
RESEARCH ARTICLE Open Access

Inland post-glacial dispersal in East Asia revealed
by mitochondrial haplogroup M9a’b
Min-Sheng Peng1,2,6, Malliya Gounder Palanichamy3, Yong-Gang Yao4, Bikash Mitra3,5, Yao-Ting Cheng1,2,6,
Mian Zhao1,2,6, Jia Liu3, Hua-Wei Wang3, Hui Pan1,2,6, Wen-Zhi Wang1,2,6, A-Mei Zhang4,6, Wen Zhang4,6,
Dong Wang4,6, Yang Zou4,6, Yang Yang3, Tapas Kumar Chaudhuri5, Qing-Peng Kong1,2*, Ya-Ping Zhang1,2,3*

Abstract

Background: Archaeological studies have revealed a series of cultural changes around the Last Glacial Maximum in
East Asia; whether these changes left any signatures in the gene pool of East Asians remains poorly indicated. To
achieve deeper insights into the demographic history of modern humans in East Asia around the Last Glacial
Maximum, we extensively analyzed mitochondrial DNA haplogroup M9a’b, a specific haplogroup that was
suggested to have some potential for tracing the migration around the Last Glacial Maximum in East Eurasia.

Results: A total of 837 M9a’b mitochondrial DNAs (583 from the literature, while the remaining 254 were newly
collected in this study) pinpointed from over 28,000 subjects residing across East Eurasia were studied here. Fifty-
nine representative samples were further selected for total mitochondrial DNA sequencing so we could better
understand the phylogeny within M9a’b. Based on the updated phylogeny, an extensive phylogeographic analysis
was carried out to reveal the differentiation of haplogroup M9a’b and to reconstruct the dispersal histories.

Conclusions: Our results indicated that southern China and/or Southeast Asia likely served as the source of some
post-Last Glacial Maximum dispersal(s). The detailed dissection of haplogroup M9a’b revealed the existence of an
inland dispersal in mainland East Asia during the post-glacial period. It was this dispersal that expanded not only
to western China but also to northeast India and the south Himalaya region. A similar phylogeographic distribution
pattern was also observed for haplogroup F1c, thus substantiating our proposition. This inland post-glacial dispersal
was in agreement with the spread of the Mesolithic culture originating in South China and northern Vietnam.

Background
The climatic oscillation and the related ecological
changes around the Last Glacial Maximum (LGM;
approximately 26.5 to 19 kilo-years ago (kya)) [1] were
suggested to exert substantial influence on prehistoric
migrations and demographic changes in modern
humans [2]. In East Asia, archaeological studies have
indicated that great changes occurred in the wake of the
LGM [3,4]. For instance, the microblade technology
appeared and became popular during the LGM in
northern China [5]; some early settlements were aban-
doned [6] and people probably moved to the south due
to the deteriorating environmental conditions [7]. After
the LGM, improved climate allowed humans to

re-colonize the high latitude regions [8]. However,
whether the ancient dispersals around the LGM left any
detectable genetic footprints in the gene pool of the
contemporary East Asians was still elusive.
In the past decades, genetic data of mitochondrial DNA

