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Abstract

Background: It has long been debated whether Asperger’s Syndrome (ASP) should be considered part of the
Autism Spectrum Disorders (ASD) or whether it constitutes a unique entity. The Diagnostic and Statistical Manual,
fourth edition (DSM-IV) differentiated ASP from high functioning autism. However, the new DSM-5 umbrellas ASP
within ASD, thus eliminating the ASP diagnosis. To date, no clear biomarkers have reliably distinguished ASP and
ASD populations. This study uses EEG coherence, a measure of brain connectivity, to explore possible
neurophysiological differences between ASP and ASD.

Methods: Voluminous coherence data derived from all possible electrode pairs and frequencies were previously
reduced by principal components analysis (PCA) to produce a smaller number of unbiased, data-driven coherence
factors. In a previous study, these factors significantly and reliably differentiated neurotypical controls from ASD
subjects by discriminant function analysis (DFA). These previous DFA rules are now applied to an ASP population to
determine if ASP subjects classify as control or ASD subjects. Additionally, a new set of coherence based DFA rules
are used to determine whether ASP and ASD subjects can be differentiated from each other.

Results: Using prior EEG coherence based DFA rules that successfully classified subjects as either controls or ASD,
96.2% of ASP subjects are classified as ASD. However, when ASP subjects are directly compared to ASD subjects
using new DFA rules, 92.3% ASP subjects are identified as separate from the ASD population. By contrast, five
randomly selected subsamples of ASD subjects fail to reach significance when compared to the remaining ASD
populations. When represented by the discriminant variable, both the ASD and ASD populations are normally
distributed.

Conclusions: Within a control-ASD dichotomy, an ASP population falls closer to ASD than controls. However, when
compared directly with ASD, an ASP population is distinctly separate. The ASP population appears to constitute a
neurophysiologically identifiable, normally distributed entity within the higher functioning tail of the ASD
population distribution. These results must be replicated with a larger sample given their potentially immense
clinical, emotional and financial implications for affected individuals, their families and their caregivers.
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Background
Autism or Autism Spectrum Disorder (ASD) is one of
the most common neurodevelopmental disorders, with
an estimated incidence of 1 in 88 children [1]. According
to the Diagnostic and Statistical Manual of Mental
Disorders, fourth edition (DSM-IV), a diagnosis of ASD
requires the fulfillment of a minimum of six behavioral
diagnostic criteria from the following three domains: at
least two symptoms of impairment of social interaction,
at least one symptom of impairment in communication,
and at least one symptom of restricted repetitive and
stereotyped patterns of behavior [2]. Moreover, ASD re-
quires symptoms of delay or abnormal functioning with
onset prior to age 3 years in at least one of the following
three domains: social interaction, language as used in
social communication, and symbolic or imaginative play.
In order to establish a diagnosis of Asperger’s syn-

drome (ASP) [3-6], the DSM-IV requires, as for ASD,
the fulfillment of at least two symptoms of impaired so-
cial interaction and at least one symptom of restricted,
repetitive behavior. However, the ASP diagnosis, in con-
trast to the ASD diagnosis, does not require a symptom
of impairment in communication, nor must any of the
symptoms show an onset before age 3 years. According
to the DSM-IV, ‘Asperger’s Disorder can be distinguished
from Autistic Disorder by the lack of delay in language
development. Asperger’s Disorder is not diagnosed if
criteria are met for Autistic Disorder’ [2]. Data for the
prevalence of ASP are not reliably available, owing to
the use of slightly differing diagnostic criteria in the
literature. For example, Mattila et al. [7] applied four dif-
ferent criteria on the same group of 5,484, eight-year-old
children and found prevalence rates varying from 1.6 to
2.9 per 1,000. Kopra et al. [8] similarly compared various
diagnostic criteria and concluded that ‘the poor agreement
between these sets of diagnostic criteria compromises
comparability of studies (of Asperger’s syndrome)’.
The specificity of the DSM-IV diagnostic criteria and

the classification of ASP as a separate entity have been
reconsidered by the Neurodevelopmental Disorders
Work Group, resulting in a redefinition of diagnostic
boundaries. In the new DSM-5, ASP falls into ASD with
essential equivalence to high functioning autism (HFA)
and the ‘Asperger’s Syndrome’ name has been dropped
[9]. Although clearly intended as a reasonable noso-
logical correction, it places children with severe autism,
who have significantly impaired language and/or inter-
action capacities, under the same ASD umbrella as those
who have milder forms, such as HFA and ASP, who lack
social skills yet possess normal to high intelligence and
typically vast knowledge, albeit often in narrow subject
areas. Families fear that the loss of the specific
Asperger’s diagnosis, as is the case with DSM-5, may re-
sult in the loss of specially tailored, individualized and,
importantly, reimbursable, appropriate services for their
children [10-13]. Serious concerns have been raised re-
garding the DSM-IV to −5 changes [14-19].
Although there are no agreed upon neuro-imaging

