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Abstract

Background: The gene expression system of chloroplasts is far more complex than that of their
cyanobacterial progenitor. This gain in complexity affects in particular RNA metabolism, specifically
the transcription and maturation of RNA. Mature chloroplast RNA is generated by a plethora of
nuclear-encoded proteins acquired or recruited during plant evolution, comprising additional RNA
polymerases and sigma factors, and sequence-specific RNA maturation factors promoting RNA
splicing, editing, end formation and translatability. Despite years of intensive research, we still lack
a comprehensive explanation for this complexity.

Results: We inspected the available literature and genome databases for information on
components of RNA metabolism in land plant chloroplasts. In particular, new inventions of
chloroplast-specific mechanisms and the expansion of some gene/protein families detected in land
plants lead us to suggest that the primary function of the additional nuclear-encoded components
found in chloroplasts is the transgenomic suppression of point mutations, fixation of which
occurred due to an enhanced genetic drift exhibited by chloroplast genomes. We further speculate
that a fast evolution of transgenomic suppressors occurred after the water-to-land transition of
plants.

Conclusion: Our inspections indicate that several chloroplast-specific mechanisms evolved in land
plants to remedy point mutations that occurred after the water-to-land transition. Thus, the
complexity of chloroplast gene expression evolved to guarantee the functionality of chloroplast
genetic information and may not, with some exceptions, be involved in regulatory functions.

Background tion that they carry their own DNA [1] led, in the 1970s,
As the site of oxygenic photosynthesis, chloroplasts are  to a race to decipher their genetic content, which eventu-
the most in-depth studied plant organelles. The recogni-  ally resulted in more than 100 [2] sequenced chloroplast
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genomes to date. These sequences set to rest any remain-
ing doubts that chloroplasts are ancient endosymbionts
and are derived from cyanobacterial-like ancestors.
Expression analysis of the chloroplast genetic information
had been studied right from the dawn of chloroplast
molecular biology and several surprising findings
emerged. The most puzzling of these was that the chloro-
plast gene expression system is far more complex than
that of its cyanobacterial progenitors (Figure 1). This gain
in complexity is due to changes in RNA metabolism, spe-
cifically to novelties in the transcription and maturation
of RNA. A set of newly acquired or recruited nuclear-
encoded proteins comprising RNA polymerases, sigma
factors and mono- or merospecific RNA maturation fac-
tors promotes transcription [3-8], RNA splicing [9-11],
RNA editing [12-14], RNA end formation [15-17] or trans-
lation [18,19]. Identification and characterization of these
factors stimulated research, but a unifying explanation for
this Byzantine gene expression system in chloroplasts has
not yet been found. Here, we propose a hypothesis on the
origin of the complexity of chloroplast gene expression,
encompassing recent data on factors involved in chloro-
plast transcription, RNA editing and RNA processing.

Results and discussion

Amazing complexity: chloroplast RNA transcription, RNA
processing and the corresponding machinery

The chloroplast genome contains functional rpo genes
encoding subunits of a homolog of the eubacterial RNA
polymerase, termed plastid-encoded RNA polymerase
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Figure |

Components of the ancient basal (cyanobacterial-
like, grey) and modern extended (grey and black)
gene expression system of chloroplasts. We propose
that the evolution of RpoTs in plants, the expansion of the
gene families coding for chloroplast sigma factors and PPR
proteins help to neutralize mutational lesions in the chloro-
plast genomes (black triangles). RpoTs and additional sigma
factors with lower or altered promoter specificity compen-
sate for degenerated promoters. The highly specific mem-
bers of the versatile PPR family promote or are required for
proper translation, coding and splicing of chloroplast
mRNA:s.
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(PEP). Surprisingly, in contrast to its eubacterial ances-
tors, this RNA polymerase does not transcribe the chloro-
plast genome in higher plants alone [20-22]. A second,
chloroplast-localized, but nuclear-encoded transcription
activity, the nuclear-encoded plastid RNA polymerase
(NEP), has been identified (Figure 1), which has pro-
moter requirements very different from the canonical -10/
-35 PEP promoters. Sequence alignments revealed that
most NEP promoters contain a simple core sequence
(YRTA), similar to plant mitochondrial promoters. NEP
activity consists of one (Liliopsida) or two (eudicotyledo-
nous plant species) phage-type RNA polymerases [23,24].
These three RNA polymerases produce a dazzling array of
transcripts using a multitude of different promoters. As a
consequence, almost all chloroplast genes are transcribed
from several independent promoters [25].