(mtDNA) and the non-recombining region of Y-chromo-
some (NRY) have been widely employed to reconstruct
human prehistory [9,10]. In Europe, the detailed phylo-
geographic dissection of matrilineal pools has discerned
some haplogroups as the candidate markers for tracing
the dispersal(s) after the LGM, which could be assigned
as the Late Glacial (before the Holocene) and the post-
glacial (after the Younger Dryas but before the Neolithic)
re-colonization, respectively [11]. Recently, this strategy
has also been applied to other regions (for example, West
Asia [12], South Asia [13], and Southeast Asia [14]),
yielding many valuable insights into the prehistoric
demographic events around the LGM.
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To trace the ancient dispersal of modern humans in
East Asia around the LGM, we carried out a detailed
phylogeographic analysis on a high resolution mtDNA
marker. We focused our attention particularly on East
Eurasian specific mtDNA haplogroup M9a’b for four
reasons: 1) M9a’b distributes widely in mainland East
Asia [14] and is relatively concentrated in Tibet
(approximately 19.2%) [15,16] and its surrounding
regions, including Nepal (approximately 11.6%) [17],
Sikkim (approximately 11.7%) [18] and northeast India
(approximately 8.6%) [18,19]. 2) The phylogeny of
haplogroup M9a’b indicated that this clade might be
involved in some northward migrations into East Asia
from Southeast Asia [14]. 3) The coalescent time esti-
mates of certain sub-haplogroups of M9a’b, for exam-
ple, M9a (approximately 12 to 15 kya) [14,16] and
M9d (approximately 12 kya) [16], suggested that these
lineages were likely associated with some post-LGM
dispersal(s) in East Asia [14], especially in Tibet
[15,16]. 4) In addition to its high frequency, the rela-
tively high genetic diversity, as revealed by the
mtDNA control region hypervariable segment I
(HVS-I) information in Tibet [20], suggested that Tibet
might serve as the potential differentiation center of
M9a’b sub-haplogroups. All these lines of evidence
appeared to imply that Tibet might be a candidate
source for the post-LGM dispersal in East Asia.
Together, the detailed dissection of haplogroup M9a’b
would provide insightful information for the ancient
movement of modern humans in East Asia around the
LGM.

Results
M9a’b phylogenetic tree based on mtDNA genome
information
After incorporating the 59 newly sequenced mtDNA
genomes, the phylogeny of haplogroup M9a’b was
greatly improved in the context of East Eurasians
(Figure 1). The overall structure of the tree turned out
to be much more complex than we had ever thought
[14-16,18,20,21] (Figure 2). For instance, a number of
basal lineages branched directly from the M9a’b root
and shared merely two variants 16234 and 14308 with
previously defined haplogroups M9a and M9d [16,18].
To update the definitions of haplogroup M9a’b and its
sub-haplogroups and to avoid potential confusion, we
kept the definition of M9a’b, but expanded that of
M9a (now defined by transitions 14308 and 16234)
to embrace M9a1 (defined by variant 1041), M9a4
(defined by transition 6366), and M9a5 (determined by
variants 385, 8155, and 12237). Nomenclature of some
other sub-haplogroups, such as M9a1b (former M9d
[16,18]), M9a1a1 (former M9a [18]), and M9a1a2
(former M9e [16]), were adjusted accordingly (Figure 2).

It should be mentioned that although the validity of
M9a1a might be questionable because this haplogroup
was defined solely by a control region variation at site
16316, its two major clades (M9a1a1 and M9a1a2) were
determined by additional coding region variants. The
updated nomenclature has been deposited to PhyloTree
(http://www.phylotree.org, mtDNA tree Build 10) [22].
Based on the updated M9a’b phylogeny, some interest-

ing features could be discerned. With the exception of
M9a1, most basal branches of M9a were distributed in
southern China (6/15) and Southeast Asia (7/15); this
pattern suggested that M9a might have a southern ori-
gin. The distribution pattern of M9a1 was rather com-
plex: although this haplogroup did bear some genetic
imprints of southern origin by harboring a basal lineage
(that is, HN-H H27) from southern China, its effect had
actually extended to northern China and Japan (for
example, M9a1a1a, M9a1a1b, and M9a1a1c1a), as well
as, western China (that is, southwestern China, north-
western China, and Tibet), northeast India (including
Bangladesh), and the south Himalaya region (for exam-
ple, M9a1b1, M9a1a2, and M9a1a1c1b). Based on this
pattern, it seemed that haplogroup M9a1 had most
likely been involved in some northward and westward
dispersal(s) in East Asia.

