
By hairball I refer here to those stunningly complicated 
network diagrams that grace the pages (and covers) of 
major journals with some regularity, in which the 
vertices or ‘nodes’ are annotated with symbols 
representing genes, proteins or metabolites, and the 
connectors or ‘edges’ are usually so numerous as to 
strain the resolution of monitors and printers 
(Figure 1).

While lacking much of the aesthetic appeal of a 
double helix, the hairball can be seen as iconic because 
it succinctly captures the distinctive flavor of systems 
biology. A molecular biologist and a systems biologist 
both construct their view of biology out of knowledge 
of biology’s components (nodes) and knowledge of the 
relationships among those components (edges) (Figure 
2). Where they differ is in the relative emphasis they 
place on each: to the molecular biologist, the answers 
to difficult questions are sought mainly by discovering 
nodes and linking them through edges that stand for 
qualitative causal relationships (‘gene a turns on gene 
b’; ‘enzyme x phosphorylates protein y’, and so on). To 
the systems biologist, answers are sought mainly 
through the investigation of networks themselves, the 
behaviors of which tend to be dominated by the 
quantitative details of their edges more than by the 
physical nature of their nodes. In molecular biology, 
explaining the existence of a phenotype or disease by 
‘finding the gene(s) for it’ is a plausible goal; in systems 
biology it is just a starting point for investigation.

Curiously, this distinction is often misconstrued. Among 
scientists, as well as the public, systems biology is frequently 
identified with the exploitation of high-throughput methods 
to gather vast amounts of data about genomes, epigenomes, 
transcriptomes, proteomes, metabolomes, phenomes, and 
the like. Sophisticated as such methodologies have become, 
they primarily support the tasks that molecular biologists 
have always faced - discovering nodes and edges. If this 
were all there was to systems biology, it would be hard to 
justify treating it as anything more than an accelerated 
program of molecular biology.

But there is certainly more. In driving home this point, 
the hairball icon is again useful, albeit with different 
assignments of meaning. In this interpretation, we take 
the nodes to represent knowledge - individual sets of data 
about the biological world, including facts, observations, 
structures, behaviors, and so on - and the edges to 
represent relationships, or connections, between bodies 
of knowledge. For example, what we know about the cell 
cycle and what we know about circadian behaviors such 
as sleep-wake cycles may be connected by virtue of the 
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Figure 1. Human proteome, and its binding interactions. 
Depiction of the data as a hairball, an increasingly familiar image in 
the biology literature. Figure kindly provided by Nicolas Simonis and 
Marc Vidal, see [14].
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fact that both phenomena are built upon autonomous 
oscillators with external inputs. These bodies of know
ledge may additionally be connected to what we know 
about the stripes on the coats of tigers and zebras by 
generalizing the notion of oscillation to include oscilla
tion in space as well as time. These can be further joined 
to what we know about the formation of vertebrate body 
segments, and the formation of patterns on seashells, 
through the relationship that spatial oscillations can arise 
through the interaction of temporal oscillation with 
stable spatial growth.

It is straightforward to see two things about the 
edges in this second kind of hairball, which serve to 
connect bodies of knowledge. First, they do not 
fundamentally stand for statements of causality (zebra 
stripes do not cause, nor are they caused by, shell 
patterns). Second, they are often peculiarly satisfying 
to learn about. When we appreciate that two or more 
very different-seeming phenomena can be treated as 
similar in some way, we tend to feel that we have 
accomplished something. This feeling has a simple 
name: understanding.

My purpose in offering this procedural definition of 
understanding is to draw an important distinction 
between knowledge and understanding. Factual 
discovery, whether in the biological sciences or any other 
enterprise, does not constitute understanding on its own. 
The student who correctly answers a question in class by 

downloading it off the internet with his smartphone does 
not necessarily understand anything.

Although I do not doubt that many of my colleagues in 
the sciences were lured into their professions by the thrill 
of discovering new knowledge, I would speculate that at 
least as many were attracted, as I was, by the challenge of 
understanding the world in new ways. It has always 
disappointed me that so much of the vast literature on 
how science is, or ought to be, practiced deals with the 
former goal and not the latter. Writings on the ‘scientific 
method’, whether from practicing scientists or philoso
phers, seem to deal mainly with how we design and 
perform experiments so that we can validly infer that 
something is or is not the case. This amounts to the 
question of how we arrive at potential knowledge and 
decide whether or not to accept it.

