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Abstract

Background: Periodic patterning of iterative structures is a fundamental process during
embryonic organization and development. Studies have shown how gene networks are employed
to pattern butterfly eyespots, fly bristles and vertebrate epithelial appendages such as teeth,
feathers, hair and mammary glands. Despite knowledge of how these features are organized, little
is known about how diversity in periodic patterning is generated in nature. We address this
problem through the molecular analysis of oral jaw dental diversity in Lake Malawi cichlids, where
closely related species exhibit from | to 20 rows of teeth, with total teeth counts ranging from
around 10 to 700.

Results: We investigate the expression of conserved gene networks (involving bmp2, bmp4, eda,
edar, fgf8, pax9, pitx2, runx2, shh and wnt7b) known to pattern iterative structures and teeth in
other vertebrates. We show that spatiotemporal variation in expression pattern reflects adult
morphological diversity among three closely related Malawi cichlid species. Combinatorial epithelial
expression of pitx2 and shh appears to govern the competence both of initial tooth sites and future
tooth rows. Epithelial wnt7b and mesenchymal eda are expressed in the inter-germ and inter-row
regions, and likely regulate the spacing of these shh-positive units. Finally, we used chemical
knockdown to demonstrate the fundamental role of hedgehog signalling and initial placode
formation in the organization of the periodically patterned cichlid dental programme.

Conclusion: Coordinated patterns of gene expression differ among Malawi species and prefigure
the future-ordered distribution of functional teeth of specific size and spacing. This variation in gene
expression among species occurs early in the developmental programme for dental patterning.
These data show how a complex multi-rowed vertebrate dentition is organized and how
developmental tinkering of conserved gene networks during iterative pattern formation can impact
upon the evolution of trophic novelty.

Background ing adjacent repetitive structures and the maintenance of
Biology is replete with periodically patterned elements,  cellular compartments once formed [1-8]. For example,
from the sensory bristles of a fruit fly to the hair and teeth ~ the formation of feather tracts on the dorsal surface of
of mammals. Models of periodic patterning seek to  chick embryos [9] and mammary (milk) lines on the ven-
explain the developmental origin of boundaries separat-  tral surface of embryonic mammals [10] serve to pre-pat-
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tern regions competent for the initiation of these
structures. Similarly, a functionally equivalent field is
established along the axis of the oral jaws in most verte-
brates, competent to form tooth bud primordia [11-15].
In teleost fish this initial field is known as the primary
odontogenic band (OB) [12,13,15] and in mammals it is
termed the dental lamina [4,14]. This band or lamina sets
the regionally restricted 'field' along the jaw axis from
which tooth induction is triggered.

As with all periodically patterned systems, an initial 'field
of competence' is set from a once-homogeneous cellular
region, followed by the establishment of positional infor-
mation throughout the restricted 'field' [16,17]. The ini-
tial field may be set up by a number of diffusing molecules
such as morphogens that allow regionalization to occur,
from which cellular differentiation responds along a gra-
dient [5,18], probably by means of a reaction-diffusion-
type mechanism [19,20]. Positional information deter-
mines cell differentiation, cellular compartmentalization
and subsequent unit placode initiation, the first of which
is imperative for iterative initiation of adjacent placodes
via activator-inhibitor mechanisms [2]. Placode initiation
is thought to be triggered by cellular accumulation (self-
organization) over a given threshold that reacts to a
number of positional cues within the competent field [1].
Within the placode itself, additional activators and inhib-
itors determine the boundaries of the placode unit and
the spacing between units. Studies of periodically pat-
terned systems such as the developing vertebrate dentition
and developing chick feathers have led to the identifica-
tion of a number of molecules that have been modelled as
activators or inhibitors within the specific developing sys-
tem [2,21,22]. In feather placode patterning, Shh and
members of the Eda pathway have activator roles, while
Bmp2 and Bmp4 are thought to act as inhibitors
[2,23,24]. During mouse odontogenesis the same mole-
cules are involved in patterning the molar cusps. Attempts
have been made to model cusps according to activator-
inhibitor patterning mechanisms; however, whether indi-
vidual candidates can be classed as activators or inhibitors
during tooth development is largely stage dependent
[21,25-27].

Molecules involved in the establishment of vertebrate
dentition have been well characterized from studies of the
mouse [11,21,28]. A number of these molecules are
known to have detrimental effects on the murine denti-
tion when removed/inhibited from the dental network
early in tooth development; Shh [29,30], Pitx2 [31] and
Pax9 [32] are among those with severe dental phenotypes
[33]. For example, inhibition of Shh in mandibular
explants during the transition of dental competence to
initiation (E10.5) leads to tooth arrest at the bud stage
[29,30]. Thus, it is clear that this gene is essential for the
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correct establishment of the global dental programme.
However, these studies are specific to the mouse experi-
mental model, which develops a single set of teeth with
no replacements. We therefore know nothing of the
resulting phenotypes when modifications occur to these
networks, for example the hedgehog pathway, in verte-
brates with numerous functional tooth rows and continu-
ous replacement cycles.

