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Abstract
Background: Recent advances in sequencing strategies make possible unprecedented depth and
scale of sampling for molecular detection of microbial diversity. Two major paradigm-shifting
discoveries include the detection of bacterial diversity that is one to two orders of magnitude
greater than previous estimates, and the discovery of an exciting 'rare biosphere' of molecular
signatures ('species') of poorly understood ecological significance. We applied a high-throughput
parallel tag sequencing (454 sequencing) protocol adopted for eukaryotes to investigate protistan
community complexity in two contrasting anoxic marine ecosystems (Framvaren Fjord, Norway;
Cariaco deep-sea basin, Venezuela). Both sampling sites have previously been scrutinized for
protistan diversity by traditional clone library construction and Sanger sequencing. By comparing
these clone library data with 454 amplicon library data, we assess the efficiency of high-throughput
tag sequencing strategies. We here present a novel, highly conservative bioinformatic analysis
pipeline for the processing of large tag sequence data sets.

Results: The analyses of ca. 250,000 sequence reads revealed that the number of detected
Operational Taxonomic Units (OTUs) far exceeded previous richness estimates from the same
sites based on clone libraries and Sanger sequencing. More than 90% of this diversity was
represented by OTUs with less than 10 sequence tags. We detected a substantial number of
taxonomic groups like Apusozoa, Chrysomerophytes, Centroheliozoa, Eustigmatophytes,
hyphochytriomycetes, Ichthyosporea, Oikomonads, Phaeothamniophytes, and rhodophytes which
remained undetected by previous clone library-based diversity surveys of the sampling sites. The
most important innovations in our newly developed bioinformatics pipeline employ (i) BLASTN
with query parameters adjusted for highly variable domains and a complete database of public
ribosomal RNA (rRNA) gene sequences for taxonomic assignments of tags; (ii) a clustering of tags
at k differences (Levenshtein distance) with a newly developed algorithm enabling very fast OTU
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clustering for large tag sequence data sets; and (iii) a novel parsing procedure to combine the data
from individual analyses.

Conclusion: Our data highlight the magnitude of the under-sampled 'protistan gap' in the
eukaryotic tree of life. This study illustrates that our current understanding of the ecological
complexity of protist communities, and of the global species richness and genome diversity of
protists, is severely limited. Even though 454 pyrosequencing is not a panacea, it allows for more
comprehensive insights into the diversity of protistan communities, and combined with appropriate
statistical tools, enables improved ecological interpretations of the data and projections of global
diversity.

Background
Molecular surveys of protistan diversity research, tradi-
tionally based on amplification of small subunit (SSU)
rRNA (SSU rRNA) gene fragments from environmental
samples, clone library construction and Sanger sequenc-
ing have discovered protistan novelty at all levels of taxo-
nomic hierarchy [1]. At the same time, such surveys
indicated that we have described only a very small fraction
of the species richness of protistan communities [2]. There
are few SSU rRNA gene surveys of any community that are
reasonably complete [3,4]; the majority appear to be no
more than small samples from apparently endless lists of
species present at any locale studied. (e.g. [1,2,5-9]). This
is not only detrimental to the exploration of the true rich-
ness and complexity of protistan communities, but also
hampers comparative analyses of protistan communities
in an ecological and biogeographical context [10-12].
Massively parallel tag sequencing (454 sequencing, pyro-
sequencing) is a promising remedy and offers a means to
more extensively sample molecular diversity in microbial
communities [13]. For example Sogin et al. [14] analyzed
up to 23,000 tags per sample of the V6 hypervariable
region of the bacterial SSU rRNA genes from deepwater
masses of the North Atlantic and hydrothermal vents in
the NE Pacific. The study revealed that bacterial commu-
nities are one to two orders of magnitude more complex
than previously reported, with thousands of low abun-
dant populations accounting for most of the phylogenetic
diversity detected in this study (the so called rare bio-
sphere). This was confirmed by Huber et al. [15] who ana-
lyzed nearly 700,000 bacterial and ca. 200,000 archaeal
V6 tag sequences obtained from two biogeochemically
distinct hydrothermal vents. These data sets demonstrated
that these distinct population structures reflect the differ-
ent local biogeochemical regimes, corroborating previous
indications that environmental factors and geographic
separation lead to non-random distributions of microbes
(see [16] for review, but see also [17]). Pyrosequencing
has subsequently unveiled the richness and complexity of
soil bacterial communities [18], human [19] and
Macaque [20] gut microbiota. In the project described in
this paper we applied the 454 sequencing technique to
eukaryotes to analyze the complexity of microbial eukary-

otic communities in two environmentally contrasting
anoxic basins (Cariaco and Framvaren).

The Cariaco Basin is the world's largest truly marine
anoxic body of water located on the northern continental
shelf of Venezuela [21,22]. Primary production in Cari-
aco, microbial biomass, and midwater dark CO2 fixation
vary strongly with factors such as seasonal riverine inputs,
seasonal upwelling intensity, lateral intrusions of water
from the Caribbean Sea, and trade-wind intensity [22-24].
The basin exhibits pronounced vertical chemical gradients
controlled by physical transport of oxygen downwards
and reduced compounds upwards countered by biologi-
cal demands. Typically, oxygen concentrations decrease
from saturation at the surface to 0 μM between 250 and
300 m. Deeper waters have remained anoxic and sulfidic
down to the basin's bottom at ca. 1,400 m over timescales
of centuries to millennia [25]. Significant enrichments in
abundance of bacteria, bacterial activity and protists are
routinely observed in the redoxcline and in the sulfidic
waters underlying the redoxcline [23,26,27]. The Fram-
varen Fjord located in southwest Norway shares the fea-
ture of a defined oxic/anoxic interface with the Cariaco
Basin. Yet, this fjord varies in many physico-chemical
parameters (see Table 1) from the latter. For example,
while the Cariaco Basin is truly marine with a redoxcline
below the photic zone and relatively low sulfide concen-
trations below the redoxcline, the oxic-anoxic boundary
layer of the fjord is located at shallow depth (ca. 18 m)
with high sulfide concentrations below the redoxcline and
steep biogeochemical gradients down to the bottom
waters (180 m). Sulfide levels in bottom waters are 25
times greater than those in the Black Sea [28]. Initial stud-
ies of these two sites ([10,29,30]; Edgcomb et al. unpub-
lished) based on clone-library construction and
traditional Sanger sequencing indicate evidence for adap-
tation of protistan communities to differing environmen-
tal conditions along O2/H2S gradients. In spite of
tremendous efforts in these previous studies, the sequenc-
ing depth was still significantly less than predicted total
diversity and one might argue that additional sequencing
would reveal homogeneous communities along these gra-
dients. Massively parallel tag sequencing (in total, we ana-
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lyzed 251,648 tag sequences obtained from the
hypervariable V9 region of the SSU rRNA gene) offers the
opportunity to evaluate if the structuring of microbial
communities observed in these two contrasting basins
still holds true at significantly increased sequencing
efforts, whether richness predictions based on clone
library analyses are supported and how well severely
undersampled clone libraries reflect the "true" protistan
diversity at a specific locale.