Similarly to transcription, RNA processing also dramati-
cally increases the variety of transcripts per gene. This is
reflected in the complex transcript patterns encountered
when performing chloroplast RNA gel blot hybridization
experiments. More than 10 transcripts per gene, differing
in size and in their coverage of adjacent cistrons, are regu-
larly detected. Additionally, alternative RNA cleavage can
produce mature RNAs differing in their translational effi-
ciency [26]. All of this is not known from transcripts in
cyanobacteria. Mostly, splicing and cleavage events in
chloroplasts cause the breakdown of their long precursor
RNAs into monocistronic constituents. For example, there
are five precursor RNA species for ndhA and as many as 15
for petD [27,28]. Both genes carry an intron and are part
of a primary precursor encompassing seven and four
genes, respectively. Another curiosity adding to the overall
complexity of chloroplast RNA processing is RNA editing.
In seed plants, about 35 C-to-U editing sites are found per
chloroplast genome [summarized in [29,30]], whereas
chloroplast genomes of bryophytes like those of the horn-
wort Anthoceros can harbour several hundred sites [31]. In
cyanobacteria, RNA editing is not observed at all. Further-
more, splicing has a less prominent role in RNA matura-
tion in these prokaryotic relatives of the chloroplast
ancestor [32,33]. Although endonucleolytic cleavage
events are important in bacterial RNA degradation, they
have not been demonstrated to be a common prerequisite
for translation [34]. Thus, complexity in RNA processing
arose after endosymbiosis. Given that hundreds of
processing events occur, a legitimate question is: who
does the job? Certainly, the vast majority of factors
involved are nuclear-encoded. One family that came into
focus recently as an important player in plant organellar
RNA metabolism is the pentatricopeptide repeat (PPR)
protein family. Many of its members (about 100 in rice
and Arabidopsis) are targeted into chloroplasts [35]. Those
that have been analysed genetically are required for spe-
cific steps in chloroplast gene expression. PPRs recognize
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their targets with high specificity [10,19] and are direct lig-
ands of RNAs [13,14,36,37]. They are currently viewed as
the adaptors that are necessary for the myriad sequence-
specific processing events occurring in chloroplast tran-
scripts [35,38]. Besides PPRs, a variety of additional fac-
tors of different specificity have been described that
execute processing steps left over by PPR proteins [39-41].
In conclusion, chloroplasts are engaged in a tremendous
expenditure of matter and energy to generate multiple
RNA species. No clear function is known either for the
array of transcripts produced or for the complex transcrip-
tion and RNA processing itself.

Positive selection for complexity or haphazard
accumulation of processing events?

Undoubtedly, many steps in chloroplast RNA metabolism
are essential for gene expression; e.g. all splicing events
and most editing events. But does 'essential' mean that
these processing steps are under positive selection? Or in
other words: is there evidence that these processing steps
fulfil some sort of regulatory function; i.e. are they rate-
limiting for chloroplast gene expression? The currently
available data are not adequate to decide in favour of or
against this question. This is mostly due to the fact that it
is non-trivial to demonstrate unequivocally that a specific
transcription initiation, splicing, or editing event is limit-
ing for the amount of the final gene product. While it is an
appealing idea that the multitude of transcription and
processing steps mediated by nuclear encoded factors rep-
resent starting points for the regulation of organelle gene
expression and its nuclear control [42], there is only a sin-
gle study directly supporting this argument, carried out
recently in Chlamydomonas reinhardtii. Here, the abun-
dance of the chloroplast PPR protein MCA1 has been
demonstrated to limit the amount of the petA mRNA as
well as the amount of the encoded protein, cytochrome f
[43]. In plants, only marginal evidence for the regulation
of gene expression by factors involved in controlling RNA
metabolism is available [e. g. [44]]. For example, organel-
lar RNA polymerases have been shown to be expressed in
a tissue-specific manner and seem to be modified depend-
ent on light conditions [45,46]. A variety of studies show
that transcription and post-transcriptional events can be
modulated by external factors like temperature and light-
conditions [47-49]. None of these studies, however,
yielded conclusive evidence as to whether gene expression
is truly rate-limiting. Several authors have suggested that
there is a dominance of translational and post-transla-
tional regulation of gene expression in chloroplasts
[50,51]. In contrast to pre-translational regulation, there
is ample evidence for the regulation of translation or sub-
sequent processes, both in C. reinhardtii and seed plants
[52-55]. Taken together, currently there is little evidence
that the complexity of organellar RNA metabolism is a
result of an increased demand for regulating steps in gene
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expression, although it cannot be ruled out that we just
have not looked hard enough.