The question of how we create understanding out of 
validated bits of knowledge seems to have attracted so 
much less attention because, I suppose, it is easily seen as 
trivial. For example, if we obtain data that shutting down 
the activity of any of a certain set of genes blocks the 
ability of cells to splice pre-mRNAs, and we have previous 
data showing that the products of those genes physically 
associate in the cell to form a large supramolecular 
complex, we are easily drawn to view such a complex as a 
‘splicing machine’. Coming to this understanding is an act 
that does not seem to require much effort or skill. A 
graduate student will accomplish it as quickly as a senior 
professor; more quickly in some cases, because seasoned 
scientists tend to be more distrustful of the impulse to 
submerge messy facts beneath neat, orderly concepts.

There are many phrases that describe the action of 
replacing the messy with the simple to promote under
standing: ‘creating an abstraction’, ‘generalizing’ and 
‘distilling a concept’ come to mind, but the phrase I find 
most evocative is, ‘building a model’. When we 
understand a collection of gene products as a splicing 
machine, we are building a model of splicing that is 
simpler than the underlying data set that produced it. 
When we understand the cell cycle as a regulated 
oscillator, or metabolic networks as systems for 
optimizing growth, we are likewise building simple 
models of complex processes.

Models do not arise by logical inference from data; they 
are acts of human creation. Any set of data can be 
modeled in a large (perhaps infinite) number of ways. 
Our reasons for choosing one over another are not to be 
found in the data themselves, but rather in our ideas 
about how a model will help us connect the data to other 
knowledge. This point is well illustrated in Kyle Stanford’s 
book Exceeding our Grasp, [1] which investigates the 
origins of influential biological models that were later 
discarded or discredited.  Stanford relates how some of 
the best minds in biology routinely failed to conceive of 

Figure 2. Hairballs are composed of nodes and edges. With 
nodes (blue) standing for elements such as genes, proteins, 
or metabolites, and edges (brown) standing for qualitative or 
quantitative relationships, hairballs are graphical representations of 
explicit models. Hairballs can also represent the act of modeling itself, 
with nodes that represent knowledge, and edges that represent the 
connections models build between bodies of knowledge.
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the models that would eventually supplant their own, 
even when the later models would have equally well fitted 
all the data to which they had access.

Models are valuable in science not because they can be 
validated, but because they can be useful. Indeed, the 
entire notion of validating or invalidating models seems 
misguided. Models may be found inconsistent with a set 
of data, but that does not necessarily rob them of their 
utility. When we use Newton’s laws of motion; when we 
identify protein domains as alpha helices or beta sheets; 
even when we refer to the concentration of a reactant in a 
cell, we are invoking models that only approximate 
reality. Yet the simplicity of these models makes them 
useful anyway, often more useful in day-to-day life than 
more complicated models that better fit the data. The 
idea that the best models never fit all the data was 
summed up 30 years ago by the statistician George Box 
when he said, ‘all models are wrong; some are useful’ [2].

My purpose in presenting this particular definition of 
‘model’ is to contrast it with views now common among 
biologists, including many self-identified systems 
biologists (for example, [3,4]). In particular, there seems 
to be a prevailing view that modeling activities are 
dramatically accelerating in biology; that the primary use 
of modeling is to predict experimental outcomes that 
then validate or invalidate them; and that the overall goal 
of modeling is to generate testable hypotheses. It strikes 
me that all three statements are misapprehensions.

First, models have long been abundant in biology. Pick 
up any of the classic textbooks of molecular biology from 
the 1970s through the 1990s and you will typically find 
that half the illustrations are models of some sort or 
another. The difference between molecular biology and 
systems biology is that models in the former field are 
usually represented as cartoons and arrow diagrams, 
whereas in the latter they are more often represented as 
sets of equations or procedural instructions. It is not the 
use of modeling, per se, that is changing, it is the elements 
out of which biologists tend to build models. Such a 
change enables us to use our models to find different 
kinds of connections between bodies of knowledge. For 
example, with cartoon-based modeling, we can see that 
G-proteins and signal-controlled protein kinases are 
similar in that both use the thermodynamics of 
phosphorylation and dephosphorylation to drive irrever
sible switches. With equation-based modeling, however, 
we can see that the ultrasensitivity required for switch-
like behavior can be created out of multisite phos
phorylation with distributed kinetics [5].

