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Abstract

The poly (ADP-ribose) polymerase (PARP) family of
enzymes plays a critical role in the maintenance of
DNA integrity as part of the base excision pathway of
DNA repair. PARP1 is overexpressed in a variety of
cancers, and its expression has been associated with
overall prognosis in cancer, especially breast cancer. A
series of new therapeutic agents that are potent
inhibitors of the PARP1 and PARP2 isoforms have
demonstrated important clinical activity in patients
with breast or ovarian cancers that are caused by
mutations in either the BRCA1 or 2 genes. Results
from such studies may define a new therapeutic
paradigm, wherein simultaneous loss of the capacity
to repair DNA damage may have antitumor activity in
itself, as well as enhance the antineoplastic potential
of cytotoxic chemotherapeutic agents.

Keywords: synthetic lethality, DNA repair, PARP clini-
cal trials

Background
Environmental exposures and cell replication result in
DNA damage that is repaired by a variety of mechan-
isms, including base excision repair (BER), mismatch
repair (MMR), nucleotide excision repair (NER), single
strand annealing (SSA), homologous recombination
(HR), and nonhomologous end joining (NHEJ) [1]. Poly
(ADP-ribose) polymerases (PARPs) are a family of pro-
teins involved in DNA repair that utilize the BER path-
way [2] and share enzymatic and scaffolding properties.
PARP1 and PARP2 are the best studied members of this
family of enzymes. PARP1 has three domains that are
responsible for DNA-binding, automodification, and cat-
alysis. DNA cleavage results in the recruitment and
binding of PARP1 to the site of damage, with an

increase in its catalytic activity, and the formation of
long, branched, poly (ADP-ribose) (PAR) chains. PAR
has a net negative charge that promotes recruitment of
DNA repair proteins involved in the BER pathway to
the site of DNA damage, and facilitates removal of
PARP1 from damage sites, allowing access to other
repair proteins. Apart from its role in BER, PARP1 has
been implicated in the HR and NHEJ pathways, suggest-
ing a broader role for this enzyme family in the overall
DNA repair process.
PARPs were initially identified in 1963; the potential

for PARP inhibition to enhance DNA damage caused by
cytotoxic chemotherapy was first considered in 1980
[3,4]. PARP1 is overexpressed in a variety of cancers
and its expression has been associated with overall prog-
nosis in cancer, especially breast cancer [5]. PARP inhi-
bitors in clinical development mimic the nicotinamide
moiety of nicotinamide adenine dinucleotide, and bind
to the enzyme’s catalytic domain, inhibiting automodifi-
cation and subsequent release of the enzyme from the
site of DNA damage. In so doing, PARP inhibitors also
prevent access of other repair proteins to the site of
DNA cleavage.
Several PARP inhibitors are in clinical development

(see Additional Files 1 and 2); as a whole, these agents
have generated considerable interest because of their
potential clinical activity for patients whose tumors har-
bor defects in the HR pathway [6-8]. Although several
of these drugs have been shown to inhibit PARP in vivo,
their spectrum of activity and effects on DNA repair
pathways make them distinct. This review summarizes
current insights into the mechanism of action, recent
clinical trials, and potential next steps in the evaluation
of this promising class of anti-cancer drugs.

Mechanism of action and pharmacology of PARP
inhibitors
A number of PARP inhibitors are under clinical devel-
opment: rucaparib (CO-338; AG014699, PF-0367338;
oral/IV), iniparib (BSI-201), olaparib (AZD-2281; oral),
veliparib (ABT-888; oral), MK-4827, BMN-673, CEP-
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9722 (oral) and E7016 (GPI 21016, oral). The loss of
BER capacity produced by PARP inhibition has
prompted the evaluation of these drugs as potential
enhancers of DNA damaging cytotoxic chemotherapeu-
tic agents such as alkylating agents (for example, plati-
num, cyclophosphamide) and topoisomerase 1 inhibitors
(for example, camptothecin analogs) [9]. However,
recent studies strongly suggest that, unlike the other
drugs, the mechanism of action of iniparib is unclear
and is probably not related to PARP inhibition per se
[10].
PARP inhibition enhances the therapeutic index of