Results
The number of high-quality eukaryotic reads we obtained
from each sample ranged from 16,256 (FV3) to 38,280
(FV1). After dereplication (consolidating all sequences
that are identical in primary structure into one OTU), the
numbers of unique eukaryotic tags ranged from 3,765
(FV3) to 5,983 (CAR1). After exclusion of metazoan tags,
we were left with numbers of unique tags ranging from
2,070 (CAR4) to 5,597 (CAR1), most of which could be
assigned to protists and fungi (Table 1) for further analy-
ses. The number of tags from non-eukaryotic domains was
only marginal (0-0.02% of total tag reads, see Table 1)
indicating the high domain-specificity of the primers
used.

Sampling saturation
Despite substantial sequencing effort, the communities
under study did not show saturation (Figure 1) in unique
OTU richness. When clustering OTUs at one nucleotide
difference, the number of OTUs detected decreased
sharply, but still did not saturate. Only when clustering
the tags at two, three, five and ten nucleotides difference
(OTUsxnt,, where x is the number of nucleotide (nt) differ-
ences), did the sampling saturation profiles show a ten-
dency of leveling off. The collapse of detected OTUs when
comparing unique tags with OTUs based on two nucle-
otide differences (roughly 1.5% difference in primary
structure), is remarkable: in the same sample (FV1) up to
6.3 times more unique OTUs were detected compared to
OTUs2 nt. In contrast, the number of detected OTUs varied
noticeably less when comparing OTUs over a clustering
range of three to ten nucleotides, indicating that most of
the tag variation was within two nucleotide differences
between tags. Interestingly, regardless of the initial
number of unique tags that varied greatly among the eight
samples, all samples showed similar numbers of OTUs
when tags were clustered at two, three, five and ten nucle-
otide difference.

Table 1: Summary of recovery of pyrosequencing tags for Framvaren (FV) and Cariaco (CAR) samples, along with accompanying 
metadata.

Sample number-sample name
1-FV1 2-FV2 3-FV3 4-FV4 5-CAR1 6-CAR2 7-CAR3 8-CAR4

N 454-reads total 38735 34171 24217 33962 35267 30277 28305 26714
Total eukaryotic tags > 100 bp 38280 32026 16256 32795 32876 22503 24266 23591
Unique eukaryotic tags 4280 5283 3765 5141 5983 5701 4325 4016
Total protistan tags (incl. Fungi) 23722 29402 12864 26543 30161 14453 7166 5969
Unique protistan tags (incl. Fungi) 3220 4825 3204 4439 5597 4616 2152 2070
Total and (unique) unassignable tags at 85% 1338 1153 1178 9189 2255 1724 1768 1042

(276) (468) (427) (758) (620) (580) (556) (365)
Total and (Unique) Archaeal tags 0 (0) 2 (2) 2(1) 2 (2) 0 (0) 4 (3) 6 (5) 2 (2)
Total and (Unique) Bacterial tags 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Latitude/Longitude 58°09'N 58°09'N 58°11'N 58°09'N 10°30'N 10°30'N 10°40'N 10°30'N

06°45'E 06°45'E 06°45'E 06°45'E 64°40'W 64°40'W 65°35'W 64°40'W
Temperature °C 10.7 8.4 8.1 5.8 17.9 17.7 17.6 17.6
Depth (m) 20 36 36 36 250 300 320 300
Salinity [80] 27 28 27.5 25.5 36.4 36.4 36.4 36.4
Nitrate (μmol/l) --- --- --- --- 5.22 nd nd 0.02
Silicate (μmol/l) --- --- --- 100 31 39 41 43
Ammonium (μmol/l) 0.22 2.2 --- 2.2 0.12 1.27 2.4 3.2
O2 (μmol/l) nd nd nd nd nd nd nd nd
H2S (μmol/l) nd 668 362 600 nd 1.49 3.74 4.28
Bacteria (× 106 cells/ml) 4.6 0.78 0.43 0.61 0.487 0.149 0.18 0.244
Bact Production (H3-Leu, mg/m2/d) 670 160 ---- ---- 347 353 1305 61
Chlorophyll a (μg/l) 1.22 nd nd nd nd nd nd nd
DNA conc (ng/μl) 160 170 170 120 5.58 4.55 9.12 10.34
Water volume sampled (/) 15 20 20 20 7 7 7 5
Sampling date Sept-2005 Sept-2005 Sept-2005 May-2004 Jan-2005 Jan-2005 Jan-2005 May-2005

Nd = not detectable.
--- = not available
Page 3 of 20
(page number not for citation purposes)



BMC Biology 2009, 7:72 http://www.biomedcentral.com/1741-7007/7/72

Page 4 of 20
(page number not for citation purposes)

Sampling saturation of V9 tag librariesFigure 1
Sampling saturation of V9 tag libraries. Sampling saturation profiles of tag libraries generated for samples collected from 
anoxic waters of the Norwegian Framvaren Fjord (FV1-4) and the Caribbean Cariaco Basin (CAR1-4) at different levels of 
nucleotide differences for operational taxonomic units (OTUs). Only protistan and fungal tags were taken into account. Tags 
are clustered at k differences from k = 0 to 10 differences as described in pipeline 2 of the sequence data processing paragraph 
in the methods section. A difference can be an insertion or a mutation necessary to align the two sequences. At k differences, 
two tags having k or fewer differences are placed in the same cluster; if they have more than k differences, they are in two dif-
ferent clusters. Unique tags are tags clustered at 0 differences.
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Rank abundance
In all eight samples, the frequency distribution of
protistan tags within unique protistan OTUs was very une-
ven (Figure 2): Only few populations were dominating
the individual data sets, while the majority of OTUs con-
tained less than ten sequences. The combined frequencies
of these low-abundance unique phylotypes in the individ-
ual amplicon libraries accounted for 0.14%-0.03% of
total protistan tags analyzed in each sample and thus,
were considered as rare. Regardless of the sampling effort,
this proportion of rare taxa remained similar for all sam-
ples (for example 96% rare populations in sample CAR4
and 95% in sample CAR1).

Community comparisons
An UPGMA linkage distance analysis of unique OTUs
based on Jincidence (Figure 3) identified two distinct clusters
one of which consisted of all FV samples, another of sam-
ples CAR4, CAR3 and CAR2, all from below the interface.
The deep-sea sample from the Cariaco interface (CAR1)
was the most distinct of all CAR samples regarding
protistan community membership with higher affinity to
the other CAR samples rather than to the FV samples. In
the Framvaren Fjord, the two samples that were taken at
different seasons from below the interface of the central
basin were most similar to each other (FV2 and FV4),
while the below-interface sample from the upper basin
(FV3) - 3 km apart from the central basin station - was less
similar to both FV2 and FV4. Neither samples CAR2 and
CAR3, which were sampled from below the interface in
the same season but at different locations, nor samples
CAR2 and CAR4, which were sampled from below the
interface at the same site but in different seasons clustered
together. Instead, samples CAR3 and CAR4, were most
similar in terms of community membership. These two
samples were collected at two different seasons from
below the interface at two different locations (Station B
and Station A, respectively).