An alternative explanation: complexity as a result of
transgenomic suppression?

Although positive selection of a complex RNA metabo-
lism of chloroplasts remains a potent possibility for
explaining its having come about, we think that there is at
least one powerful alternative explanation. In short, this
hypothesis puts forth the proposition that complexity in
organellar gene expression can be a selectively neutral
process, fostered by different mutation rates and a differ-
ent strength of genetic drift between the organellar and
nuclear genomes of plants.

Chloroplasts harbour multiple copies of their genome
and are inherited clonally, thus recombination between
identical copies has an insignificant role in chloroplast
evolution [56]. These are the hallmarks of a degenerative
process occurring in genomes of endoparasites, termed
Muller's ratchet [57,58]. Genomes of organisms like the
proteobacterium Buchnera, an endosymbiont of aphids,
accumulate mildly deleterious mutations [59]. As endo-
symbionts, chloroplasts should likewise be prone to the
same type of genomic degeneration. Of course, counter-
measures may evolve in endosymbionts to lighten the
mutational burden imposed by Muller's ratchet, like mod-
ifications of the DNA repair system [60]. While the wel-
fare of Buchnera depends on such intrinsic relief systems,
chloroplasts can draw on a tremendous external resource
for treating genomic problems: they can tap the coding
potential of the nuclear genome. The plant nuclear
genome is much more dynamic and evolves more rapidly
than the chloroplast genome, among other reasons
because of the benefits of sexual recombination and a
higher mutation rate [61-63]. However, the situation
might differ in bryophytes and ferns, in which the domi-
nant generation is haploid. Nevertheless, recent results
indicate that as in seed plants, the organellar genomes of
ferns and bryophytes exhibit lower mutation rates than
their nuclear counterparts [64].

The nuclear genome provides a wealth of genetic informa-
tion that can be directed into the organelle with relative
ease [65,66]. This way, the more expeditious evolution of
nuclear loci could alleviate slow deterioration of chloro-
plast genetic information, and even mutations with a
strong negative impact on organelle development and
function might be remedied. We view this compensatory
process as being suppressor mutations that do not reverse
the original point mutation but find an alternative way to
correctly decode the chloroplast genetic information.
Thus, chloroplast mutations and nuclear suppressors
form co-evolving couples, reciprocally stabilizing each
other. This phenomenon is not a mere academic specula-
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tion, but has been witnessed in our time by plant breed-
ers. Cytoplasmic male sterility (CMS) is a defect occurring
in plant mitochondria that leads to loss of pollen develop-
ment and thus, male sterility. CMS plant lines have been
isolated in many different agronomically important
crops. In most cases, illegitimate recombination events in
the mitochondrial genome resulted in novel open reading
frames (ORFs), the expression of which is detrimental to
mitochondrial function. Plant breeders take advantage of
CMS lines for their large-scale breeding programmes,
because carrier plants do not require emasculation for
out-crossing. For many CMS populations, nuclear loci
that restore fertility are described. These restorers are spe-
cific to their cognate mitochondrial defect. Eight restorer
genes have been cloned [summarized in [67]]. All but one
of them encode PPR proteins targeted to mitochondria.
For rice RF1A it was shown that it leads to endonucleolytic
cleavage of the aberrant CMS RNA [68]. In these cases, a
nuclear factor alleviates an organellar problem arising due
to a genomic mutation.