cytotoxic chemotherapy only if DNA damage is selec-
tively increased in tumor compared to normal tissues,
such as the gastrointestinal mucosa or bone marrow.
The opportunity to achieve selectivity in tumor cell kill-
ing with these agents would, therefore, be improved in
tumors that already harbor DNA repair defects. Simulta-
neous dysfunction of two DNA damage repair (DDR)
pathways, termed ‘synthetic lethality’, decreases the abil-
ity of tumor cells to withstand the DNA damage pro-
duced during normal cellular replication [8]. Duplication
of this phenomenon pharmacologically is possible in
tumors harboring somatic or germline defects in a non-
BER pathway of DDR by treating with a PARP inhibitor
so that BER and non-BER pathways are blocked simulta-
neously. Clinical development programs are testing this
idea directly in settings where the HR pathway is com-
promised, for example, with PARP inhibitor monother-
apy for tumors with BRCA1/2 defects. This could also
be extended to include treatment of tumors with defects
in other HR pathway proteins. For instance, PTEN-defi-
cient cells have been shown to be sensitive to PARP
inhibition, due to the role of PTEN in the expression of
RAD51 [11]. One question for the further development
of PARP inhibitors is whether they can effectively
enhance DNA damage, in the presence of DNA dama-
ging agents, in tumors that lack an intrinsic defect in
DDR.
New data are emerging on the myriad of effects of

PARP on DNA repair and other pathways (see Addi-
tional File 3). PARP has also been implicated in DNA
repair by recruiting mitotic recombination 11 (MRE11)
and ataxia telangiectasia-mutated (ATM) to DNA DSBs;
effects on BRCA 1 and RAD 51 expression via repres-
sive E2F4 and p130 complexes; interaction with the
DNA protein kinase (DNA PK) complex [Ku70, Ku80,
DNA PK] involved in NHEJ of DSBs; and the epigenetic
regulation of chromatin structure [2,12-15]. Recent
reports evaluate the role of PARP in BER and its inter-
action with DNA single strand break intermediate
forms. A differential effect of repair of SSBs has been
demonstrated in the presence of PARP inhibitors as

compared to PARP1 siRNA cells treated with the alky-
lating agent, dimethyl sulfate [16].

Pharmacodynamics of PARP inhibitors on PARP1
and PARP2
Assays have been developed to quantify drug-induced
inhibition of PARP enzymatic activity in patient speci-
mens. The primary effect of PARP inhibitors changes
two parameters, each of which could be used as a phar-
macodynamic endpoint: decreased PARP1/2-specific
activity and decreased production of PARP1/2 reaction
products, which are poly-ADP-ribosylated macromole-
cules (’PARylated substances’). However, a major con-
cern with any ex vivo enzymatic assay is the dilution of
the extract with sample processing and enzyme assay
buffers. Diluting a tissue sample also dilutes the concen-
tration of the competitive PARP inhibitor that was pre-
sent at the time of sample collection. Under conditions
of linear enzyme kinetics, the measured enzymatic activ-
ity may be more an indication of the resulting drug con-
centration in each diluted sample, rather than a measure
of enzymatic activity originally present in the tissue in
the face of actual tissue concentrations of the drug.
On the other hand, measurement of PARylated sub-