criteria to diagnose ASP, there have been a number of
studies that raise the potential for this possibility. In
2008, McAlonan et al. differentiated subjects with ASP
and HFA on the basis of magnetic resonance imaging
(MRI) differences in grey matter volumes [20], and in
2009 on the basis of differences in white matter volumes
[21]. In 2011, Yu et al. differentiated ASP and ‘autism’
on the basis of grey matter volume: ‘Whereas grey matter
differences in people with Asperger’s Syndrome compared
with controls are sparser than those reported in studies of
people with autism, the distribution and direction of dif-
ferences in each category are distinctive’ [22]. However,
the regions delineated by Yu et al. do not coincide com-
pletely with the regions defined by McAlonan et al. [20].
Comparisons between older ASP and HFA subjects

have demonstrated better language and potentially dif-
fering brain anatomy and/or function within the ASP
population [23-27]. Although these findings suggest that
initial group differences of early language development -
required for HFA by definition [2] - persist to later ages,
they do not demonstrate that ASP and HFA subjects can
be reliably differentiated. The findings suggest that ASP
and HFA could be physiologically different entities but
they do not distinguish between this possibility and the
alternative possibility that the group differences may
simply reflect differing degrees of the same basic under-
lying brain pathophysiology.
A known disease may constitute the tail end of a popula-

tion distribution function or it may constitute a second,
separable distribution of its own. DefiningASP as a separate
entity from ASD might be as simple as defining a reliable,
critical point on the ASD population distribution’s high
functioning tail beyond which ASP is present and before
which it is not. On the other hand, ASP may demonstrate a
non-overlapping, separate distribution of its own. Recogni-
tion of complicated multimodal combinations of separate
distributions is a complex statistical process [28,29].
The approach chosen in the current study was to de-

termine whether there might be objective, unbiased,
electrophysiological markers that can significantly distin-
guish ASP from ASD. For this determination EEG spec-
tral coherence was chosen. EEG coherence represents
the consistency of phase difference between two EEG
signals (on a frequency by frequency basis) when com-
pared over time and thus yields a measure of synchrony
between the two EEG channels and an index of brain
connectivity between the brain regions accessed by the
chosen electrodes. High coherence represents a measure
of strong connectivity and low coherence a measure of
weak connectivity [30].
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A great advantage of coherence is that it provides a
quantifiable measure of between-region (electrode) con-
nectivity that is essentially invisible to unaided visual
inspection of raw EEG. There are at least three possible
explanations for this phenomenon. First, coherence is
calculated on a frequency by frequency (sine wave by sine
wave) basis and EEG typically presents a complex and
simultaneous mixture of many sine waves, each of a differ-
ent frequency. Second, high coherence reflects a stable
phase relationship (stable phase difference) between sine
waves of the same frequency over time. The human eye is
relatively poor in the visual assessment of phase shift
stability over time, especially when many sine waves at
multiple frequencies are simultaneously present as is the
case in typical EEG. Furthermore, phase shift stability
typically varies among differing spectral frequencies.
Third, reliable and replicable coherence measures typically
require relatively long EEG segments - minutes in length.
These long epochs further confound an electroencepha-
lographer’s ability to reliably estimate by unaided visual in-
spection the coherence between two channels of EEG.
One of the best examples to graphically illustrate the dif-
ference between simple correlation and coherence in EEG
was provided by Guevara and Corsi-Carbrera in 1996;
however, the authors primarily utilized only simple sine
wave segments for their explanatory illustrations [31].
Coherences among all possible electrodes and all fre-

quencies produce thousands of variables. Principal com-
ponents analysis (PCA) allows objective reduction of
coherence data dimensionality to a much smaller num-
ber of statistically independent coherence factors, typic-
ally no more than 40, with minimal loss of information
content [32-36]. Furthermore, PCA reduction of coher-
ence data sets obviates the need to reduce data on the
basis of a priori specified brain connectivity selections,
and thus avoids the potential of investigator bias.
In 2012, the authors demonstrated that a stable pattern

of EEG spectral coherence factors separated ASD subjects
from neurotypical control subjects [36]. For this demon-
stration the two extremes of the ASD spectrum had been
excluded from the ASD sample studied, namely HFA and
ASP on one hand, and global developmental delay on the
other. Subjects with Pervasive Developmental Disorder
not otherwise specified (PDD-nos) were retained in the
ASD sample. The resulting analyses conclusively demon-
strated highly significant, reliable, stable classification suc-
cess of neurotypical controls versus subjects with ASD on
the basis of 40 coherence factors [36].
The first aim in this study was to test how a new inde-

pendent ASP sample would be classified using discrim-
inant rules that were developed on the 40 PCA-based
EEG coherence factors that had previously, successfully
distinguished subjects with ASD from neurotypical con-
trols [36]. The second aim was to explore whether new
EEG coherence-based classification rules could be de-
rived to separate the ASP from the ASD population.