Protistan community structures
The vast majority of all unique tags could be confidently
assigned to a defined taxonomic rank, at least at class-level
(Figures 4, 5, 6, 7, 8 and 9). Between 3.5% (FV4) and 21%
(CAR3) of unique tags could not be reliably assigned a
taxonomic rank because sequence similarity to their best
BLAST match was too low (<80%, see methods section).
We attribute this to mainly two reasons. First, numerous
sequences of described species that are deposited in Gen-
Bank lack the nucleotide positions that correspond to the
V9 region of the SSU rRNA gene (ca. 1,620-1,790) in part
or completely; second these unassignable tags correspond
to as yet unsequenced taxonomic groups. Unfortunately it
is currently not possible to discriminate between these
two categories, rendering any interpretation of the pro-
portion of unassignable tags speculative. We do not con-

sider chimeras as a major contributor to unassignable tags
because, as our protocol amplifies short DNA sequences
with a negligible likelihood of chimera formation [31].
The proportion of unique tags that had only environmen-
tal sequences as the nearest match, without a sequence of
a named species falling into the minimum 80% sequence-
similarity boundary was large (up to 21% for sample
FV4), reflecting the paucity of cultured representatives and
the taxonomic annotation of environmental sequence
data in public databases. In future studies, the implemen-
tation of specifically curated and annotated databases like
KeyDNATools ([32] and http://www.pc-informatique.fr/
php-fusion/news.php) will be beneficial for the taxo-
nomic assignment of tags that have a good BLASTN match
to environmental sequences but lack a species-match
within a defined sequence similarity threshold. A tremen-
dous number of higher taxonomic groups represented by
tags that accounted for at least 1% of the overall number
of protistan tags were discovered in each sample. For
example, in sample FV3 we detected 17 such groups.
When tag sequences that account for <1% of all protistan
tags were taken into account (category 'others' in Figure
4), this number was even larger. Such groups included:
Euglenozoa, Rhodophyta, Jakobida, Ichthyosporea, Tel-
onema, Cryothecomonas and Apusozoa. In sum, all major
eukaryotic lineages have been detected in each individual
sample. However, the proportion of the different taxo-
nomic groups in the individual samples varied considera-
bly. Generally, all samples were dominated by alveolate
OTUs, accounting for up to 64% of all unique protistan
tags in an individual sample (FV1). In all CAR samples,
Dinozoa contributed to the largest proportion of alveolate
OTUs, followed by Ciliophora. The latter were noticeably
less abundant in the CAR1 and CAR3 samples. In the
Framvaren samples, Ciliophora comprised a decidedly
larger proportion of the Alveolata, in FV4 and FV2 reach-
ing or even exceeding the percentage of Dinozoa, respec-
tively (Figure 4).

Interestingly, in nearly all dominant phyla occurring at
both locales, the taxon composition in the non-sulfidic
anoxic water depth was distinctly different from the
sulfidic waters below the redoxcline (Figures 4a-f). For
example, in the Cariaco Basin, unique tags assigned to
Polycystinea accounted for 31% of all protistan tags in the
interface (CAR1), while below the interface this number
ranged between 3% (CAR3) and 7% (CAR4). However,
generally, the genotype diversity in the sulfidic waters was
decisively higher in a variety of taxon groups compared to
the anoxic, non-sulfidic waters. Ciliophora tag proportion
varied more than five-fold between CAR1 and CAR4, Cer-
cozoa 18-fold between CAR1 and CAR2, Bacillariophyta
seven-fold, Ascomycota nearly 10-fold, Heterokonto-
phyta and Chlorophyta ca. seven-fold between these sam-
ples (Figure 4). This, even though to a lesser extent, was
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Rank abundance distribution of unique protistan OTUsFigure 2
Rank abundance distribution of unique protistan OTUs. Protistan (including fungi) rank abundance distribution of 
unique operational taxonomic units (OTUs) obtained from four samples of the Caribbean Cariaco Basin (CAR1-4) and from 
four samples of the Norwegian Framvaren Fjord (FV1-4). For sampling sites information see Table 1. Curves were obtained 
when clustering tags at zero differences as described in pipeline 2 of the sequence data processing paragraph in the methods 
section. Subsequently tags were ordered according to decreasing rank (number of replicates present for each tag).
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also true for the Framvaren Fjord. Just to mention a few
examples, the proportion of Dinozoa-assigned tags
decreased from 42% in the interface (FV1) to 14% below
the interface (FV2), ascomycota increased nearly three-
fold, Cercozoa increased ca. four-fold and Haptophyta,
Chlorophyta and Heterokontophyta nearly five-fold (Fig-
ure 4). Figures 5, 6, 7, 8, 9 show the lower-rank taxonomic
groups of dominant phyla displayed in Figure 4 that pre-
dominantly account for the differences in genotype rich-
ness between the non-sulfidic and the sulfidic water
samples. While for example coscinodiscophycidae Bacil-
lariophyta were missing from the non-sulfidic waters at
both locales, they accounted for up to ca. 4% of all Bacil-
lariophyta in the sulfidic waters (CAR3, Figure 7). This
was also true for other taxonomic groups like Xantho-
phyceae and Phaeophyceae (Figure 9), Chlorodendrales
(Figure 8); oligohymenophorean ciliates increased notice-
ably in the sulfidic waters at both locales (Figure 6), just
to mention a few examples.

When comparing higher-taxonomic groups (phylum-
level, Figure 4) found in Framvaren vs. Cariaco we noted
that Radioloaria (all of which were exclusively Poly-
cystinea), which are typically pelagic marine protists pri-
marily found in the open ocean and very scarce or absent
altogether in coastal waters [33], were the only higher
taxon group that was detected in all Cariaco samples but
in none of the Framvaren samples. Conversely, the pro-
portion of Cercozoa in Framvaren samples was noticeably
higher than in Cariaco. Differences between Framvaren
samples and Cariaco samples become more pronounced
when looking at lower taxon levels (Figures 5, 6, 7, 8, 9).
For examples Blastodiniales and Noctilucales (Dinozoa,
Figure 5) were exclusively found in all Cariaco samples.
Rhizosoleniophycid Bacillariophyta (Figure 7) and Pseu-
doscourfieldiales (Chlorophyta, Figure 8) were noticeably
higher in all Cariaco samples and Choricystis (Chloro-
phyta, Figure 8) genotypes were much more diverse in
Framvaren.