We propose that transgenomic suppression silences dele-
terious chloroplast point mutations in all coding
sequences as well as in sequence elements required for
gene expression. In the following section, we discuss
which nuclear factors are models for suppression of chlo-
roplast mutations. We propose that PPR proteins are
involved in neutralizing point mutations in coding
regions, introns and UTRs, while different RNA polymer-
ases and their co-factors help overcome problems caused
by point mutations in promoter regions.

PPRs counteract point mutations in coding regions, introns
and UTRs

As outlined above, some PPRs are restorers of fertility that
counteract detrimental mutations in mitochondria. In
chloroplasts, PPR proteins fulfil a variety of functions in
RNA metabolism. PPR proteins are involved in RNA edit-
ing [12-14], RNA splicing [10] and RNA cleavage [36,69].
Most plant PPR proteins analysed to date are essential
proteins. However, no evidence for their being involved in
regulating gene expression has been presented thus far,
underscored by the fact that most PPR proteins are consti-
tutively expressed [35]. We hypothesise that PPRs are a
nuclear remedy of mutations occurring in the chloroplast
genome. This is best exemplified by their role in CMS (see
above) and plastid RNA editing.

Several lines of evidence suggest that chloroplast RNA
editing is one mechanism for compensating damage from
point mutations in the chloroplast chromosome. RNA
editing has been demonstrated to be essential: the corre-
sponding gene product malfunctions if Cs are not turned
into Us on the RNA level. Contrasting its importance for
gene function, RNA editing per se is not under positive
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selection, as indicated by the extraordinary speed with
which editing sites evolve [70], and by the fact that exper-
imental removal of a site did not lead to any discernible
phenotype [71]. Furthermore, RNA editing sites are most
stable in a base context that exhibits low mutation rates.
In particular, editing sites seem to be stuck in the T_A con-
text [30]. Cs squeezed between a 5' T and a 3' A have the
lowest mutation rates when compared with any other pos-
sible immediate C-neighbourhood [72]. It is precisely this
context that is most frequently encountered around edit-
ing sites. Moreover, editing sites accumulate predomi-
nantly in genomic regions of the chloroplast chromosome
that are slowly evolving, foremost the inverted repeat
[30,73]. Yet, if RNA editing was under positive selection,
a correlation of editing sites with local mutation rates
would not be expected. Together, these data suggest that
RNA editing sites arose as T-to-C mutations that are not
easily removed by mutational reversion. In conclusion,
RNA editing is not present in chloroplast genomes for the
benefit of regulating gene expression, but rather for get-
ting rid of mutations at the RNA level [30].

Recently, it has been shown that, at least in well-investi-
gated cases, the nuclear encoded factors responsible for
recognizing editing sites are PPR proteins [reviewed in
[67]]. Thus, RNA editing sites and their cognate editing
PPR proteins exactly mirror the situation of CMS muta-
tions and nuclear restorer PPR genes. Again, a nuclear-
encoded PPR protein seems to be a remedy for an organel-
lar genomic problem.

As mentioned above, PPR target sites are not restricted to
coding regions; neither are point mutations due to
organellar DNA degeneration. Organellar introns for
instance are highly divergent from their bacterial ances-
tors [74]. The dominant class of introns in chloroplasts is
the so-called group II introns, which fold into a character-
istic secondary structure. In bacteria, group II introns are
self-splicing in vitro and are by definition ribozymes.
Chloroplast group II introns, however, have lost their
ability to excise without external help. This might also
point to the detrimental effects of Muller's ratchet being
active in chloroplasts. For splicing, nuclear encoded fac-
tors are required [reviewed in [75]]. Interestingly, several
of these factors are PPR proteins [9-11]. It seems superflu-
ous to invent novel splicing factors for each intron. We
deem it more likely that similar to the situation with RNA
editing, nuclear factors, foremost PPR proteins, help to
counterbalance organellar mutations. For example, sec-
ondary structure elements in group Il introns disrupted by
point mutations could be stabilized by the interaction
with PPR proteins.