Methods
All analyses were performed at the Boston Children’s
Hospital (BCH) Developmental Neurophysiology Labora-
tory (DNL) under the direction of the first author. This la-
boratory maintains a comprehensive database of several
thousand patients and research volunteers including un-
processed (raw) EEG data in addition to referral informa-
tion. Patients typically are referred to rule out epilepsy
and/or sensory processing abnormalities by EEG and
evoked potential study. Only EEG data are utilized and
reported in this study.

Patients with autism spectrum disorders and with
Asperger’s syndrome
The goal of the current study was to select only those
patients, ranging in age from 2 to 12 years, diagnosed by
experienced clinicians as having ASD or ASP. Excluded
were all subjects with co-morbid neurological diagnoses
that might exert an independent and confounding im-
pact upon EEG data.
The inclusion criteria for ASD and the ASP groups

consisted of an age of 2 to 12 years and a disorder diagno-
sis, as determined by an independent child neurologist,
psychiatrist or psychologist specializing in childhood de-
velopmental disabilities at BCH or at one of several other
affiliated Harvard teaching hospitals. Diagnoses relied
upon DSM-IV [2], Autism Diagnostic Interview, revised
(ADI-R) [37] and/or Autism Diagnostic Observation
Schedule (ADOS) [38,39] criteria, aided by clinical history
and expert team evaluation. All clinical diagnoses were
made or reconfirmed within approximately one month of
EEG study, thereby obviating diagnostic variation related
to time from diagnosis to EEG assessment, a recently rec-
ognized important issue [40,41].
Exclusion criteria for both ASD and ASP were: (1) co-

morbid neurologic syndromes that may present with
autistic features (for example, Rett’s, Angelman’s and
fragile X syndromes and also tuberous sclerosis and
mitochondrial disorders); (2) clinical seizure disorders
or EEG reports suggestive of an active seizure disorder
or epileptic encephalopathy such as the Landau-Kleffner
syndrome (patients with occasional EEG spikes were not
excluded); (3) a primary diagnosis of global develop-
mental delay or developmental dysphasia; (4) expressed
doubt by the referring clinician as to the clinical diag-
nosis; (5) taking medication(s) at the time of the study;
(6) other concurrent neurological disease processes that
might induce EEG alteration (for example, hydroceph-
alus, hemiparesis or known syndromes affecting brain
development); and (7) significant primary sensory disor-
ders, for example, blindness and/or deafness.



Figure 1 Standard EEG electrode names and positions. Head in
vertex view, nose above, left ear to left. EEG electrodes: Z: Midline;
FZ: Midline Frontal; CZ: Midline Central; PZ: Midline Parietal; OZ:
Midline Occipital. Even numbers, right hemisphere locations; odd
numbers, left hemisphere locations: Fp: Frontopolar; F: Frontal; C:
Central; T: Temporal; P: Parietal; O: Occipital. The standard 19, 10–20
electrodes are shown as black circles. An additional subset of five,
10–10 electrodes are shown as open circles. Reprinted from Duffy
FH and Als H with permission [36].

Duffy et al. BMC Medicine 2013, 11:175 Page 4 of 12
http://www.biomedcentral.com/1741-7015/11/175
A total of 430 subjects with ASD met the above study
criteria and were designated as the study's ASD sample.
For further detailed sample description see Duffy and Als
[36]. A total of 26 patients met the above study criteria for
ASP and were designated as the study's ASP sample.

Healthy controls
From among normal (neurotypical) children recruited and
studied for developmental research projects, a comparison
group of children was selected as normally functioning,
while avoiding creation of an exclusively 'super-normal'
group. For example, subjects with the sole history of pre-
maturity or low-weight birth and not requiring medical
treatment after birth hospital (Harvard affiliated hospitals)
discharge were included.
Necessary inclusion criteria were age between 2 and

12 years corrected for prematurity (as indicated), living
at home and identified as functioning within the normal
range on standardized developmental and/or neuro-
psychological assessments performed in the course of
the respective research study.
Exclusion criteria were as follows: (1) Diagnosed neu-

rologic or psychiatric illness or disorder or expressed
suspicion of such, for example, global developmental
delay, developmental dysphasia, attention deficit dis-
order and attention deficit with hyperactivity disorder;
(2) abnormal neurological examination as identified
during the research study; (3) clinical seizure disorder
or EEG report suggestive of an active seizure disorder
or epileptic encephalopathy (individuals with rare EEG
spikes again were not excluded); (4) noted by the re-
search psychologist or neurologist to present with ASD
or ASP features; (5) newborn period diagnosis of in-
traventricular hemorrhage, retinopathy of prematurity,
hydrocephalus or cerebral palsy, or other significant
conditions likely influencing EEG data; and/or (6) taking
medication(s) at time of EEG study.
A total of 554 patients met the criteria for neurotypical

controls and were designated as the study's control sam-
ple. For further description of the control sample see
Duffy and Als [36].