Discussion
The application of the 454 sequencing technique to the
investigation of protistan communities in two anoxic
marine basins revealed three significant findings. First,
even a sampling effort that was one to two orders of mag-
nitude larger than that achieved by environmental clone
library construction and Sanger sequencing, was not suc-
cessful in retrieving all unique SSU rRNA gene sequences
present in a single sample (Figure 1). Up to 5,600 unique
tags could be identified in a 7-L water sample from the
Cariaco basin without reaching saturation (sample
CAR1). However, this is unlikely to reflect the true species
richness, because (i) not all SSU rRNA gene copies within
a species are necessarily identical [34,35], (ii) some of the
observed tag variability may be due to extreme variability
of the V9 region in specific taxonomic groups, and [36]
even when minimizing the effect of sequencing and PCR
errors using a systematic trimming procedure (see Meth-
ods section and [14]) the accuracy of the 454 pyrose-
quencing strategy (GS-technology) is 99.75% - 99.5% for
small subunit rRNA genes [37]. Indeed, in sample CAR1
the number of OTUs drops from 5,600 to ca. 2,600 when
phylotypes are clustered based on one nucleotide differ-
ence (accounting for ca. 0.8% sequence similarity). Thus,
about half of the unique protistan tags retrieved from this
sample are potentially afflicted with an error and/or rep-
resent the same taxon. The detected number of unique
tags would likely represent an overestimation of taxon
richness. On the other hand, clustering OTUs at ten nucle-
otide differences (OTUs10 nt, reflecting ca. 8% sequence
similarity) resulted most likely in an underestimation
because different taxa may be lumped together into the
same OTU. Consequently, it is reasonable to assume that
the true taxon richness is reflected in the range between

Protistan community similarity in Cariaco and Framvaren samplesFigure 3
Protistan community similarity in Cariaco and Fram-
varen samples. Dendrogram resulting from calculated Jac-
card index [27] based on incidence (Jincidence) of unique 
operational taxonomic units (OTUs), as a measure of com-
munity similarity between the four Cariaco deep-sea samples 
(CAR1-4) and the four Framvaren Fjord samples (FV1-4) (for 
sampling sites information see Table 1). Jaccard similarity val-
ues were transformed into a distance matrix and subsequent 
cluster analysis was performed using the unweighted pair 
group mean average (UPGMA) algorithm. Details about cal-
culation of this figure are described in the 'Community com-
parisons' paragraph of the methods section. Incidence data 
(presence/absence) of tags in each of the eight samples under 
study were obtained from a global tag-matrix as described in 
pipeline 3 of the sequence data processing paragraph in the 
methods section.

1,26 1,28 1,30 1,32 1,34 1,36 1,38 1,40

Linkage Distance

CAR1

CAR4
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FV4

FV2

FV3

FV1
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OTUs1 nt (ca. 1,700 in sample CAR1) and OTUs5 nt (ca.
1,200 in CAR1).

Interestingly, even the number of detected OTUs10 nt
exceeded previous parametric and non-parametric rich-
ness estimates from the same sites, based on clone-library
derived OTUs called at 99% or 98% sequence similarity,
respectively [10,38,39]. Explanations for this may be sev-
eral fold: (i) even though the sample sizes obtained from
previous Cariaco and Framvaren clone libraries were rela-
tively large, the sample size may still have been too small
to obtain adequate resolution of the complex communi-
ties. If so, this makes previous clone library-based richness
estimates severe underestimations; (ii) the statistical error
of previous richness estimates may be too large, which

cannot be assessed due to a lack of good confidence inter-
vals; [36] abundance-based richness estimates may not
reflect the true community richness or relative species
abundance in a sample but rather the PCR-amplicon rich-
ness. The reasoning for the latter is that in contrast to bac-
teria, the copy number of SSU rRNA genes varies widely
among protists [8,40,41]. Thus, the relative amplicon
copy number after PCR does not necessarily reflect the rel-
ative abundance of a specific taxon in a sample, rendering
abundance-based species richness estimates highly erro-
neous. It is likely that these factors and probably other fac-
tors that we cannot account for at present resulted in
severe richness underestimations. We hypothesize that
the protistan richness in marine anoxic waters by far
exceeds previous estimates, and that anaerobic protistan

Taxonomic distribution (phylum-based assignment) of protistan and fungal V9 tagsFigure 4
Taxonomic distribution (phylum-based assignment) of protistan and fungal V9 tags. Relative taxonomic distribu-
tion of unique protistan and fungal V9 tags generated from four anoxic water samples of the Caribbean Cariaco deep-sea basin 
(CAR1-4) and from four anoxic water samples of the Norwegian Framvaren Fjord (FV1-4). Phyla that were represented by a 
proportion ≥1% of all unique tags in at least one of the eight libraries used for 454 sequencing is shown. The category others 
denotes tags that could not be assigned to a taxonomic entity based on an 80% BLASTn similarity threshold and tags which fell 
into other phyla or taxon groups but were represented by <1% of the unique tags in all of the eight PCR amplicon libraries 
used for 454 sequencing. A higher resolution of lower-taxon rank-based assignments of dominant phyla is given in Figures 5-9. 
The data that served as a basis for the taxonomic bar chart are available as supplemental material (Table S3 in Additional file 5).
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communities are substantially more complex than previ-
ously reported. It will be interesting to further investigate
how sequence divergence of a hypervariable SSU rRNA
gene region translates into taxonomic entities. This will
help interpreting the vast diversity of tags generated by
massively parallel tag sequencing.

Most of the observed complexity was found in the low-
abundance populations. Even when calling OTUs at five
nucleotide differences, the proportion of rare OTUs (rep-
resented by less than 10 tags) ranges between 71% and
81% in FV samples and between 78% and 83% in CAR
samples (data not shown), indicating that the high
number of rare taxa is not an artifact based on high intra-
species heterogeneity in the V9 region. This corroborates,
to a somewhat lesser extent, the previous findings in the
bacterial world [14,15,18]. The origin and meaning of this
complexity is still unclear [42,43]. Actually, to date there
is no evidence that this high frequency of low-abundant
genotypes describes a true diversity. It could result from
the amplification of detrital or extracellular DNA. On the
other hand, it is reasonable to assume that a liter of water
is only inhabited by a few individuals of a protist species
that never meet in this volume and are therefore subjected

to allopatric speciation. The result would be tremendous
microheterogeneity that is reflected in these rare geno-
types. One hypothesis suggests that these rare genotypes
(if real) may represent a large genomic pool, which helps
the protistan community to react to any biotic or abiotic
changes [43]. In this seed-bank scenario, the species that
are best adapted to prevailing environmental conditions
would always be abundant in a community.