Phylogeographic distribution
The updated phylogenetic tree of haplogroup M9a’b pro-
vided a basis for us to reanalyze the previously published
data and to perform a well-defined phylogeographic analy-
sis of this haplogroup. To better characterize the demo-
graphic history of M9a’b, the median-joining network was
constructed based on all available M9a’b mtDNAs (Figure
3). In general, the network (based on the combined infor-
mation of the control region and partial coding region)
was in agreement with the phylogeny of the entire
mtDNA genomes (Figure 2). Our comprehensive study of
haplogroup M9a’b substantiated the notion that the origin
of this haplogroup was most likely located in southern
China and/or mainland Southeast Asia. As displayed in
Figure 3, most of the basal lineages within M9a (that is,
M9a*; excluding M9a1a and M9a1b mtDNAs) came from
southern China, southwestern China, and Southeast Asia,
strongly suggesting a southern origin of M9a. This result
received further support from M9b: 9 of the 11 M9b
sequences were observed in southern China, southwestern
China, and Southeast Asia, while the remaining two were
found in northwestern China and northern China, respec-
tively (Figure 3; see Additional file 1).
Similar to the observation from the phylogenetic tree of

the complete mtDNAs (Figure 2), the median-network
showed that the dominant clade (M9a1) within M9a pre-
sented a quite different geographic distribution pattern
from its sister cluster M9a* (Figure 3). Within
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haplogroup M9a1b, the basal lineages were mainly
restricted to western China and Myanmar, whereas
M9a1b1 spread not only in western China and Myanmar,
but also in northeast India and the south Himalaya
region (Figure 3). The basal lineages belonging to M9a1a*
were mainly found in southern China (Figure 3). One of
its derivatives, haplogroup M9a1a2, displayed a restricted
distribution in western China, Myanmar, northeast India,
and the south Himalaya region (Figure 3 and 4; see Addi-
tional file 2), and presented a similar pattern to that of
haplogroup M9a1b1. Nevertheless, haplogroup M9a1a1
showed a distinct distribution pattern: most of M9a1a1
basal lineages were distributed in southern China, south-
western China, as well as, northern China, Japan and
Korea, whereas its major sub-haplogroup M9a1a1c was
prevalent in northern China, Korea, and Japan (Figure 3
and 4; see Additional file 2). Remarkably, the M9a1a1
lineages found in Tibet were almost clustered into hap-
logroup M9a1a1c1b.

Coalescence age estimates
The large number of M9a’b samples with complete
mtDNA genome information, as well as the network
with a high-resolution, allowed us to estimate the

coalescence ages of the nodes (viz., ancestral haplotypes
within M9a’b) of interest. Although there were some
exceptions, the estimated ages based on different cali-
brated rates were in general accordance with each other
and seemed to be quite robust (Table 1). The whole
haplogroup M9a’b showed a coalescence time of
approximately 26 to 28 kya. The estimated coalescence
age of haplogroup M9a was approximately 18 to 23 kya.
Within haplogroup M9a1, haplogroups M9a1a1 and
M9a1b1 emerged around 14 to 17 kya and 9 to 12 kya,
respectively. For haplogroup M9a1a2, because of the
small number of available mtDNA genome sequences,
which would bias the age estimates, we adopted the age
estimation result based on HVS-I data (11.3 ± 3.5 kya).
As a result, nearly all the age estimates placed the origin
of haplogroup M9a1a1 in the Late Glacial episode,
whereas haplogroups M9a1b1 and M9a1a2 are in a
more recent post-glacial period (the end of the Pleisto-
cene and the early Holocene), despite a fact that these
ages should be received with caution [23,24].

Discussion
Although some previous studies based on limited infor-
mation from mtDNA control region suggested that