Institutional review board approvals
All neurotypical control subjects and their families gave
informed consent, and assent as age appropriate, in ac-
cordance with protocols approved by the Institutional
Review Board, Office of Clinical Investigation of BCH, in
full compliance with the Helsinki Declaration. Subjects
with ASD or ASP, who had been referred clinically, were
studied under a separate BCH Institutional Review
Board protocol, also in full compliance with the Helsinki
Declaration, which solely required de-identification of all
personal information related to the collected data with-
out requirement of informed consent.
Measurements and data analysis
EEG data acquisition
Registered EEG technologists, naïve to the study's goals,
and specifically trained and skilled in working with chil-
dren within the study's age group and diagnostic range,
obtained all EEG data for the study from 24 gold-cup
scalp electrodes applied with collodion after measure-
ment: FP1, FP2, F7, F3, FZ, F4, F8, T7, C3, CZ, C4, T8,
P7, P3, PZ, P4, P8, O1, OZ, O2, FT9, FT10, TP9, TP10
(see Figure 1). EEG data were gathered in the awake and
alert state assuring that a minimum of eight minutes of
waking EEG was collected. Data were primarily gathered
with Grass™ EEG amplifiers with 1 to 100 Hz band-pass
filtering and a 256 Hz sampling rate (Grass Technologies
Astro-Med, West Warwick, RI, USA). One other am-
plifier type was utilized for five patients with ASD (Bio-
logic™; Bio-logic Technologies, San Carlos, CA, USA;
250 Hz sampling rate, 1 to 100 Hz band-pass), and one
other amplifier type was utilized for 11 control subjects
(Neuroscan™; Compumedics Neuroscan, Charlotte, NC,
USA; 500 Hz sampling rate, 0.1 to 100 Hz band-pass).
Data from these two amplifiers, sampled at other than
256 Hz, were interpolated to the rate of 256 Hz by the
BESA 3.5™ software package (BESA GmbH, Gräfelfing,
Germany). As the band-pass filter characteristics differed
among the three EEG machines, frequency response



Duffy et al. BMC Medicine 2013, 11:175 Page 5 of 12
http://www.biomedcentral.com/1741-7015/11/175
sweeps were performed on all amplifier types to permit
modification of data recorded to be equivalent across
amplifiers. This was accomplished by utilizing special
software developed in-house by the first author using
forward and reverse Fourier transforms [42].

Measurement issues
EEG studies are confronted with two major metho-
dological problems. First is the management of the
abundant artifacts, such as eye movement, eye blink and
muscle activity, observed in young and behaviorally diffi-
cult to manage children. It has been well established that
even EEGs that appear clean by visual inspection may
contain significant artifacts [43,44]. Moreover, as shown
in schizophrenia EEG research, certain artifacts may be
group specific [45]. Second is capitalization upon chance,
that is, application of statistical tests to too many variables
and subsequent reports of chance findings in support of
an experimental hypothesis [43,46]. Methods discussed
below were designed to specifically address these two
common problems.

1. Artifact management
As previously outlined in greater detail [36], the follow-
ing steps were instituted for artifact management:

(1) EEG segments containing obvious movement
artifact, electrode artifact, eye blink storms,
drowsiness, epileptiform discharges and/or bursts
of muscle activity were marked for removal from
subsequent analyses by visual inspection.

(2) Data were subsequently filtered below 50 Hz with
an additional 60 Hz mains filter.

(3) Remaining lower amplitude eye blink was removed
by utilizing the source component technique
[47,48], as implemented in the BESA software
package. These combined techniques resulted in
EEG data that appeared largely artifact free, with
rare exceptions of low level temporal muscle fast
activity artifact and persisting frontal and anterior
temporal slow eye movements, which remain,
none-the-less, capable of contaminating
subsequent analyses.

(4) A regression analysis approach [49] was employed
to remove these potential remaining contaminants
from subsequently created EEG coherence data.
Representative frontal slow EEG spectral activity
representing residual eye blink and representative
frontal-temporal EEG spectral fast activity
representing residual muscle artifact were used as
independent variables within multiple regression
analysis, where coherence variables were treated as
dependent variables. Residuals of the dependent
variables, now uncorrelated with the chosen
independent artifact variables, were used for the
subsequent analyses.

2. Data reduction - calculation of spectral coherence
variables
Approximately 8 to 20 minutes of awake state, artifact
free, EEG data per subject were transformed by use of
BESA software, to the scalp Laplacian or current source
density (CSD) estimates for surface EEG studies.
The CSD technique was employed as it provides refer-
ence independent data that are primarily sensitive to
underlying cortex and relatively insensitive to deep/re-
mote EEG sources, and minimizes the effect of volume
conduction on coherence estimates by emphasizing
sources at smaller spatial scales than unprocessed poten-
tials. This approach obviates coherence contamination
from reference electrodes and minimizes contaminating
effects from volume conduction [30,50].
Spectral coherence was calculated, using a Nicolet™

software package (Nicolet Biomedical Inc., Madison, WI,
USA) according to the conventions recommended by
van Drongelen [51] (pages 143–144, equations 8.40,
8.44). Coherency [52] is the ratio of the cross-spectrum
to the square root of the product of the two auto-
spectra and is a complex-valued quantity. Coherence is
the square modulus of coherency, taking on a value be-
tween 0 and 1. In practice, coherence is typically esti-
mated by averaging over several epochs or frequency
bands [51]. A series of two-second epochs was utilized
over the total available EEG segments. Spectral coher-
ence utilizing 24 channels and 16, 2 Hz wide spectral
bands from 1 to 32 Hz, results in 4,416 unique coher-
ence variables per subject, purged of residual eye move-
ment and/or muscle artifact by regression as explained
above. The data processing described above was used in
the current as well as our prior study of ASD [36].