Second, the idea that models only serve us to the extent 
that they make experimental predictions is, in my 
opinion, one of the more pernicious widely-held notions 
in biology today. While predictions may indeed flow from 
models, it is too easy for such predictions to have little 

bearing on a model’s value. To paraphrase a bad children’s 
joke, the observation that an amputee frog does not jump 
in response to verbal commands is indeed a prediction of 
the model that frogs hear with their legs. While the 
foregoing is an intentionally facetious example, it is not 
far off from the situation in which colleagues of mine 
have sometimes found themselves: forced by anonymous 
reviewers to make, and then test, gratuitous predictions 
of their models just to get their work published.

Of course, not all predictions are gratuitous. Demon
strating that a model continues to fit new data can be 
extremely helpful, especially when trying to choose 
among a range of possible models. But there are so many 
other ways in which models can be useful. The social 
scientist Joshua Epstein recently compiled a list of 16 
other reasons for modeling besides prediction. Among 
them are to provide explanation; illuminate dynamics; 
suggest analogies; identify new questions; and demon
strate tradeoffs [6]. Whereas these activities have nothing 
to do with prediction, they have everything to do with 
understanding. We also learn from Epstein that 
preoccupation with predictive modeling is not unique to 
biologists. As he remarks about his colleagues, ‘For some 
reason, the moment you posit a model, prediction - as in 
a crystal ball that can tell the future - is reflexively 
presumed to be your goal’ [6].

The third misapprehension - that the ultimate goal of 
modeling is to generate hypotheses - is often promoted 
by modelers of biology themselves. According to this 
view, data in biology are now being gathered so rapidly, 
and in such a comprehensive way, that the pace at which 
we make experimental observations is outstripping the 
pace at which we usually formulate good hypotheses to 
test. Modeling, particularly the computational modeling 
of statistical correlations, is said to provide an efficient 
tool for finding such hypotheses amidst the mass of data 
[7,8]. A continual cycle of modeling, hypothesis genera
tion, experimentation, and model refinement is proposed 
as the only logical way for biology to move forward.

It is true that efficient routes to hypothesis generation 
are greatly needed in biology. It is also true that models 
provide the structure within which hypotheses can be 
framed. Indeed, the reason a ‘robot scientist’ can efficiently 
perform impressive feats of biological hypothesis 
generation and testing [9] is that it is pre-programmed 
with basic models of how certain domains of biology work. 
But to characterize models solely as tools for hypothesis 
generation underplays the role of models as vehicles of 
understanding. Indeed, we could imagine a far-off future in 
which so much knowledge has been gathered that virtually 
every imaginable hypothesis has already been tested 
(whether intentionally or not). Would we have no need for 
models in such a future? To the contrary, with so much to 
make sense of, I would expect the need to be even greater.
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How, then, should we decide when and whether to 
model? And if modeling is meant to forge connections 
between bodies of knowledge, is there a systematic 
way of making sure this succeeds? If the elements of 
one’s models are only cartoons and arrow diagrams, 
these questions are probably fairly simple to deal with. 
But for models built out of sets of mathematical 
equations and statistical constructs, as is increasingly 
the case in systems biology, the answers are by no 
means obvious. Fortunately, they are not entirely 
occult either: making connections between explicit, 
systematic representations of complex things is the 
bread and butter of at least three fields outside of 
biology, namely mathematics, theoretical physics and 
‘theoretical engineering’ (which includes control 
theory). That these theoretical disciplines have been 
playing an increasing role in the development of 
systems biology (see, for example, [10-12]) may be a 
sign that biology is finally ready for its own ‘theory 
branch’ [13]. This suggests that the 21st century may 
be remembered as a time when biology finally 
dedicated itself to systematic exploration, not just of 
the limits of knowledge, but all the way to the edges of 
understanding.
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