Figure 1 Geographic locations of populations surveyed in this study. For more details regarding the populations, refer to Additional file 2.
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Figure 2 Classification tree of M9a’b rooted in haplogroup M9. (a) The tree includes 120 complete sequences and illustrates sub-
haplogroup affiliations (see Additional file 4). Sequences 1, 5 to 12, 16 to 25, 42 to 43, 54, 60 to 64, 77 to 78, 81 to 88, 93, 97 to 117 were newly
collected and indicated as circles, while the others from published sources were represented as squares. The nucleotide positions in the
sequences were scored relative to the revised Cambridge Reference Sequence (rCRS) [52]. Transitions are shown on the branches and
transversions are further annotated by adding suffixes. The deletions and insertions are demonstrated by ‘’d’’ and ‘’+’’, respectively. Amino acid
replacements are in red and marked by a single-letter code, whereas synonymous replacements are in blue. Changes in transfer RNA and
ribosomal RNA genes are denoted by “t” and “r”, respectively. The prefix @ designates back mutation and recurrent variants are underlined. “R”
and “Y” specify the heteroplasmic status of A/G and C/T at a certain site, respectively. All heteroplasmic variants and the potential pathogenic
transition 11778 [62] are not considered in the ages estimates and are marked in italics. The insertion of C at site 5899 seemed to be missing in
sequences 88 to 91, which is tentatively noted as “@5899+C?”. (b) The geographic origin of samples is shown by different colors corresponding
to their respective different locations in the map.
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Figure 3 Median-joining network of HVS-I haplotypes observed in 837 M9a’b mtDNAs. (a) mtDNA control region variations and/or certain
coding region sites were considered to improve the resolution of the median-joining network. The variants are transitions, and transversions are
further highlighted by adding suffixes A, C, G and T. “Y” means heteroplasmic status C/T, and “@” means a back mutation. The “†” labels the
putatively ancestral node of haplogroup M9a’b. (b) The geographic origin of samples is shown by different colors corresponding to their
respective locations on the map. For the samples from Tibet, the related population information is also noted.
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Figure 4 Spatial frequency distributions of haplogroup M9a’b and its sub-haplogroups. Populations and corresponding frequency values
are listed in Additional file 2. Fifty mtDNAs were not included in computing the population frequency because the essential information was
missing or not reported in the original studies (see Additional file 1). The spatial-frequency distributions were created using the Kriging algorithm
of the Surfer 8.0 package.
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haplogroup M9a’b might trace its origin in North Asia/
northern China [16,25] or Central Asia (including
Tibet) [20], evidence from entire mtDNA genomes and
extensive phylogeographic analyses unanimously indi-
cated that this haplogroup was originated in southern
China and/or Southeast Asia, a vast region containing
contemporary northern Vietnam and South China (that
is, Guangxi, Guangdong, and Hainan). This result was
consistent with the previous observation on haplogroup
E, the sister clade of M9a’b [14], and thus provided
further evidence in support of the common origin of
haplogroup M9 (embracing M9a’b and E) in Southeast
Asia [14]. Moreover, the emergence of M9a’b and/or
M9a and their related early dispersal in southern China
and/or Southeast Asia (Figure 4) around 18 to 28 kya
(Table 1) was in agreement with the rise of the Upper
Paleolithic culture within this region (Figure 5a).
During this period, the first (approximately 26 to
36 kya) and second (approximately 20 to 26 kya) stages
of Bailiandong culture in Guangxi [26] and the Son Vi
culture (also Sonviian; approximately 13 to 23 kya) in
northern Vietnam [27] appeared and showed tight
links (for example, cobble choppers and blades) with
each other [26].

Our phylogeographic analysis of haplogroup M9a’b
further revealed some distinct distribution patterns of its
sub-haplogroups. In particular, M9a1b and M9a1a2
showed a restricted distribution in western China,
Myanmar, northeast India, and the south Himalaya
region (Figure 4; see Additional file 2), but were virtually
very rare or absent in northern China and Northeast
Asia and even southern China (the suggested place of
origin of M9a’b and M9a1), indicating that both hap-
logroups might have distinct origins from the other
M9a’b sub-haplogroups. Meanwhile, M9a1a2 and
M9a1b coincidentally shared a similar expansion age
(approximately 9 to 12 kya; Table 1), which indicated
that both haplogroups might have been involved in the
same demographic event. Together, the current distribu-
tion pattern of haplogroups M9a1b and M9a1a2 was
likely attributed to an inland post-glacial dispersal event,
which started from southern China along with the dif-
ferentiation of M9a1 (approximately 17 to 21 kya; Table 1;
Figure 5b), then moved westward to western China, and
finally to northeast India and the south Himalaya region
(Figure 5c). Nevertheless, the phylogeographic pattern of
M9a1a1 suggested some northward Late Glacial dispersal
(s). In particular, the enrichment of haplogroup