The second significant finding is the phylum-richness of
protistan communities that is missed by the clone library/
Sanger sequencing approach. Previous environmental
protistan diversity surveys in the same sites of the Fram-
varen Fjord ([10] and Behnke et al. unpublished, acces-
sion numbers [DQ310187 to DQ310369 and EF526713
to EF527205]) did not retrieve any sequences assigned to
Apusozoa, Chrysomerophytes, Centroheliozoa, Eustig-
matophytes, hyphochytriomycetes, Ichthyosporea,
Oikomonads, Phaeothamniophytes, and rhodophytes, all
of which have been recovered with the massively parallel
tag sequencing approach. Similarly, a vast array of higher
taxon ranks detected in this tag-sequencing project could
not be detected with an extensive clone library sampling
in Cariaco ([26,30] Edgcomb et al. in preparation). Inter-

Taxonomic distribution of V9 tags assigned to DinozoaFigure 5
Taxonomic distribution of V9 tags assigned to Dinozoa. The data that served as a basis for the taxonomic bar chart are 
available as supplemental material (Table S4 in Additional file 5).
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estingly, the tags that could be assigned to taxonomic
groups not detected via clone libraries all account for <1%
of the unique protistan tags, explaining why they have
been missed with the clone library approach [26,30].
Regarding taxonomic groups that were represented by
large relative abundances of tags (e.g. alveolates and stra-
menopiles), the 454 data sets corroborate well with clone
library-obtained data. Evidence of and tentative explana-
tions for the dominance of these taxonomic groups in
anoxic marine systems have already been intensively dis-
cussed elsewhere (e.g. [30,44,45]).

The broad taxonomic representation of 454 tags nicely
demonstrates the efficiency of the primers used to target
the hypervariable V9 region of eukaryote SSU rRNA genes.
However, up to 50% of unique 454 tag sequences in our
data sets were metazoa. This is a general problem also
observed in SSU clone libraries (even though probably to
a lesser extent) and not specific to 454 technology [46-
48]. The consequence is that this large proportion of
potential non-target tags has to be taken into account
when designing protistan diversity studies using 454 tech-
nology. Either sequencing effort needs to be increased 1.5-
fold to get the desired number of protistan tags, or group-

specific 454 primers need to be applied subsequently to
focus on selected protistan groups.

Our findings also reveal that higher sampling efforts can
be obtained in a cost- and time-efficient way by the appli-
cation of pyrosequencing, which therefore paints a sub-
stantially more comprehensive picture of protistan
communities. The degree of undersampling inherent in
most published clone library-based studies may be so
high that it is possible that they cannot be compared in a
meaningful manner to other equivalent surveys of diver-
sity. Getting a comprehensive picture of a microbial com-
munity is critical to addressing fundamental questions in
protistan ecology on the basis of molecular diversity sur-
veys. Such questions include for example, determining the
true richness and evenness of microbial communities,
which is important in defining microbial ecosystem
dynamics [15], and determining the biogeographic distri-
bution of specific taxonomic groups, the stability of
protistan communities over time, as well as local patchi-
ness of protists. All of these community attributes are cor-
nerstones for understanding microbial diversity, ecology,
and evolution [16,49,50].

Taxonomic distribution of V9 tags assigned to CiliophoraFigure 6
Taxonomic distribution of V9 tags assigned to Ciliophora. The data that served as a basis for the taxonomic bar chart 
are available as supplemental material (Table S5 in Additional file 5).
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Some of these subjects frame the third important finding
of this study. The eight sites sampled differed markedly in
community composition. Based on community member-
ship, it appears that protistan communities from the
supersulfidic Framvaren Fjord with an interface located in
the photic zone are distinct from the ones of a less sulfidic
anoxic deep-sea site. Similarly, anaerobic protistan com-
munities exposed to hydrogen sulfide are distinct from
those that thrive in sulfide-free oxygen-depleted habitats.
Even though we cannot unequivocally identify H2S as the
single most important driving force shaping these
protistan communities using this dataset, this observation
is not unexpected: H2S-detoxification requires specific
adaptation that is not necessarily present in all facultative
or strictly anaerobic protists [51,52]. For example, Atkins
et al. [53] found a significant difference in the hydrogen
sulfide tolerance of different hydrothermal vent species
they isolated, including the closely related sister taxa Caf-
eteria and Caecitellus. Cafeteria strains isolated by these
authors could tolerate up to 30 mM sulfide under anoxic
conditions over the 24 hr course of their experiment,
Rhynchomonas nasuta could tolerate up to 5 mM sulfide,
and Caecitellus could only tolerate up to 2 mM sulfide.

Symbioses between protists and sulfide-oxidizing bacteria
are another adaptive strategy observed in micro-oxic envi-
ronments with high hydrogen sulfide concentrations. For
example, the peritrich ciliate Zoothamnium niveum found
in mangrove channels of the Caribbean Sea depends on
its sulfur oxidizing ectobionts for detoxification of its
immediate environment [54]. Scanning electron micros-
copy has revealed a visible diversity of ectobiotic prokary-
otic associations with ciliates in the anoxic water column
of Cariaco, and these associations are likely to be depend-
ent on the distinct chemical nature of the basin's water
column (see Additional file 1). The environmental selec-
tion pressure that acts on the phylogenetic composition of
protistan communities can be of interest for the design of
environment-specific phylo-chips (for example of appli-
cation see Sunagawa et al. [55] that may help to monitor
the global distribution of specific protistan communities.

The temporal and spatial resolution of our sampling strat-
egy is insufficient to deduce temporal and spatial patterns
in protistan communities under study. Yet, possible expla-
nations for the observation that in the Cariaco deep-sea
basin, samples collected from the same depth at two dif-

Taxonomic distribution of V9 tags assigned to BacillariophytaFigure 7
Taxonomic distribution of V9 tags assigned to Bacillariophyta. The data that served as a basis for the taxonomic bar 
chart are available as supplemental material (Table S6 in Additional file 5).
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ferent points in time are distinctively less similar to each
other (samples CAR2 and CAR4 in Figure 3, UPGMA),
compared to the shallow Framvaren Fjord (samples FV2
and FV4) are obvious: Surface waters of the Cariaco Basin
are subject to strong seasonal upwelling, driving as much
as 13-fold excursions in net primary production (NPP)
between upwelling and non-upwelling seasons [22]. This
causes significant seasonal variations in vertical carbon
fluxes, which seems to be not only very important for the
dynamics of viral [27] and bacterial communities [56] in
such systems, but also for protistan communities, even
though the exact mechanisms for how vertical carbon flux
variations may act on protistan communities are largely
unknown. One possibility could be that due to selective
interactions of protist with specific bacteria [57-59],
changes in vertical carbon flux that have a direct influence
on bacteria can act indirectly on protistan communities.