3. Creation of 40 coherence factors
Forty coherence factors had been created utilizing PCA
with Varimax rotation prior to this study from the
4,416 coherence variables per subject individual of the
independent study population consisting of the com-
bined neurotypical controls and subjects with ASD
[36]. The 40 factors described over 50% of the total
variance within that combined population. These 40 co-
herence factors were created in the current study for
each individual of the new sample of 26 subjects with
ASP. The inherently unbiased data reduction by PCA
eliminated capitalization on chance and investigator se-
lection bias.

Data analysis
The BMDP2007™ statistical package (Statistical Solutions,
Stonehill Corporate Center, Saugus, MA, USA) [53] was



Table 1 Discriminant analysis of control versus autism
spectrum disorders; Asperger’s syndrome classified
passively

Variables utilized = 23 Percent correct Control ASD

First 4: Fac15, Fac17, Fac2, Fac16

Control 92.6 513 41

ASD 84.8 65 365

ASP 96.2a 1 25

Significance of group separation reported statistically:
Wilks’ lambda = 0.4991; F = 41.885; degrees of freedom = 23, 960; P ≤0.0001.
aPassively classified.
ASD Autism Spectrum Disorders, ASP Asperger’s Syndrome.
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utilized for all standard statistical analyses with the excep-
tion of PCA (see above and [36]).

Discrimination of groups by EEG spectral coherence data
Program 7M was used for two-group discriminant func-
tion analysis (DFA) [54-56]. Program 7M produces a
new canonical variable, the discriminant function, which
maximally separates two groups based on a weighted
combination of entered variables. DFA defines the sig-
nificance of a group separation, summarizes the classifi-
cation of each participant, and provides an approach for
the prospective classification of individuals not involved
in discriminant rule generation or for classification of a
new population. The analysis reports the significance of
group separation statistically by Wilks’ lambda with
Rao’s approximation. To estimate prospective classifica-
tion success, the jackknifing technique, also referred to
as the leaving-one-out process, was used [57,58]. By this
method, discriminant function is formed on all individ-
uals but one. The left-out individual is subsequently
classified. This initial left out individual is then folded
back into the group (hence ‘jackknifing’), and another
individual is left out. The process is repeated until each
individual has been left out and classified. The measure
of classification success is then based upon a tally of the
correct classifications of the left-out individuals.

Assessment of population distribution
The samples’ distribution characteristics were de-
scribed by Program 2D. It incorporates the standard
Shapiro-Wilk or W-test of normality for large samples,
considered to be an objective and powerful test of nor-
mality [59,60]. It also calculates skewedness, a measure
of asymmetry with a value of zero for true symmetry,
and a standard error (value/SE). Positive numbers
above +2.0 indicate skew to the right and below −2.0
skew to the left. In addition, the W-test calculates kur-
tosis, a measure of long-tailedness. The tail-length
value of a true normal tail is 0.0. If the tail length,
value/SE, is above +2.0, the tails are longer than for a
normal distribution, and if it is below −2.0, the tails
are shorter than for a true normal distribution.
Muratov and Gnedin recently described two relatively

new techniques that search for bimodality within a given
population distribution [29]. Gaussian mixture modeling
determines whether the population deviates statistically
from unimodality. It also searches for all potential un-
derlying bimodal populations and determines the signifi-
cance of the best possible bimodal solution. These
authors also described the Dip test [61], which statisti-
cally compares the actual population distribution with
the best possible unimodal distribution to look for flat
regions or dips between peaks as would be found in
bimodally distributed populations.
Multiple regression program
Program 6R facilitates the multivariate prediction of a
single dependent variable on the basis of a set of selected
independent predictor variables. The program calculates
a canonical variable formed from a rule-based linear
combination of independent variables, which predict the
independent variable. Program 6R was used for predic-
tion of coherence measures from multiple EEG spectral
measures sensitive to known EEG artifacts (for example,
temporal muscle fast beta and frontal slow delta eye
movement). The fraction of a coherence measure that
was predicted by artifact was removed and the ‘re-
sidual’ coherence measures were subsequently utilized
as variables, now uncorrelated with any known artifact
signal.

