure
1E and 1E'). Quantitative pCT analysis revealed a 75%
reduction of BV/TV in the cortical regions (0.394 + 0.19
versus 0.11 + 0.07) as well as slight decrease in the average
BV/TV in the bone marrow cavity (0.201 + 0.26 versus
0.168 + 0.16) when compared with the control group
(Figure 3A). This appears not to be due to a scarcity of
osteoblasts, as judged by the presence of the collagen type
I expressing cells (Figure 5B). The intense expression of
Osteopontin, known to demarcate terminally hyper-
trophic chondrocytes and early osteoblasts, argues for an
impairment of the maturation process (Figure 5E). Oste-
opontin is known to facilitate osteoclast mediated bone
resorption [23,24]. We thus quantified TRAP-positive
bone lining cells within the injury site and determined the
rate of bone turnover by measuring D-PYD concentrations
in serum. Osteoclast numbers were increased in the injury
site in Nf1Prx1 mice when compared with controls and
lovastatin treatment did not significantly change this
(data not shown). This was paralleled by an increased
serum D-PYD in Nf1Prx1 animals, which was only
slightly reduced by lovastatin treatment (control 2.5 +
0.39 nMol/l; Nf1Prx1 3.95 + 0.71 nMol/l; Nf1Prx1 +lov-
astatin 3.49 + 0.83; n = 3).

Day 28 post injury

The injury site became difficult to locate in the control
animals, demonstrating the speed and efficacy of the
regeneration processes. Solid bone, undistinguishable
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control Nf1Prx1 Nf1Prx1 + lovastatin

Figure |
Bone repair of the cortical tibia injury in NflPrx| mice is accelerated by systemic high-dose lovastatin treat-

ment. (A)-(C") Masson-Goldner stained transverse paraffin sections of the drill channel (white dotted lines) 7 days post injury.
(A), (A") New bone is formed in the marrow cavity in control animals (arrow). (A') The presence of cartilage suggests that cor-
tical repair relies at least partially on endochondral bone formation (star). Recruited mesenchymal cells differentiate into oste-
oblasts embedded in the collagenous (green/blue) extracellular matrix (arrows). (B), (B") In mutant animals the entire cortical
bone surrounding the injury site appears unmineralised as indicated by the orange stained matrix (arrow). Recruited fibroblasts
fail to differentiate and collagenous matrix (see the green coloured matrix in (A'")) is not produced. Formation of new bone in
the bone marrow cavity is delayed, indicating a failure of repair process initiation. The cartilage is formed excessively (star) and
the entire injury site is filled with fibro-cartilaginous tissue (f). (C), (C') Lovastatin treatment normalises the cortical bone qual-
ity around the injury site (note absence of orange staining). Recruited mesenchymal progenitor cells deposit green stained col-
lagenous matrix (arrows). New bone is formed in the marrow cavity (arrow) as well as in the cortical region (nb). (D)-(F')
Masson-Goldner staining of transverse sections of the injury site 14 days post induction. (D)-(E') Trabecular bone is present in
the marrow space in control as well as in mutant animals (arrows). (E), (E') NflPrx| mice exhibit persistence of fibrous (f) and
cartilaginous (star) tissue in the area of the injury site. Reduced mineralisation is indicated by orange structures (arrow). (F),
(F") No fibro-cartilaginous tissue is detected in the lovastatin-treated group. The cortical bone (c) in lovastatin-treated mice
appears thicker and no signs of demineralisation are found; (m) denotes muscle.
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Figure 2

Progression of cortical bone repair in control and Nfl Prx| mice. Toluidine/VonKossa stained transverse sections of
the drill channel entry site 7 and 14 days post injury induction. (A), (B) Trabecular bone formation is delayed within the injury
site in mutant mice as compared with controls at day 7. (C) Lovastatin treatment accelerates the formation of new mineralised
bone by preventing fibro-cartilaginous tissue accumulation. (D), (E) Unlike in control mice, at day 14 post injury trabecular
bone within the drill channel is covered by thick osteoid (arrows) in the mutant mice and the cartilaginous tissue persists (*¥).
(F) Lovastatin treatment improves trabecular bone formation and extracellular matrix mineralisation. In addition, a marked

reduction of the osteoid occurs.

from the surrounding cortical bone, replaced initially
formed woven bone. In the NflPrx1 animals the injury
site was also closed by calcified extracellular matrix, but
woven bone was still present in the marrow cavity. Fur-
thermore, cortical bone was covered by a thick osteoid,
indicating an ongoing abnormality of the mineralisation
process. Cortical bone appeared strikingly thinned and at
many sites it was penetrated by thick blood vessels (Addi-
tional file 2).