Besides coding regions and introns, Muller's ratchet

should also lead to the weakening or even destruction of

Page 4 of 9

(page number not for citation purposes)



BMC Biology 2008, 6:36

expression signals in the 5' and 3' UTR of mRNAs.
Sequence elements in the UTR regions are required for
RNA stability, but (particularly in the 5' UTR) also for
translation initiation. Indeed, the canonical Shine Dal-
garno sequence in front of cyanobacterial genes is rarely
found in the typical position in front of chloroplast open
reading frames, if it is found at all [reviewed in [76,77]].
Chloroplasts have developed alternative schemes to load
ribosomes onto their mRNAs that interact with specific
nuclear RNA binding proteins [78]. Not surprisingly, PPR
proteins also play a part in this task [18,19].

Multiple RNA polymerases with relaxed promoter
specificities counteract point mutations in promoter
regions

Many point mutations can be cured on the RNA level by
nuclear factors, i.e. highly specific RNA binding proteins.
In contrast, processes depending on DNA as a template
will require other means to compensate for deleterious
point mutations. These DNA-bound processes are chiefly
replication and transcription. Only some features of the
replication machinery in chloroplasts are known (e.g. bac-
terial-type DNA polymerases [79]) but, clearly, bacterial
origins of replication are no longer found on chloroplast
chromosomes [80], putatively eliminated by Muller's
ratchet. Much more is known about transcription initia-
tion and the responsible factors.

In cyanobacteria, promoters of the -10/-35 type are used
to drive the transcription of all genes. More than a dozen
sigma factors are found per cyanobacterial genome that
fall into different functional classes with different consen-
sus sequences in the -10 and -35 boxes [e. g. NC_000911
[81,82]]. In plants, sigma factors are no longer encoded by
the chloroplast genome but their genes have been trans-
ferred into the nucleus. The number of sigma factors
found in the Arabidopsis thaliana, grapevine (Vitis vinifera),
rice (Oryza sativa) and moss Physcomitrella patens genome
is six; nine were found in poplar (Populus trichocarpa), but
only one is present in the sequenced green algal genomes
of C. reinhardtii, Ostreococcus tauri and Ostreococcus lucima-
rinus (Table 1). This represents a remarkable multiplicity
in sigma factors in land plants compared with green algae
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and a dramatic increase in their number per gene relative
to cyanobacteria, considering the small number of chloro-
plast genes (Table 1). While sigma factors are notorious
suspects for gene regulation and indeed have at least in
part taken over regulatory functions [reviewed in [44,83]],
the increase in nuclear-encoded sigma factors for chloro-
plast genes' promoters could originally have been a reac-
tion to promoter degeneration, i.e. diversification. In fact,
canonical -10/-35 promoters are rare in chloroplasts. Both
a pronounced deviation from the consensus and a spatial
shift from the start codon are common. Thus, multiple
sigma factors may be needed to recognise deviant promot-
ers in chloroplasts. Remarkably, at least two sigma factors,
SIG3 and SIG4, are highly specific and seem to serve only
the transcription of a single gene, psbN and ndhF, respec-
tively [44,84,85]. This high specificity resembles the situ-
ation with PPRs and their specific targets and - in the
absence of data indicating regulation for these two sigma
factors — might be a sign that at least these two sigma fac-
tors are nuclear solutions to cope with a degenerate chlo-
roplast promoter.

A second transcription system in chloroplasts appears
even more suitable to avert problems arising from
mutated promoters: the nuclear encoded phage-type RNA
polymerases (NEP). Angiosperms possess one or two
phage-type RNA polymerases in their chloroplasts, which
are needed for transcription in addition to PEP. NEP and
PEP recognise different promoters and PEP is discussed as
playing a major role in green tissues [44,83]. A thorough
analysis of NEP promoter function (rpoB promoter of
tobacco) revealed a CRT-motif (CAT or CGT) at position -
8 to -6, which was proven to be critical for transcription
[86]. Such a simplistic core promoter of only three nucle-
otides is expected to be found upstream, proximal to each
transcripional unit. Moreover, phage-type NEP enzymes
are likely able to recognise promoter sequences without
the help of auxiliary factors. The T7 RNA polymerase is
known to operate as a single subunit enzyme, i.e. one and
the same polypeptide performs promoter recognition and
all phases of transcription [87]. At least in vitro, the mito-
chondrial RNA polymerase of baker's yeast exhibits simi-
lar properties, although efficient transcription requires

Table I: Compilation of the number of nuclear encoded, chloroplast directed transgenomic suppressor functions (PPR proteins, sigma
factors and phage type RNA polymerases) and of plastid genes encoded among plants and unicellular algae.