Results
Asperger’s syndrome classification as control or autism
spectrum disorders
The 26 new subjects with ASP had a mean age of 7.07
years with a range from 2.79 to 11.39 years and
consisted of 18 males and 8 females (male to female ra-
tio of 2.25:1), comparable in age and gender distribution
to the previously studied neurotypical control and ASD
groups [36]. The 26 subjects with ASP and the popula-
tions of 554 controls and 430 subjects with ASD were
submitted to a two-group DFA with the 40 coherence
factors as input variables. The ASP subjects were desig-
nated to be passively classified on the basis of rules gen-
erated to differentially classify the control and ASD
groups. As shown in Table 1, 96.2% of the ASP group
(25 out of 26) were classified as belonging within the
ASD group, and just 3.8% (1 out of 26) were classified as
belonging within the control group. Factor 15 was the
highest loading variable, that is, the first coherence fac-
tor chosen, on the discriminant function. Thus, within a
neurotypical control versus ASD dichotomy, ASP sub-
jects were securely classified as belonging to the ASD
population.



Figure 2 Coherence loadings: four factors best differentiate
Asperger’s syndrome from autism spectrum disorders. EEG
coherence factor loadings shown. View from above head, nose at
top of each head image, left ear to left of image. Factor number is
above each head and peak frequency for factor in Hz is above to
right. Lines indicate top 85% coherence loadings per factor.
Bidirectional color arrows delineate electrode pairs involved in the
displayed factor. Red line = increased coherence in ASP group;
blue-green line = decreased coherence in ASP group compared to
ASD group. Relevant electrodes (see Figure 1) per factor are shown
as black dots. The comparison electrode is shown as a red circle.
Background colored areas are regions delineated by original PCA.
Involved electrodes: Symbol ‘↔’ connects coherent electrodes for
each factor Factor 15: FT9 ↔ TP9, F7, F3, P7 and FT10 ↔ F8; Factor
3: T7 ↔ C3, P3, CZ, OZ Factor 33: T8 ↔ F4 Factor 40: OZ ↔ P3, P7,
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Asperger’s syndrome classification as within or separate
from autism spectrum disorders
An additional two-group DFA was performed comparing
the new ASP (n = 26) population with the ASD popula-
tion (n = 430), again with 40 coherence factors as input
variables. The overall classification, as Table 2 shows, was
highly significant (F = 6.05; degrees of freedom =16,439;
P ≤0.0001). Jackknifing techniques correctly classified
92.3% of the patients with ASP (24 out of 26) and 84.4%
of the patients with ASD (363 out of 430). Thus the coher-
ence factors separated the ASP population from the ASD
population with excellent classification success.
As Table 2 and Figure 2 illustrate, Factor 15 again was

the first coherence factor chosen for the ASD-ASP dis-
crimination. Factor 15 similarly had been the first factor
chosen for most of the control versus ASD population
discriminations in the prior study [36]. This factor indi-
cates a reduced coherence between the left anterior and
posterior frontal-temporal regions, and to a lesser degree
between the right anterior temporal-frontal regions, for
the ASP group compared with the ASD group. In con-
trast, the loading of the next factor chosen, Factor 3,
demonstrated enhanced coherence between the left mid
temporal region and the left central, parietal and occipi-
tal regions for the ASP group compared with the ASD
group. The loadings of the next two factors selected,
Factor 33 and Factor 40, demonstrated reduced right
temporal-frontal coherence and reduced occipital to bi-
lateral parietal coherence for the ASP compared with
the ASD group. These first four were the most import-
ant factors; their coherence loading patterns are depicted
in Figure 2. Twelve additional factor designations are
also provided; their loading patterns are depicted and
discussed in a previous publication [36].
Five subsamples, each consisting of 26 subjects with

ASD, were randomly selected from the larger ASD
population. The DFA process was repeated to determine
whether these randomly selected subsets of subjects with
ASD could be classified as separate from the remaining
Table 2 New discriminant analysis asperger’s syndrome
versus autism spectrum disorders, controls excluded

Variables utilized = 16 Percent correct ASD ASP

First 4: Fac15, Fac3, Fac33, Fac40

Remaining 12: Facs 9, 32, 1, 4. 6, 5,
21, 39, 10, 16, 25, 38

ASD 84.4 363 67

ASP 92.3 2 24

Significance of group separation reported statistically:
Wilks’ lambda = 0.81894; F = 6.045; degrees of freedom = 16, 439; P ≤0.0001.
ASD Autism Spectrum Disorders, ASP Asperger’s Syndrome.

P4. ASD, Autism Spectrum Disorders; ASP, Asperger’s Syndrome.
ASD population. As Table 3 shows, jack-knifed classifi-
cation success for the five random sets averaged just
48.5%, that is, below the chance level of 50%. None of
the five DFA demonstrated significant Wilks’ lambda.
Note that the list of chosen factors did not include Fac-
tor 15 as had been selected first in the current and prior
analyses. Note, also, that there is a lack of consistency in
factor selection among the five-group analyses. Thus,
random samples of 26 subjects with ASD were not sig-
nificantly and reliably separable by discriminant analysis
from the remaining ASD population.