Lovastatin treatment improves injury healing in NflPrx|
mice

Day 7 post injury

Improvement of bone quality had already become obvi-
ous by the 7th day of treatment. In contrast to untreated
mice, unmineralised bone was neither detectable in the
vicinity nor distally from the injury site (Figures 1C and
2C). Calcified trabecular bone was found in the bone mar-
row cavity and it became detectable also in the cortical
regions, indicating accelerated osteoprogenitor differenti-
ation as well as normalisation of mature osteoblast func-
tion. The pCT analysis indicated that BV/TV within the
bone marrow cavity was two-fold higher in the lovastatin-
treated mice than in untreated mice (0.108 + 0.043 versus
0.051 + 0.005) and slightly exceeded the BV/TV values of

the control group (0.086 + 0.034) (Figure 3A). In contrast,
in the cortical regions BV/TV remained at basal level in
both the lovastatin-treated and untreated Nf1 deficient
mice compared with the control group (0.004 + 0.007 and
0.004 + 0.0050 versus 0.028 + 0.015, respectively). Inter-
estingly, cartilage present in the control animals and
excessively formed in the untreated mutants was absent
suggesting that desmal ossification is promoted by the
lovastatin treatment (Figure 1C and 1C'). This was further
corroborated by in situ analysis, showing an increased
expression of Runx2 on the 7th day post injury in the mar-
row cavity (Figure 4C).

Day 14 post injury

On day 14 post injury a marked increase of BV/TV was
detected within the bone marrow cavity of lovastatin
treated mice as compared with untreated mutants (0.168
+ 0.16 versus 0.329 + 0.089; Figure 3A). A less pro-
nounced BV/TV increase was also detectable in the cortical
regions (0.110 + 0.071 versus 0.188 + 0.092; Figure 3A).
Thus, lovastatin appears to accelerate cortical bone repair
primarily by enhancing new bone formation within the
bone marrow cavity and by replacing fibro-cartilaginous
tissue in the injury site with mineralised bone matrix (Fig-
ure 1F and 1F'). The associated trabecullar bone lining
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Lovastatin treatment improves defect mineralisation in Nfl Prx| mice. (A) Transverse micro computed tomography
sections of the injury 14 days post induction. Quantification of the mineralised matrix in the cortical regions (red region of
interest (ROI)) and bone marrow shaft (green ROI) 7 days (n = 3) and |4 days (n = 6) post injury. Note the increased bone vol-
ume to total volume (BV/TV) in the bone marrow cavity (left chart) as well as in the cortical region (right chart) in animals
treated for 7 and 14 days with lovastatin as compared with controls. (B) Analysis of the mitogen activated protein kinase
(MAPK) pathway activation status (pErk|/Erk| ratio) in calvaria bones of NflPrx| mice and lovastatin-treated mice. The MAPK
pathway activation was determined by densitometric analysis of the western blots.
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CLLE
1]

Jivs renhannn

Lovastatin treatment rescues Runx2 expression in the injury site. (A)-(C) Runx2 expression analysed with radioactive
in situ hybridisation on transverse sections of the drill site 7 days post injury. Representative sections of three tested animals
are shown. (A")-(C'") Tissue morphology visualised by bright field microscopy. (A) Intense Runx2 staining is detected through-
out the bone marrow cavity (bm) and in the area occupied by newly forming trabecular bone (tb). (B) An overall decreased sig-
nal intensity in NflPrx| mutants, with especially faint labelling in the area occupied by fibrous tissue (f). (C) Runx2 expression
is restored within the trabecular bone formation area including the adjacent cortical defect region in lovastatin-treated mice.

osteoblasts expressed Collagen type I and little Osteopon-
tin, which is characteristic of the mature osteoblast phe-
notype (Figure 5C and 5F). The osteoid thickening
characteristic for Nf1Prx1 mice was no longer observed,
indicating that osteoblast function was restored. Consist-
ent with the function of lovastatin as an indirect inhibitor
of Ras prenylation, the bone pro-anabolic effect of lovas-
tatin correlated with the normalisation of MAPK signal-
ling measured as a phospho-Erkl/2 to Erkl ratio in
calvarial osteoblasts (Figure 3B).

Discussion

Studies of Nf1 function in bone development and home-
ostasis have long been hampered by the lack of a suitable
animal model. Recently, we have shown that bi-allelic
inactivation of the Nfl gene in developing limbs leads to
a phenotype which recapitulates features of NF1-associ-

ated bone dysplasia, including bowing of the tibia.
Despite a striking decrease of the bone mineral content
and increased bone porosity Nfl inactivation does not
result in spontaneous fractures [4]. We therefore decided
to induce a bone injury in the Nfl-deficient limb in order
to model aspects of NF1-associated tibial fractures and
pseudarthrosis. The cortical bone injury model presented
here uncovers an important role for Nf1l in the regulation
of bone regeneration. The study by Yu and colleagues con-
ducted on Nfl heterozygous mice revealed no dramatic
changes in bone morphometric parameters and dynamics
of bone formation [25]. These results are in agreement
with ours, as heterozygous Nflflox Prx1Cre mice did not
differ in the progression of injury repair from wild-type
mice (data not shown). In contrast, Nf1 deficiency results

in delayed osteoblast differentiation, leading to a retarda-
tion of the repair process. This is paralleled by ectopic car-

Page 8 of 11

(page number not for citation purposes)



BMC Medicine 2008, 6:21

http://www.biomedcentral.com/1741-7015/6/21

Nf1Prx1 + lovastatin

Col1

T L
1
= 4

iz

lP!»