At first glance it seems disturbing that metazoa accounted
for up to ca. 50% of all eukaryote tags (Figure 10). Because
most metazoans are very sensitive to anoxia and hydrogen
sulfide, this raises the question about the nature of these

tags, whether they represent organisms that could plausi-
bly live in the geochemical environments under study or
rather represent contamination. Such high proportions of
unique metazoan tags are indeed not unexpected after
careful consideration: body parts, eggs or planktonic lar-
vae of an individual taxon that may have been present in
5 to 10 liter water samples used for DNA extraction would
contribute tremendous amounts of genomic DNA com-
pared to the few individuals of a protistan taxon. There-
fore, the SSU rRNA gene copies of this individual
metazoan taxon would outnumber any protistan SSU
rRNA gene copy numbers by far, resulting in high propor-
tions of metazoan tags. For example, one individual cope-
pod contributes almost 9,000 nearly identical amplicons
to the FV1 amplicon library (Additional file 2). In order to
account for intrinsic error rates of the pyrosequencing
technique (see above) and for intraspecies SSU rDNA pol-
ymorphisms as described above for protistan data, we also
clustered all metazoan tags at one to five nucleotides dif-
ferences in a separate analysis. Indeed, it turned out that
the proportion of unique metazoan tags decreased deci-
sively (Additional file 3), accounting for only 3.9% to

Taxonomic distribution of V9 tags assigned to ChlorophytaFigure 8
Taxonomic distribution of V9 tags assigned to Chlorophyta. The data that served as a basis for the taxonomic bar 
chart are available as supplemental material (Table S7 in Additional file 5).
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11.4% (Additional file 4) of total eukaryote tags when
clustered at five nt differences (ca. 2% sequence diver-
gence). Data serving as the basis for the relative distribu-
tion of taxonomic groups presented in Figures 4-9 can be
found in Additional file 5.

Only a few taxa accounted for most of these metazoan
tags, which belonged predominantly to copepods, cni-
daria, ctenophores, molluscs and polychaetes (Additional
file 2). Copepods can survive anoxia and high hydrogen
sulfide concentrations for long periods of time [60]. Also
several molluscs [61], cnidarians, ctenophores [62] and
polychaetes are tolerant of anoxia [63]. Even Bryozoa that
were detected in three of the samples (Additional file 2)
are capable of thriving under anoxic conditions [64].
Thus, the detection of metazoan sequences in anoxic envi-
ronments retrieved by domain (Eukarya)-specific PCR
primers is not surprising. Yet, with the exception of cope-
pods, which we can observe frequently at least in the oxic-
anoxic interfaces of our sampling sites we did not confirm
the presence of these metazoan taxa in the water samples
under study by visual inspection. This is mainly due to the
fact that we only screened 20-μl aliquots microscopically
(for protistan target taxa). Because of this, small forms

(life stages) of larger metazoans or small metazoans like
bryozoa represented in our amplicon libraries may have
been easily overlooked. It is reasonable to assume that the
metazoan amplicons may represent a mixture of alloch-
tonous material (see the detection of an hymenoptera
phylotype in FV4 that is represented by nearly 5,000
amplicons) and autochtonous organisms. However, tak-
ing into account the low proportion of unique metazoan
taxa when clustered at 5 nt differences and the high likeli-
hood of the indigenous nature of most of the metazoans
represented by the non-protistan tags it is reasonable to
consider contamination in general as an insignificant
issue.

This study shows that when 454 pyrosequencing of the V9
region is paired with rigorous downstream data process-
ing, this method is more time- and cost-efficient, and pro-
duces a much more comprehensive picture of the protist
community than Sanger sequencing of clone libraries,
allowing for better estimates of community complexity.
While direct comparison of the Framvaren and Cariaco
communities is complicated by multiple physico-chemi-
cal differences between these two sampling locations, it is
possible to distinguish protistan communities on the

Taxonomic distribution of V9 tags assigned to HeterokontophytaFigure 9
Taxonomic distribution of V9 tags assigned to Heterokontophyta. The data that served as a basis for the taxonomic 
bar chart are available as supplemental material (Table S8 in Additional file 5).
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basis of community composition in the supersulfidic
Framvaren Fjord with an interface located in the photic
zone from those in the deep-sea anoxic and less sulfidic
environment. Furthermore, protistan populations in the
sulfide-free oxic/anoxic interface in both Framvaren and
Cariaco are distinct from those that are exposed to hydro-
gen sulfide. However, the specific environmental factors
structuring protistan communities remain unknown.

Conclusion
This study combined high-throughput parallel tag
sequencing with a highly conservative bioinformatic anal-
ysis pipeline to investigate protist community complexity
in two contrasting anoxic marine ecosystems (Framvaren
Fjord, Norway and Cariaco Basin, Venezuela). Our data
suggest that both ecosystems under study are highly vari-
able regarding the dynamics of protistan communities on
a spatial and temporal scale. However, high-resolution
sampling will be necessary to reliably assess the true
extent of this variability. Furthermore, this study illus-
trates that our current understanding of the ecological
complexity of protist communities, and of the global spe-
cies richness and genome diversity of protists, is severely
limited. A deep sequencing of ca. 250,000 V9 SSU rRNA

gene tags in total allowed us to recover eukaryotic taxo-
nomic groups that were not detected by previous clone
library-based diversity surveys of both sampling sites. Fur-
thermore, the number of detected OTUs far exceeded pre-
vious richness estimates from the same sites based on
clone libraries and Sanger sequencing, even when tag
sequences were clustered at up to ten nucleotide differ-
ences (reflecting ca. 8% sequence similarity). Our data
highlight the magnitude of the under-sampled protistan
gap in the eukaryotic tree of life, and support the notion
that not only in bacteria but also in protists over 90% of
the observed diversity was represented by rare OTUs that
had less than 10 sequence tags assigned to them. Even
though 454 pyrosequencing is not a panacea, it allows for
more comprehensive insights into the diversity of
protistan communities, and combined with appropriate
statistical tools, enables improved ecological interpreta-
tions of the data and projections of global diversity.

Methods
Sampling sites and collection procedure
Samples were collected from two locales, the Cariaco
Basin, located on the northern continental shelf of Vene-
zuela, and the Framvaren Fjord located in Southwest Nor-

Proportion of unique eukaryote tags assigned to metazoa in the individual amplicon librariesFigure 10
Proportion of unique eukaryote tags assigned to metazoa in the individual amplicon libraries. For library designa-
tion see legend of Figure 1.
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way. Sampling protocols for both sites were as described
elsewhere, as well as the protocols for measurement of
physico-chemical and biological parameters [10,26].
Depths of samples, volumes of water collected, and phys-
icochemical characteristics at the time of sampling are pre-
sented in Table 1. The sampling design accounted for
three features: (i) temporal effects (same site sampled at
different seasons), (ii) local patchiness (same depth sam-
pled at two distant sites at each locale), [36] environmen-
tal factors (vertical water column gradient at each site and
distinct locale-characteristics). Cariaco samples were col-
lected at the Cariaco Time Series Station A (10.30°N,
64.40°W) and at Station C (10.40°N, 65.35°W). These
two stations are located in the eastern and western sub-
basins of the Cariaco system, respectively. Cariaco sam-
ples were collected from Station A at the depth corre-
sponding to the oxic/anoxic interface (250 m, oxygen and
sulfide not detectable) in January 2005 (CAR1) and from
below the interface (300 m) in January 2005 (CAR2) and
May 2005 (CAR4). Sample CAR3 was collected at Station
C from below the interface (320 m) ca 100 km distant
from Station A, in January 2005. Framvaren Fjord samples
were collected in the central basin (58.09°N, 06.45°E)
from the oxic/anoxic interface at 20 m sampled in Sep-
tember of 2005 (FV1, oxygen and sulfide not detectable),
and from below the interface (36 m) in September 2005
(FV2) and May of 2004 (FV4). The sample FV3 was taken
in the upper basin (58.11°N, 06.45°E, ca. 3 km distant
from the sampling location in the central basin) from
below the interface at 36 m in September 2005.