Table 1 Estimated coalescence ages of mtDNA haplogroup M9a’b and its sub-haplogroups based on different
calibration rates

Entire mitochondrial genome Only synonymous mutations Transitions in 16090 to 16365

Node/Clade Na r s Tb (ky) ΔTb (ky) r s Tc (ky) ΔTc (ky) Na r s Td (ky) ΔTd (ky)

M9a’b 120 10.83 2.01 28.0 5.2 3.28 1.14 26.2 9.1

M9a 118 8.86 1.48 22.9 3.8 2.23 0.59 17.8 4.7

M9a* (w/o M9a1) 15 7.40 1.11 19.1 2.9 2.73 0.52 21.8 4.2 50 1.20 0.46 22.6 8.7

M9a5 5 4.40 1.26 11.4 3.3 1.40 0.53 11.2 4.2

M9a4 7 5.57 1.32 14.4 3.4 1.71 0.49 13.7 4.0

M9a1 103 8.07 1.36 20.9 3.5 2.16 0.67 17.2 5.3

M9a1b 35 5.03 1.35 13.0 3.5 1.37 0.37 11.0 3.0

M9a1b* (w/o M9a1b1) 8 3.13 1.04 8.1 2.7 0.88 0.38 7.0 3.0 41 0.51 0.16 9.7 3.0

M9a1b1 27 3.59 0.68 9.3 1.8 1.52 0.47 12.1 3.8 274 0.55 0.23 10.5 4.3

M9a1a 67 7.19 1.43 18.6 3.7 2.60 1.01 20.8 8.1

M9a1a2 8 3.13 1.17 8.1 3.0 0.63 0.33 5.0 2.6 65e 0.60 0.19 11.3 3.5

M9a1a1 56 6.59 1.37 17.0 3.5 1.77 0.66 14.1 5.3

M9a1a1* (w/o M9a1a1c) 21 4.00 1.01 10.3 2.6 1.43 0.32 11.4 2.6 48 0.77 0.30 14.5 5.7

M9a1a1c 35 6.14 1.55 15.9 4.0 0.97 0.28 7.8 2.2

M9a1a1c1 34 5.21 1.25 13.5 3.2 0.94 0.28 7.5 2.3

M9a1a1c1* (w/o M9a1a1c1b) 9 3.33 1.03 8.6 2.7 1.67 0.94 13.3 7.5 67 0.39 0.14 7.3 2.6

M9a1a1c1b 25 3.88 1.32 10.0 3.4 0.68 0.18 5.4 1.5

M9a1a1c1b (@16291) 24 2.88 0.94 7.4 2.4 0.58 0.18 4.7 1.4 170 0.32 0.08 6.1 1.5

M9a1a1c1b (@16291-711) 21 1.90 0.35 4.9 0.9 0.48 0.16 3.8 1.3
a Number of mtDNA sequences.
b Using the corrected molecular clock proposed by Soares et al. [60].
c According to the recalibrated synonymous rate of Loogväli et al. [61]. The rate of Soares et al. [60] (7,884 years/synonymous substitution) was similar to
Loogväli et al. [61] (7990 years/synonymous substantiation), and age estimates based on this rate were not listed in the Table.
d Using the corrected molecular clock proposed by Soares et al. [60].
e The numbers of mtDNAs refer the sequences allocated into M9a1a2 with additional back-mutation 16362.
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M9a1a1c1b in Tibet was likely to be explained by some
recent local expansions, such as the Neolithic expansion
[28,29] in this region.
It is possible that the observed pattern based on a sin-