A. thaliana  P. trichocarpa V. vinifera  O. sativa  P. patens  C. reinhardtii O. tauri  O. lucimarinus  T. pseud P. tricornutum  C. merolae
PPR proteins 482 641 610 491 110 13 19 22 46 50 8
Sigma 70 6 9 6 6 6 | | | 4 5 4
factors
Plastid genes 85 99 84 64 85 69 43 na. 141 132 207
PPR/plastid 0.90 1.04 .16 1.23 0.21 0.03 0.07 na. 0.05 0.06 0.006
gene*
Phage-type 3 >3 3 2 3 | | | | | |
RNA
polymerases
*The PPR protein-plastid gene relations were determined under the assumption that in all taxa 16% of the PPR proteins are plastid proteins (as shown for A. thaliana in [35]).
n.a. = not applicable.
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two additional protein factors in organello [88]. Similarly,
the A. thaliana phage-type enzymes, including the mito-
chondrial and a chloroplast-targeted RNA polymerase,
were found to act as single-polypeptide transcriptases and
to recognise several mitochondrial and chloroplast pro-
moters in vitro [89]. These observations suggest that the
targeting of a phage-type RNA polymerase to chloroplasts
alone, i.e. without additional transcription factors, might
have been sufficient to support transcription from pro-
moters with simple structures. Thus, NEP transcription
initiation may avert detrimental effects of point mutations
by decreasing specificity. This is a fundamentally different
strategy from the one that PPR proteins and sigma factors
follow in order to counteract point mutations, as appar-
ently they function with high specificity. In summary, the
complexity of the transcription apparatus in chloroplasts
could have evolved to compensate for degenerating chlo-
roplast promoters.

Emergence of land plants and transgenomic suppressors
coincide

Chloroplast DNA mutation and degeneration should be
an ongoing process and the example of restorer genes and
CMS highlights that suppression of organellar mutations
still occurs in today's plants. However, when examining
the different transgenomic suppressors enumerated above
under a more phylogenetic perspective, an intriguing bias
towards land plants emerges (see Table 1). First, RNA edit-
ing is an invention of land plants, absent from algae [90].
Second, although present in all eukaryotic genomes
including algae (albeit in low numbers in those: 19 to 26
members, see Table 1), PPR proteins are exceptionally
abundant in land plants. More than 450 members have
been identified in A. thaliana and rice, more than 600 in
poplar and grapevine, and approximately 100 in the moss
P. patens (Table 1) [9]. Furthermore, whereas the genomes
of the green algae C. reinhardtii, O. tauri and O. lucimarinus
encode only one sigma factor, the seed plant and P. patens
genomes encode at least six [44]. Finally, seed plants and
mosses have evolved plastidal NEPs by duplicating the
gene encoding the mitochondrial phage-type enzyme
[4,91], while genomes from green algae and the red alga
Cyanidioschyzon merolae only encode one phage-type RNA
polymerase [44], which is predicted to be targeted to the
mitochondrion. Although some nucleus-encoded factors
involved in RNA maturation are known from
Chlamydomonas [92], an apparently shared feature of land
plants is an increase in proteins that could function in sus-
taining the functionality of mutationally altered organel-
lar genomes. How can this trend be explained?

Today it is generally accepted that land plants share a
common ancestor with the green algal lineage [93-95].
Because land plants are monophyletic [96,97], one has to
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assume that a single green algal-like progenitor success-
fully went ashore, subsequently adapted to a dramatically
different environment, and eventually evolved into the
earliest land plant.