DNA isolation, PCR amplification, and 454 
pyrosequencing
DNA was isolated from environmental samples and qual-
ity-checked as described previously [26]. In short, samples
were taken with Niskin bottles and drawn onto 0.45 μm
Durapore membranes (Millipore, Billerica MA, USA)
under anoxic conditions with no prefiltration step. Sam-
ples were frozen immediately in liquid nitrogen until fur-
ther processing in the laboratory. The nucleic acid
extraction protocol employed a high-salt extraction buffer
(100 mM Tris HCl (pH 8), 100 mM sodium phosphate
buffer (pH 8), 1.5 M NaCl, 100 mM EDTA (pH 8.)) with
1% cetyl trimethylammonium bromide. Approximately 3
ml of this buffer was added to one filter and the total
genomic DNA was extracted using chloroform-phenol
extraction and isopropanol precipitation. In order to min-
imize bias caused by sampling the extracts from three fil-
ters per sample site were combined prior to polymerase
chain reaction-amplification. Our strategy targeted the V9
hypervariable region of the SSU rRNA genes [65]. This
region was chosen because it is (i) among the most varia-
ble of eukaryotic SSU rRNA hypervariable regions [66],
represents a good marker for the taxonomic complexity of
protistan communities, (ii) allowed for the use of con-

served PCR-primers that target most described major
eukaryote lineages, [36] has only marginal length variabil-
ity among different taxonomic groups (127-150 bp) and
(iv) could be fully sequenced using the Roche GS FLX sys-
tem (up to 250 bp-reads) developed by 454 Life Sciences
([65], Stoeck T., Richards T, and Bass D., unpublished).
PCR amplification and pyrosequencing followed the pro-
tocol of Amaral-Zettler et al. [65]. The PCR primers we
used flanked the V9 region of eukaryote SSU rRNA genes.
These primers were 1,380F (forward 1), 1,389F (forward
2), and 1,510R (reverse). Separate 1380F/1510R and
1389F/1510R reactions were run for each sample to
recover the broadest eukaryotic diversity possible. The
454 Life Science's A or B sequencing adapters were fused
to the 5' end of the primers. For each individual environ-
mental DNA extract we ran three independent 30-μl PCR
reactions with reaction mix consisting of 5 U of Pfu Turbo
polymerase (Stratagene, La Jolla, CA, USA), 1× Pfu reac-
tion buffer, 200 μm dNTPs (Pierce Nucelic Acid Technol-
ogies, Milwaukee, WI, USA), a 0.2 μM concentration of
each primer in a volume of 100 μl, and 3-10 ng genomic
DNA as template. The PCR protocol employed an initial
denaturation at 94°C for 3 min; 30 cycles of 94°C 30 s,
57°C for 45 s, and 72°C for 1 min; and a final 2 min
extension at 72°C. PCR products from the same DNA
sample were pooled and cleaned by using the MinElute
PCR purification kit (Qiagen, Valencia, CA, USA). The
quality of the products was assessed on a Bioanalyzer
2100 (Agilent, Palo Alto, CA, USA) using a DNA1000
LabChip (Agilent). Only sharp, distinct amplification
products with a total yield of >200 ng were used for 454
sequencing. The fragments in the amplicon libraries were
bound to beads under conditions that favor one fragment
per bead. The emulsion PCR (emPCR, [67]) was per-
formed by emulsifying the beads in a PCR mixture in oil,
with PCR amplification occurring in each droplet, gener-
ating >10 million copies of a unique DNA template. After
breaking the emulsion, the DNA strands were denatured,
and beads carrying single-stranded DNA clones were
deposited into wells on a PicoTiter-Plate (454 Life Sci-
ences) for pyrosequencing on a Genome Sequencer FLX
system (Roche, Basel, Switzerland) at the Marine Biologi-
cal Laboratory (Woods Hole, MA, USA). In total, we
recovered 251,648 sequence reads for the eight samples
that were subjected to quality control. Removal of low
quality sequences [14] left us with 222,593 high-quality
reads for further consideration. Tag sequences have been
deposited in the National Center for Biotechnology Infor-
mation (NCBI) Short Read Archive (SRA) under the acces-
sion number SRP001212.

Sequence data processing
We developed three automated analysis pipelines to ana-
lyze quality-checked 454 reads: The first pipeline for taxo-
nomic assignment of V9 tags, the second pipeline for
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clustering V9 tags at different sequence similarity levels
and dereplication, and the third pipeline to construct a
global tag-matrix for sample comparison.

1.) Taxonomic assignment of V9 tags
The first pipeline was aimed at assigning taxonomy to our
454 tags and included four steps. First, 454 reads were pre-
processed to remove reads with more than 1 ambiguity
(N) and short sequences (having fewer than 100 nucle-
otides after the proximal primer), as well as all sequences
having mismatches with the PCR primers. Second, each
remaining sequence was compared through similarity
searches, using the program BLASTN (version 2.2.21,
[68]), against a reference database including every SSU
rRNA sequence longer than 800 nt (561,000 sequences)
extracted from 1,300,000 SSU rRNA genes present in the
EMBL/GenBank database, with three longest sequences
selected to represent each family (as described in their
respective EMBL entries). This served to remove tags that
matched with at least 70% similarity to sequences from
Archaea, Bacteria or Metazoa. Third, the remaining
sequences were blasted against all publicly available SSU
rRNA gene sequences of protists, fungi and viridiplantae
(170,000 sequences), requesting up to 150 best hits, using
the BLAST parameters: -m 7 -r 3 -q -2 -G 6 -E 6. Parameter
-m 7 allowed for an XML output, which was easier to ana-
lyze. The other parameters were selected after running
1,500 test BLAST runs using tags extracted from longer,
well known sequences in order to finely tune the blast
search to the characteristics of the domain analyzed.
Fourth, the blast output was parsed to extract Best and
Highest hits at a series of thresholds for sequence similar-
ity. Sequence similarity was calculated as the sum of iden-
tities for non-overlapping (if any) HSP (High Scoring
Pairs, see the BLAST documentation) divided by the
length of the query sequence; this is a much more efficient
method than simply taking the first HSP into account as is
usually done. Best hit was the most similar target sequence
that had a good taxonomy associated with the sequence
(i.e. the Organism Classification (OC) field in the EMBL
entries). The Highest Hit was the sequence with the highest
similarity overall. Also, every sequence above the desig-
nated threshold was used to build a list of taxa (i.e. the
contents of the OC field in the EMBL entries), which
allowed for verification of whether the taxonomic assign-
ment of the best hit was in global agreement with the next
most similar sequences. Results at thresholds of 70, 75,
80, 85, 90, 95, 98 and 99% similarity were stored as tabu-
lated files for further analyses. A manual examination of
the relationships between threshold and qualities of taxo-
nomic assignment led us to choose the 80% similarity
threshold for assigning a given tag to a taxon (see the
results). The reasoning for this similarity threshold is
based on GenBank sequence data analyses. Therefore, we
extracted the V9 regions from a random selection of 100

full-length eukaryote SSU rRNA gene sequences with a
described taxonomy. A BLASTN analysis of the V9 frag-
ments against the GenBank nr database revealed that the
short V9 fragments could reliably be assigned to order-
level when the closest BLAST hit (the original respective
full-length sequence excluded) was at least 80% (see also
[33,34]). Taxonomy of protists is according to Adl et al.
[69] and for fungi according to Hibbett et al. [70]. We note
that because Synurophyceae and Chrysophyceae are
hardly distinguishable even when full-length 18S rRNA
gene sequences are available, we united tags that were
putatively assigned to Synurophyceae with Chrysophyc-
eae to Heterokontophyta.