Spp1

Figure 5

Lovastatin treatment reduces Osteopontin expression within the injury site in the NflPrxI mice. (A)-(C)
Collagen| and (D)-(F) Osteopontin expression visualised by in situ hybridisation in the drill channel (black dotted lines) 14 days
post injury induction. Representative sections of three animals are shown. (A)-(C) Newly formed trabecular bone (tb) within
bone marrow cavity (bm) is lined with collagen| positive osteoblasts (blue staining). (D)-(E) Osteopontin positive cells appear
more frequent and the expression level is higher in mutant mice as compared with controls. (F) Lovastatin treatment, while
increasing the trabecularisation (see Figure 3 for quantification of bone volume), reduces Osteopontin expression. (c) Cortical

bone.

tilage formation as well as an expansion of spindle-
shaped connective tissue fibroblasts, both also found in
the NF1 pseudarthrosis tissue [7]. In addition, our data
show an increased number of osteoclasts at the injury site
(data not shown) paralleled by an increased serum D-PYD
concentration in the mutant animals. Both effects are only
marginally reduced by lovastatin treatment. The increase
of osteoclast number in the injury site is similar to our
previous finding of the increased osteoclast number in the
chondro-osseous junction [4]. This effect is likely cell
non-autonomous, as Nfl is not inactivated in NflPrx1
osteoclasts.

The injury results in the occurrence of unmineralised
bone, which is present not only in the vicinity of the drill
site, but also at sites distant to it. The aetiology remains
obscure but the phenomenon seems to be important for
understanding the nature of NF1 pseudarthrosis. We
hypothesise that the injury-induced demineralisation
process is driven by locally and systemically secreted fac-
tors. NF1 is associated with decreased bone mineral con-

tent and in acute cases osteomalacia/rickets of unknown
aetiology has been observed [26-28]. A tumour inductive
role has also been suggested [29]. Our results indicate that
in Nf1 deficient limbs, the injury itself triggers a partial
demineralisation of the neighbouring bone. The mecha-
nism behind this process as well as the nature of the
involved signalling pathways awaits future investigation.

Statins have been shown to promote fracture healing in
wild-type mice and rats [12-14]. Inhibition of the
mevanolate pathway and the BMP2-dependent bone ana-
bolic action of lovastatin are likely to be involved [30]. In
the context of Nf1 deficiency lovastatin's activity as a post-
translational inhibitor of Ras seems to be of central
importance [31]. We and others have shown that de-
repression of MAPK pathway signalling in the absence of
Nf1l hinders osteoblastic differentiation and prevents
extracellular matrix mineralisation [4,32]. Complementa-
rily, a recent report by Kono and colleagues indicates that
MAPK pathway inhibition promotes matrix mineralisa-
tion [33]. In this context our current data argues for a bone
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anabolic action of statins being at least partially depend-
ant on the inhibition of the Ras/MAPK pathway. Further
studies are necessary to determine the exact mechanism,
but the principle of MAPK involvement in osteoblast-
ogenesis emerges and statins seem an attractive pharma-
cological tool for modulating this crucial signalling
pathway. Interestingly, local statin delivery in the fracture
site was recently shown to accelerate bone healing in mice
and rats [12,13]. In summary, our results confirm the
validity of the hypothesis that statins have a beneficial
influence on the defective bone healing in Nf1 deficiency.
They also set the stage for future experiments aimed at the
treatment of the focal NF1 bone changes with local statin
delivery. The presented mouse model recapitulates multi-
ple aspects of NF1 pseudarthrosis and can be envisioned
as an important tool facilitating pre-clinical stage testing
of other drugs targeting NF1-related skeletal abnormali-
ties.
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Additional material

Additional file 1

Progression of bone repair in control and Nf1Prx1 mice, longitudinal
view. Toluidine/VonKossa stained longitudinal methacrylate sections of
wild-type and Nf1Prx1 tibia 7 and 14 days post injury induction. Unin-
jured tibia is shown for comparison. The trabecular bone formed within
the bone marrow cavity demarcates the injury site. Magnification of the
cortical bone distant from the injury site shows normal mineralisation in
uninjured animals and partial cortical bone demineralisation in mutant
mice 7 and 14 days post injury (red frame, arrows).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1741-
7015-6-21-S1.jpeg]

Additional file 2

Progression of bone repair in control and Nf1Prx1 mice, 28 days post
injury. Toluidine/VonKossa stained transverse sections of the cortical
defect area. After 28 days post injury the cortical structure is regenerated
in control mice (left). The cortical bone in mutant mice remains thinned
and overlaid by a thick osteoid (red arrows). It is also excessively pene-
trated by blood vessels (white arrows).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1741-
7015-6-21-S2.jpeg]
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