Changing from an aquatic to a terrestrial life style must
have been a colossal challenge in several regards, yet the
colonisation of land by plants was nonetheless very suc-
cessful. The evolutionary radiation into mosses, liver-
worts, hornworts, club mosses, ferns and seed plants was
accompanied by major developmental and morphologi-
cal innovations, enabling the adaptation of plants to the
new environment [97-99]. Coevally to the need for the
development of new morphotypes, early land plants
required adaptations to cope with the exposure to
increased solar and stellar radiations, which endangered
their genetic information. Conceivably, this increased the
need for countermeasures against chloroplast mutations
and eventually led to the expansion of the PPR family, the
increase in sigma factors per gene, and the redirection of a
phage-type RNA polymerase to chloroplasts. If this
hypothesis is true, we should see clear differences in the
number of PPR proteins, RNA editing and RNA polymer-
ases not only between green algae and land plants, but
also between more closely related sister groups of land
plants, for example the charophytes. Further genomic
information is needed to resolve these questions.

As shown for RNA-editing, species-specific gains and
losses of mutations are common as well, which necessi-
tate restoration by nucleus-encoded factors. In the case
that losses of mutation sites are predominant, suppressor
activity for that mutation can be lost coevally. A very pro-
nounced situation for the loss of a plant-specific mecha-
nism is present in the liverwort Marchantia polymorpha,
which secondarily lost organellar RNA editing (as shown
recently by the identification of RNA editing within the
mitochondrion of an ancestral liverwort [100]). Thus, in
the case of a high mutation rate enabling back-mutations
or the evolution of additional transgenomic suppressors,
other land plant-specific mechanisms such as a second,
nucleus-encoded chloroplast RNA polymerase should
ultimately become superfluous and be lost.

Conclusion

Here, we put forward a hypothesis to account for the enig-
matic complexity of chloroplast gene expression. We pro-
pose that nuclear factors evolved to counteract chloroplast
mutations that occurred after the water-to-land transition
and persist due to the mode of chloroplast genome evolu-
tion. These nuclear factors act either on DNA directly or
suppress point mutations on the RNA level. Specifically,
we suggest that PPR proteins were recruited to counteract
point mutations in coding regions, introns and UTRs. In
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the same way, sigma factors may help to recognise degen-
erated promoter motifs. Finally, low-specificity phage-
type RNA polymerases support transcription despite the
loss of canonical PEP-promoters. Intriguingly, all means
to suppress chloroplast mutations instanced here seem to
have evolved in early land plants. Hypothetically, this
could mean that chloroplast genomic decay and parallel
counteraction by nuclear-encoded components were
accelerated in the common ancestor of all land plants.

The hypothesis put forward here draws on two established
concepts: the degeneration of genomes of endosymbiotic
organisms and the suppression of organellar defects by
nuclear factors (the CMS example). The hypothesis cir-
cumvents the need to invoke selective pressures to
account for the myriads of processing events in the chlo-
roplast transcriptome (but does not exclude them in indi-
vidual cases). It is therefore more parsimonious than the
assumption that complexity in chloroplast gene expres-
sion serves a regulatory function. Finally, our hypothesis
may draw a picture of the first land plant, its molecular
integration into the new environment and the need to
suppress radiation-engendered mutations.

Methods

Available genome datasets were screened with the follow-
ing PFAM (http://pfam.sanger.ac.uk) HMMs with a cutoff
of E < 0.0001: Sigma70_r2/3/4 (PF 04542, 04539,
04545); PPR repeat (PF01535). Only those genes contain-
ing more than one PPR repeat were taken into account.
Numbers of protein-coding plastid genes are derived from
[2]. Number of RpoT genes encoding phage-type RNA
polymerases in O. tauri, O. lucimarinus, T. pseudonana and
P. tricornutum are derived from BLAST hits using the A.
thaliana RpoTm, RpoTmp and RpoTp sequences as que-
ries, filtered for > = 30% identity and 300 aa alignment
length. RpoT gene numbers in other organisms were taken
from the literature |cf. [44]] or communicated by Andreas
Weihe and Uwe Richter (Humboldt University, Berlin).
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