gle haplogroup (that is, M9a’b) might be biased by
genetic drift, natural selection, and later population
dynamic events [30]. So we tried to look for the parallel
genetic evidence from the published data: haplogroup
F1c [31,32], with mtDNA control region motif as
16111-16129-16304-152-249d, was found to show a
similar phylogeographic pattern with haplogroup M9a1.
As previous studies had indicated that haplogroups F1
and F1a (a sister clade of F1c) probably had an origin in
southern China and/or Southeast Asia [32-34], hap-
logroup F1c also probably originated in the same region.
The network based on 108 mtDNA control region
sequences (see Additional file 3) suggested that several
branches derived directly from the root type of F1c, and

these lineages were mainly restricted in western China,
northeast India, and the south Himalaya region
(Figure 6). Regardless of the major branch defined by var-
iant 16266, the expansion time of haplogroup (paragroup)
F1c* was estimated to be 10.2 ± 4.1 kya. Therefore, the
differentiation of haplogroup F1c* had likely witnessed
certain inland post-glacial dispersal from southern China
and/or southwestern China to northeast India and the
south Himalaya region, which mirrored the distribution
pattern of M9a1b and M9a1a2.
The proper interpretation of the obtained genetic data
to reconstruct complex colonization scenarios would
benefit from the incorporation of archaeological materi-
als. After the LGM, around 12 to 15 kya, great cultural
changes in South China and northern Vietnam were
suggested to be associated with the prevalence of the
Mesolithic culture, such as the Hoabinhian culture
[27,35] and the third stage of Bailiandong culture

Figure 5 The putative migratory routes of M9a’b and the distribution of the potentially associated archaeological evidence. Arrows
refer to the dispersal direction but do not denote precisely defined geographic routes. The ages of specific haplogroups were based on the
mtDNA control region sequences: (a) M9a* lineages in southern China and Southeast Asia; (b) M9a1 in southern China; and (c) M9a1b1 lineages
in northeast India, and M9a1b1 and M9a1a2 lineages in the south Himalaya region.
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[26,36]. The expansions of these Mesolithic cultures in
southern China and Southeast Asia were already dis-
cussed in some recent studies [37,38]. Intriguingly, the
timing for our proposed inland post-glacial dispersal
scenario was largely overlapped with the Mesolithic
period, and more importantly, this inland route from
southwestern China to northeast India and the south
Himalaya region was in coincidence with the
Hoabinhian links connecting southwestern China [39],
northeast India [40], and Nepal [41,42] (Figure 5c). It
seemed that the advanced technology (for example, pot-
tery [26,36,43]) and the improved climate would be the
major factors in triggering the post-glacial dispersal.
However, other factors such as the dispersal of language
groups and the expansion of agriculture could not be
neglected completely. Considering some major branches
within M9a’b were relatively concentrated in different
Tibeto-Burman and Khasi-Khmuic populations (see
Additional file 1), the dispersals of Tibeto-Burman [44]
and Austro-Asiatic populations [45], together with the
intergroup genetic admixture [45], were likely to shape
the current distribution pattern of M9a’b. Further work
on more genetic markers (for example, NRY, genome-
wide single nucleotide polymorphisms, and even ancient

DNA) with extensive sampling will be required to
further confirm our speculation regarding the prehisto-
ric peopling scenario(s) in East Asia.

Conclusions
Our comprehensive phylogeographic analyses of mtDNA
haplogroup M9a’b revealed that southern China and/or
Southeast Asia served as a source of the post-LGM dis-
persal in East Asia. Most importantly, our results pro-
vided the first direct genetic evidence in support of the
existence of an inland dispersal in mainland East Asia
from southern China, through western China, to north-
east India and the south Himalaya region. This dispersal
was likely triggered by the improved climate and the
advanced Mesolithic culture, and had played important
roles in shaping the matrilineal gene pool of modern
East Asians.