stances produced by PARP1/2 activity reflects the balance
between degradation of those PARylated molecules by an
enzyme called poly (ADP-ribose) glycohydrolase (PARG),
and production by PARP1/2. A sandwich immunoassay
(IA) was developed and validated at the US National Can-
cer Institute to quantify the level of poly-ADP-ribosylated
macromolecules from a calibration curve of poly-ADP-
ribose standard (’PAR antigen’) [17]. This PAR-IA was
designed for the first-in-human use of veliparib, where the
measurement of PARylated substances would be the pri-
mary objective of a Phase ‘0’ clinical trial. Sufficient assay
sensitivity was required to distinguish a 30% decrease in
the PARP1/2 reaction product PAR, with a lower limit of
quantitation sufficient to quantify a 90% drop in PAR rela-
tive to baseline in approximately 85% of paired mononuc-
lear cell samples. Prior to the clinical trial, a fit-for-
purpose study was conducted in mice harboring human
tumor xenografts to model the proposed use of the PAR
IA. The results proved that veliparib significantly
decreased PAR levels from baseline by four to seven hours
after a single oral dose - the timeframe planned for the
clinical biopsies. The results of the subsequent first-in-
human clinical trial confirmed the findings of the fit-for-
purpose animal modeling studies [18].
The PAR IA has been used to define a reproducible

response of PARP1/2 to veliparib in tumor biopsies and
mononuclear cell samples from treated patients. In addi-
tion, the PAR IA has been used to confirm pharmacody-
namic effects, similar to those observed with veliparib,
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produced by olaparib and MK-4827 in human tumor
xenografts and human tumor cell lines in vitro. How-
ever, iniparib and its two major metabolites failed to
cause any change in the level of PARylated substances
in the model systems, as measured by the PAR-IA [10].
The apparent lack of a pharmacodynamic effect by ini-
parib on PARP1/2 is very different from the responses
elicited by veliparib, olaparib, and MK-4827. This may
explain the recently reported lack of an effect of iniparib
on the efficacy and toxicity of combination chemother-
apy for triple negative breast cancer (TNBC) patients in
a properly powered Phase III clinical trial [19].

Clinical experience with PARP inhibitors
PARP inhibitors have been evaluated in clinical trials
either as single agents, with an emphasis on patients
carrying BRCA mutations, or in combination with DNA
damaging therapies (see Additional Files 1 and 2). Ola-
parib has demonstrated single agent activity in breast or
ovarian cancer patients with germline mutations in
BRCA1/2 [20-22]; an over 40% response rate has been
reported in patients with BRCA mutant ovarian cancer,
especially in patients with platinum sensitive disease
[23].
The Cancer Genome Atlas Research Project recently

reported on the molecular aberrations in high grade ser-
ous ovarian adenocarcinoma, demonstrating a defect in
the HR pathway in half of the 489 tumors analyzed [24].
These results suggest that ovarian cancer patients with
sporadic abnormalities in the HR pathway impairing
DNA repair might benefit from treatment with PARP
inhibitors. Similar abnormalities in DNA repair path-
ways have been reported in primary peritoneal cancers,
and in patients with TNBC, forming the basis for recent
clinical trials that have explored the use of PARP inhibi-
tors in such patient populations [25-28]. Tumor types
with defects in other DNA repair pathways, such as
tumors with microsatellite instability, may also be sus-
ceptible to inhibition of the BER pathway [29].
Despite the evaluation of PARP inhibition in a number

of clinical trials, the degree and duration of inhibition
required for optimal clinical benefit has yet to be estab-
lished [18]. This has resulted in the continuation of stu-
dies that have explored higher PARP inhibitor doses,
well beyond those demonstrated to result in near-com-
plete inhibition of PARP activity in clinical tumor sam-
ples; the results of some of these trials, such as the
ICEBERG study, have suggested a dose response for
deriving clinical benefit from PARP inhibitors [21,22,30].