2.) Similarity clustering of 454 tags and dereplication
The second pipeline was dedicated to the clustering of tags
at a given level of similarity. This is usually done by first
using a multiple sequence alignment (MSA) program
(usually MAFFT [71] or MUSCLE [72] to align the tags,
followed by the calculation of a distance matrix (using
QuickDist [14] for example) and finally statistical analy-
ses. Our experience with the V9 domain indicated that
none of the MSA programs was able to output alignments
of high enough quality. We therefore implemented a com-
pletely new approach (Shahbazkia & Christen, in prepara-
tion). Our key hypothesis was that the greater frequency at
which a given sequence occurs, the more likely it repre-
sents a real sequence. Conversely, there is a probability
that a sequence found only once is the result of a PCR or
sequencing error, or due to the presence of variations in
some operons within a single genome [73]. First a python
program allowed for a strict dereplication, i.e. clustering
strictly identical sequences. This led to a 5 to 10 fold
reduction in the number of sequences. Strict dereplication
allowed for the second step, but also allowed for the con-
struction of rank abundance curves. The resulting file (of
strictly dereplicated tags) was sorted by decreasing abun-
dances of tags in each cluster. Then, instead of computing
a percentage of similarity between sequences (which is
difficult because we don't know how to implement a good
substitution matrix for hypervariable regions of rRNA
sequences) we implemented a Levenshtein distance calcu-
lation for clustering sequences. Levenshtein distance [74]
is a measure of the similarity between two strings, which
we will refer to as the source string (s) and the target string
(t). The distance is the number of deletions, insertions, or
substitutions required to transform s into t. Taking succes-
sively each dereplicated tag, the following tags were clus-
tered with this representative if they had a Levenshtein of
k or less (k ranging from 1 to 10). A number of checks
were performed to analyze such clusters. A comparison of
these clusters to the taxonomic assignments performed by
the first pipeline showed an almost perfect agreement
when taxonomic assignments had been possible by
BLAST (k = 1,2,3). Above these k values many non-
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assigned tags could be assigned to clusters containing
assigned tags.

Comparisons of operational taxonomic units (OTUs)
based on V9 domains and (almost) complete SSU rRNA
sequences are almost impossible on large data sets of
sequences because none of the multiple sequence align-
ment software is able to properly align SSU rRNA
sequences within their divergent domains, and this prob-
lem is exacerbated for short divergent tag sequences (Guil-
lou & Christen unpublished). For this reason, published
454 studies have relied heavily on BLAST alignment to
public sequences to cluster tags. We used a completely
new algorithm (Shahbazkia & Christen, unpublished)
that directly clusters tag sequences having less than k dif-
ferences (k = 0, 1....10) and does not rely on a multiple
sequence alignment. We validated this approach in a sep-
arate analysis (Guillou and Christen unpublished) by
demonstrating that our tag clustering method based on
word counting instead of percent sequence similarity
identified correctly the almost full-length sequences of a
separate large, well-curated SSU rRNA alignment from
which tags were extracted, and that using the clustering
approach here, the same cluster ID was attributed to
sequences that were phylogenetically close to the original
tag sequence (Guillou and Christen, unpublished).

3.) Tag matrix for sample comparison
A final pipeline was designed for the global statistical
analysis of all eight samples. The entire data set consisting
of all eight samples was this time considered and globally
treated as described above in pipelines 2 and 3. This led to
the construction of an abundance matrix at various cluster-
ing values as explained above where each column was a
given sample and each line a cluster, values being either
the number of occurrences of the tag in the sample, or
simply 1 or 0 to indicate presence or absence of sequences
belonging to that cluster. However, we here refrained
from further analysis of the abundance-matrix, because
due to different genome sizes and rRNA gene copy num-
bers among protists [75] and PCR primer selectivity [30]
the abundance of PCR-amplicons from a sample does not
necessarily reflect the relative abundance of the respective
organisms in this sample.

The script for data analyses (Linux, Windows and Macin-
tosh operating systems) is provided online http://bio
info.unice.fr/biodiv/protist_data/.

Community comparisons
We calculated the Jaccard index, based on incidence (Jinci-

dence) of unique OTUs as obtained from the third data
processing pipeline described above, as a measure of com-
munity similarity between the eight samples under study
using the program package SPADE [76]. Analyses were

performed as recommended by the authors. Similarity
values were transformed into a distance matrix and used
for an Unweighted Pair Group Method with Arithmetic
Mean analysis (UPGMA) of the eight unique libraries
[77].

Data from the authors cited as unpublished are available
from the authors upon request.
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Additional file 1
Scanning electron micrograph of an unidentified ciliate isolated from 
anoxic, sulfidic waters of the Cariaco Basin. Figure S1. The ciliate in 
the picture, isolated from anoxic waters of the Cariaco basin, is covered 
with bacterial ectosymbionts. Protists with bacterial ectosymbionts are fre-
quently recovered from sulfidic waters of both, the Cariaco Basin as well 
as the Framvaren Fjord. It is not unlikely that these as yet unidentified 
bacteria may play a role as an adaptive mechanisms for some protists to 
thrive in anoxic sulfidic environments. This picture is courtesy of Orsi W., 
Edgcomb V., Hohemann T. and Epstein S.S. as part of a study on bacterial 
ectosymbionts on protists from the Cariaco Basin (Orsi et al., in prepara-
tion for publication).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1741-
7007-7-72-S1.pdf]

Additional file 2
Taxonomy and proportion of abundant metazoan operational taxo-
nomic units. Table S1. Taxonomy and proportion of abundant metazoan 
operational taxonomic units (OTUs) accounting for at least 1% of all 
metazoan OTUs of a specific amplicon library from four anoxic water 
samples from the Caribbean Cariaco deep-sea basin (CAR1-4) and four 
anoxic water samples of the Norwegian Framvaren Fjord (FV1-4). OTUs 
were established based on identical best GenBank hit. For each OTU the 
best GenBank match is given (accession no., organism description, and 
taxonomy), as well as the number of total and unique tags. Unique tags 
are tags clustered at 0 differences.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1741-
7007-7-72-S2.doc]
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