Methods
Subjects
A total of 837 candidate M9a’b mtDNA samples (583
from the literature and 254 from this study; see Addi-
tional file 1), with specific mtDNA control region motif
16223-16234-16362-153 and/or coding region diagnostic

Figure 6 Median-joining network of HVS-I haplotypes observed in 108 F1c mtDNAs. All sequences were retrieved from the published data
(see Additional file 3). For the information of the labels, see Figure 3 and its legend.
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site 3394 or 4491, were pinpointed from over 28,000
subjects residing across East Eurasia (Figure 1; see Addi-
tional file 2). All subjects recruited in this study were
interviewed with informed consent to ascertain their
ethnic affiliations. To better understand the phylogeny
within M9a’b, besides the 61 published M9a’b mtDNA
genome sequences that were retrieved from the litera-
ture and GenBank (see Additional file 4), an additional
59 representatives were selected from our own samples
for complete mtDNA sequencing, with a special attempt
to cover the widest range of internal variation within
the haplogroup [46]. By virtue of the updated phylogeny
of haplogroup M9a’b, we further classified the remaining
M9a’b candidates based on the specific coding region
motifs (for our own samples; see Additional file 1) and/
or by matching and near-matching [32,47] with the
well-defined M9a’b lineages (for the reported mtDNAs
from the literature). Using this strategy, the vast major-
ity of the M9a’b mtDNA samples (771/837) could be
unambiguously allocated into specific sub-haplogroups
within M9a’b, whereas the remaining 66 sequences (all
from the literature) could only be roughly assigned into
M9a’b* due to lack of further information (see Addi-
tional file 1).

Sequence analysis
The sequencing protocol and phylogeny reconstruction
were performed as fully described before [48,49], and
some caveats for data quality-control were followed dur-
ing the data generation and handling [50,51]. Sequences
were edited and aligned by using Lasergene (DNAStar
Inc., Madison, Wisconsin, USA) and variations were
scored relative to the revised Cambridge Reference
Sequence (rCRS) [52]. For the C-stretch length variants
in the control region, we followed the rules proposed by
Bandelt and Parson [53]. The transition at 16519 and
the C-length polymorphisms in regions 16180 to 16193
and 303 to 315 were disregarded in the analyses. The
classification of the variants of each mtDNA genomes
was performed with mtDNA GeneSyn 1.0 http://www.
ipatimup.pt/downloads/mtDNAGeneSyn.zip [54] and
MitoTool http://mitotool.org/index.html [55]. Sequences
generated in this study have been deposited in GenBank
(Accession Nos. GQ337542, GQ337575, GQ337588, and
HM346881 to HM346936).

Phylogenetic tree construction and data analysis
The phylogenetic tree of 120 M9a’b complete mtDNA
sequences was reconstructed manually and checked by
NETWORK 4.516 http://www.fluxus-engineering.com/
sharenet.htm. For the HVS data and/or partial coding
region, the median-joining network of 837 M9a’b
mtDNA sequences was constructed manually and was
further checked by using the Network 4.516 [56]. The

counter maps of spatial frequencies [57] were con-
structed to elaborate the geographic distribution pat-
terns of haplogroup M9a’b and its sub-haplogroups
using the Kriging algorithm of Surfer 8.0 (Golden Soft-
ware Inc. Golden, Colorado, USA).
The average sequence divergence (r) of the haplotypes

to their most recent common ancestor, accompanied by
a heuristic estimate of the standard error (s), was calcu-
lated as fully described before [58,59]. Then, the r ± s
value was converted into the coalescent age for certain
haplogroup by using the most recently proposed calibra-
tion rates for mtDNA mutations [60] and only synon-
ymous substitutions [61], respectively. For the control
region, we adopted the rate of 18,845 years per transi-
tion between 16090 and 16365 [60].

Additional material

Additional file 1: List of M9a’b mtDNAs identified in East Eurasians.
This is an EXCEL file describing the information of 837 M9a’b mtDNAs.

Additional file 2: Population distribution of haplogroup M9a’b. This
is an EXCEL file providing information includes sample sizes, geographic
locations and distributions of sub-haplogroups.

Additional file 3: List of F1c lineages identified from the published
data. This is an EXCEL file describing the information of 108 F1c
mtDNAs.

Additional file 4: List of M9a’b complete sequences that were
included in Figure 2. This is a DOC file describing the information of
120 complete M9a’b mtDNA genomes and the references for all
additional files.
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