Conclusions and outlook for the use of PARP
inhibitors in the future
A major focus for the future clinical development of
PARP inhibitors is to determine whether or not

potentiating chemotherapy- or radiation-induced DNA
damage in patients without known defects in DDR is
either possible or fruitful. Enhancement of DNA damage
by the addition of a PARP inhibitor to a topoisomerase I
poison has been demonstrated in tumor biopsies and
circulating tumor cells by measurement of gH2AX foci,
a marker of DNA double strand breaks, in patients trea-
ted with veliparib and topotecan compared to those
receiving topotecan alone [31]. However, the develop-
ment of PARP inhibitors as chemopotentiating agents
has been limited by an increase in observed toxicities,
mainly myelosuppression, necessitating dose reductions
of the cytotoxic chemotherapeutic agent and the PARP
inhibitor [31,32]. This raises the question of whether
administering the combination is more efficacious than
administering full doses of the chemotherapeutic agent
alone, as well as the need to design clinical trial strate-
gies to improve the therapeutic index of these combina-
tions. It seems likely that to optimize the use of PARP
inhibitors in the future will require the development of
predictive assays to determine the presence of unsus-
pected defects in DDR pathways in tumors. It also pre-
sents an opportunity to rationally develop combinations
of PARP inhibitors with new classes of DNA repair inhi-
bitors that are on the horizon, and classical cytotoxic
agents [33].

Additional material

Additional File 1: Early phase clinical trials with PARP inhibitors. A
table listing clinical trials of PARP inhibitors currently in development in
early phase clinical trials.

Additional File 2: Clinical trials with PARP inhibitors in defined
diseases. A table listing clinical trials of PARP inhibitors currently in
development in specified cancers.

Additional File 3: Structural and functional characteristics of PARP1.
A: Poly(ADP-ribose) polymerase 1 (PARP1) is shown with its DNA-binding
(DBD), automodification (AD) and catalytic domains. The PARP signature
sequence (yellow box within the catalytic domain) comprises the
sequence most conserved among PARPs. Crucial residues for
nicotinamide adenine dinucleotide (NAD+) binding (histidine; H and
tyrosine; Y) and for polymerase activity (glutamic acid; E) are indicated. B:
Consequences of PARP1 activation by DNA damage. Although not
shown to simplify the scheme, PARP1 is active in a homodimeric form.
PARP1 detects DNA damage through its DBD. This activates PARP1 to
synthesize poly(ADP) ribose (pADPr; yellow beads) on acceptor proteins,
including histones and PARP1. Owing to the dense negative charge of
pADPr, PARP1 loses affinity for DNA, allowing the recruitment of repair
proteins by pADPr to the damaged DNA (blue and purple circles). Poly
(ADP-ribose) glycohydrolase (PARG) and possibly ADP-ribose hydrolase 3
(ARH3) hydrolyse pADPr into ADP-ribose molecules and free pADPr. ADP-
ribose is further metabolized by the pyrophosphohydrolase NUDiX
enzymes into AMP, raising AMP:ATP ratios, which in turn activate the
metabolic sensor AMP-activated protein kinase (AMPK). NAD+ is
replenished by the enzymatic conversion of nicotinamide into NAD+ at
the expense of phosphoribosylpyrophosphate (PRPP) and ATP. Examples
of proteins non-covalently (pADPr-binding proteins) or covalently poly
(ADP-ribosyl)ated are shown with the functional consequences of
modification. It is important to note that many potential protein
acceptors of pADPr remain to be identified owing to the difficulty of
purifying pADPr-binding proteins in vivo. PARP inhibitors prevent the
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synthesis of pADPr and hinder subsequent downstream repair processes,
lengthening the lifetime of DNA lesions. ATM, ataxia telangiectasia-
mutated; BER, base excision repair; BRCT, BRCA1 carboxy-terminal repeat
motif; DNA-PKcs, DNA-protein kinase catalytic subunit; DSB, double-
strand break; HR, homologous recombination; NHEJ, non-homologous
end joining; NLS, nuclear localization signal; PPi, inorganic
pyrophosphate; SSB, single-strand break; Zn, zinc finger. Reprinted by
permission from Macmillan Publishers Ltd: Nature Reviews Cancer [2],
copyright (2010).
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