Table 3 Discriminant analysis of five groups of 26
patients with autism spectrum disorder versus the
remaining 404 subjects in that population

Groups of 26 Percent
correct

As ASD 26 As group
of 404

Total:
factors used

1 50.0 13 13 6: 23, 8, 38, 35

2 53.8 14 12 16: 28,10,32,14

3 46.2 12 14 2: 33, 19

4 50.0 13 13 3: 38, 40, 11

5 42.3 11 15 4: 2, 22, 20, 13

Average 48.5
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Asperger’s syndrome population, tail of the autism
spectrum disorders distribution curve or separate
population?
The distribution characteristics of the canonical variable
defined by the DFA separating the ASP from the ADS
groups were described for each sample separately. The
ASD population distribution parameters were as follows:
normality statistic, W = 0.9881, P = 0.8375; skewedness
statistic, W = 0.03, value/SE = −0.0265; kurtosis statistic,
W = 1.35, value/SE = 5.728. This indicated that the ASD
sample was found to be within the limits of a normal
distribution, was symmetrical, and had somewhat longer
tails than the typical normal distribution, not unusual
for a clinical population. All five randomly selected sub-
sets of the ASD population also demonstrated normal
distributions as anticipated by statistical theory [62].
The new sample of 26 subjects with ASP showed

distribution parameters as follows: normality statistic, W =
0.9606, P = 0.4222; skewedness statistic, W = −0.61, value/
SE = −1.281; kurtosis statistic, W = 0.33, value/SE = 0.347.
This indicated that the ASP sample distribution was
also within the limits of a normal population, was sym-
metrical, and had tails that conformed to expected
lengths (see Figure 3) and was therefore characterized
as Gaussian normal.
When the ASD and ASP populations were combined

and displayed (Figure 3), the ASP population appeared
as a small Gaussian distribution in the left end of the
ASD population. However, the Gaussian mixture model-
ing process indicated that the best bimodal means,
nevertheless, were close and did not differ statistically.
The Dip test similarly indicated that the probability for a
deviation from unimodality was not significant.

Discussion
The goal of this study was to explore the relationship be-
tween a sample of subjects clinically defined as having
ASP, and a population of previously well-studied neuro-
typical controls and subjects with ASD. The dependent
variables of interest, detailed in a prior study [36], were
40 EEG coherence factors derived from systematically
de-artifacted EEG data.

Specific goals and findings
The study’s first goal was to determine how a previously
defined and statistically validated discriminant function,
developed to classify individuals as belonging to a con-
trol or an ASD population, would classify subjects with
ASP, whose data had not influenced the derivation of the
discriminant function. Results (Table 1) showed that the
control versus ASD discriminant function classified 25
of 26 patients with ASP (96.2%) as belonging to the ASD
sample. This indicates that subjects with ASP are neuro-
physiologically closer to the ASD population than to the
neurotypical control population.
The study’s second goal was to determine if the 26 sub-

jects with ASP were, nonetheless, systematically separable
from the larger population of 430 subjects with ASD.
Using DFA, the subjects with ASP were indeed signifi-
cantly separated (P ≤0.0001) from the ASD population;
92.3% (24 out of 26) of those with ASP were classified as
ASP rather than as ASD. These results show that subjects
with ASP, although associated with the broader autism
spectrum population, manifested significant physiological
differences in EEG connectivity (as measured coherence
factors) to distinguish them from the subjects with ASD.
To test whether this subsample separation was a random
result, that is, whether a randomly chosen subsample of
individuals could also be classified as a distinct subgroup,
five randomly selected sets of 26 subjects with ASD were
also compared by DFA to the remaining ASD population.
The average classification success was 48.5%, that is, less
than chance; the highest classification success reached was
53.8%. These results suggest that the ASP subgroup dis-
crimination from the larger ASD group was not the result
of sampling artifact but in fact due to true group differ-
ences, because the findings held for the ASP separation
but not for the ASD subsample discrimination attempts.
The pattern of coherence difference, as shown by the

loading patterns depicted in Figure 2 (Factor 15), dem-
onstrated that the ASP population showed even more
reduction of left lateral anterior-posterior coherence
than the ASD group. This was an unexpected finding as
Factor 15 was postulated to be a language-related factor
based upon its similarity to the spatial location of the
Arcuate Fasciculus [36], and subjects with ASP typically
have better language function than do those with ASD.
The solution to this unanticipated finding became
clearer through inspection of the Factor 3 coherence
loadings, which showed that the ASP group demon-
strated markedly increased left mid temporal to central
parietal-occipital coherence. It is speculated that Factor
3’s broadly increased left temporal connectivity may par-
tially compensate for the language deficiency suggested



Figure 3 Asperger’s syndrome and autism spectrum disorders population distributions. Population distribution histograms are shown for
the ASD (green, n = 430) and ASP (red, n = 26) groups. The horizontal axis is the discriminant function value developed to differentiate the ASD
and ASP groups on the basis of coherence variables. It varies from −4.0 to +4.0 units. The histograms are formed from bins 0.25 units wide. The
populations are both Gaussian in distribution. A smoothed Gaussian distribution is shown above the true histogram data distribution as
estimated by Excel software. Discriminant analysis significantly separates the two groups. The ASP population is displayed on an expanded
vertical scale. ASD, Autism Spectrum Disorders; ASP, Asperger’s Syndrome.
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by Factor 15, potentially facilitating acquisition of lan-
guage skill in ASP without significant developmental
delay. It is also proposed that the postulated compensation
may not completely facilitate all aspects of normal lan-
guage development, and may result in the several, readily
identifiable, higher level differences of language use ob-
served in subjects with ASP. Examples include excessive
pedantic formality, verbosity, literal interpretation devoid
of nuance and prosodic deficiency, to name a few [63].
The final two factors chosen, Factors 33 and 40, show a
pattern of reduced coherence loadings in the ASP group
that may correspond to differences in visual-spatial func-
tioning and right hemispheric characteristics that have
been described as part of the lack of social nuance and
special kind of ‘oblivious to context’ personality character-
istics observed in individuals with ASP [64,65].
The study’s third goal was to determine whether the

subjects with ASP represent a tail of the ASD population
distribution or a distinct population. Inclusion of the
ASP to the ASD population (Figure 3) did not result in a
statistically significant bimodal distribution as would be
seen if the ASD and ASP populations represented com-
pletely differing clinical entities. However, the asymmet-
rically high ASD/ASP population ratio of 16.5:1 was
above the maximally tested ratio of 10:1 for the Gaussian
mixture modeling and Dip tests employed [29]; typical
ratios are 3 or 4 to 1. The small size of the tested ASP
population limits definitive determination of whether
ASP is a separate entity to ASD. Study of a larger ASP
population is necessary to asses this important question
in a more conclusive manner. Nevertheless, it is striking
that the relatively small sample of 26 randomly referred
subjects with ASP manifested a normal Gaussian distri-
bution as opposed to one demonstrating an asymmet-
rical distribution as might be expected if the sample
simply constituted subjects non-randomly selected from
the high functioning end of the ASD population curve.
At this point, current study results are consistent with
ASP forming one end of the ASD population. This is
similar to the demonstration by Shaywitz et al. that
reading disability represents the ‘low end tail’ of the
reading ability curve and not a distinctly separate popu-
lation [66].
Additional questions concern the portion of the ASD

population distribution that overlapped with the ASP
population distribution (Figure 3), including the 69 in-
dividual misclassifications within the ASD versus ASP
discriminant analysis (Table 2). The population overlap
may represent clinical misdiagnoses or constitute noise
within the statistical classification process. Alternatively,
the population overlap may indicate that HFA and ASP
are the same physiological entity. Indeed, it has been
clinically observed that the diagnosis of ASP by DSM-IV
criteria [2] may be obscured by poor reliability in a
family’s recollection of early language delay or by the be-
lief of some clinicians that the diagnosis of ASP should
be made on the basis of the patient’s current behavioral
profile without weighting the presence or absence of
early language delay. ASP and HFA are often spoken of,
especially by neurologists, as a single entity or at least
closely related entities.
The limitation of the small ASP sample size is the

main drawback of the current study. A larger pros-
pective study must be conducted to address whether -
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separately or together - ASP significantly differs neuro-
physiologically from ASD, and whether ASP and HFA
constitute single or separable populations.
Although the findings above in many ways agree with

the DSM-5 [9] placement of ASP within the broad autis-
tic spectrum, they also demonstrate that patients with
ASP can be physiologically distinguished from those
with ASD. Recognition of ASP as a separate entity is
important from the patients’ perspectives of obtaining
appropriate medical and educational services as well as
of establishing a personal identity. As an example of the
latter, the well-read author with Asperger’s Syndrome, J
E Robinson [67], reported in a televised interview that it
‘was life changing … ’ to discover as an adult that he had
a known, named syndrome and that ‘ … there were so
many people like me.’

Conclusion
A diagnostic classifier based upon EEG spectral coher-
ence data, previously reported to accurately classify con-
trols and ASD subjects [36], has identified ASP subjects
as within the ASD population. Thus, there is justification
to consider Asperger’s Syndrome as broadly belonging
within the Autism Spectrum Disorders. However, there
is also evidence demonstrating that ASP subjects can be
physiologically distinguished from ASD subjects. Just as
dyslexia is now recognized as the low end tail of the
reading ability distribution curve [63], so Asperger’s Syn-
drome may be similarly and usefully defined as a distinct
entity within the higher functioning tail of the autism
distribution curve. Larger samples are required to deter-
mine whether ASP subjects should be considered as an
entity physiologically distinct from the ASD population
or whether they form an identifiable population within
the higher-functioning tail of ASD.
EEG spectral coherence data, as presented, provide

easily obtained, unbiased, quantitative, and replicable
measures of brain connectivity differences relevant to
these issues.
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