The morphogenesis of teeth, like that of other periodically
patterned vertebrate organs (for example, hair, mammary
glands, feathers), is regulated both by sequential and
reciprocal molecular interactions between two adjacent
cell layers, the epithelium and the directly underlying
mesenchyme [11,28]. During early stages, these distinct
organs share a number of features and express a familiar
suite of genes with common roles [28,34]. Many studies
have attempted to identify the morphodynamic control of
iterative organization and how such patterning mecha-
nisms change during development to generate evolution-
ary novelty [6,7,21,35-37]. We sought to characterize the
expression of a set of these molecules in the dentitions of
Lake Malawi cichlids to tackle an unanswered and funda-
mental biological question: how is the diversity of period-
ically patterned elements generated in nature? Malawi
cichlids are exemplars of natural craniofacial diversity. In
essence, natural selection has conducted an experiment in
micro-evolutionary diversification, and we want to know
how development works to produce variation in pheno-
type [37]. The range of dental variety in Malawi is tremen-
dous given a common ancestor in the last 500,000 to 1
million years [26]; species possess about 10 teeth in a sin-
gle row (per jaw), or as many as 700 teeth in up to 20
rows. Species differ in tooth size, spacing and shape in
coordinated fashion [26,36]. We focus on three closely
related Lake Malawi cichlids with alternative dental phe-
notypes (Figure 1): Cynotilapia afra (CA, Figure 1a), a uni-
cuspid species with two tooth rows of large, widely spaced
teeth; Metriaclima zebra (MZ, Figure 1b), a bicuspid and
tricuspid species with five or six tooth rows of intermedi-
ately sized and spaced teeth; and Labeotropheus fuelleborni
(LF, Figure 1c), a uniformly tricuspid species with 10 or
more tooth rows of small, tightly packed teeth [26,36].
Previously, we have used these species to identify the
chromosomal basis of divergent tooth shapes among spe-
cies [26,36]. Here we address a different question: we ask
how conserved gene networks are deployed to influence
the diversity in the size, number, spacing within rows and
number of rows of teeth.

Results and Discussion

Variation in developmental gene networks prefigures
differences in adult cichlid dentitions

We cloned cichlid orthologues of genes required during
oral epithelial organization and tooth germ initiation
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Figure |

Nature's experiment in dental diversity among Lake Malawi cichlids. (a) Cynotilapia afra (CA) has a crescent-shaped
jaw with two rows of widely spaced unicuspid teeth. (b) Metriaclima zebra (MZ) exhibits an intermediate jaw shape with five to
six rows of teeth; a first row of bicuspid teeth is followed by several lingual rows of tricuspids. (c) Labeotropheus fuelleborni (LF)
has a square-shaped jaw, lined with 10 or more rows of tightly packed tricuspid teeth. The arrow marks a replacement tooth
in LF. Jaws were prepared with alizarin red, which stains the bone matrix and dentine. Scale bars in the lower jaw images are

500 pum. Lower jaw images are dorsal view.

(bmp2, fgf8, pitx2, shh) [11,38] as well as mesenchymal
markers (bmp2, bmp4 [36], pax9, runx2) involved in recip-
rocal signalling to the epithelium [11]. Teleost tooth
development has been well characterized in the zebrafish
and thus our nomenclature for the early stages of tooth
development will follow that model. Two stages of early
odontogenesis are relevant: the thickened epithelium
stage and the bell-shaped epithelium stage [39-41]. Devel-
oping teeth beyond this point will be referred to as tooth
germs, spanning the progression of the tooth from a bell-
shaped unit to various stages of functional maturity, char-
acterized by cytodifferentiation.

The transcription factor pitx2, described as a putative
odontogenic-commissioning gene [12,13,15], has a
broad expression pattern that encompasses both the

developing tooth unit and the inter-tooth region, marking
the extent of the dental-competent oral epithelium,
including regions of future tooth rows (Figures 2a and
3A-Q). pitx2 is one of the earliest dental epithelial markers
(Figure 3C) with expression in the thickened dental epi-
thelium (Figure 3C) and both the inner dental epithelium
(IDE) and outer dental epithelium (ODE) of the maturing
tooth (Figure 3A and 3B). Interestingly, the early pattern
of pitx2 expression differs across the three species prior to
and during morphogenesis of the first tooth, and reflects
the future organization of these distinct dentitions (Figure
2a). L. fuelleborni shows the greatest region of dental com-
petence (expression of pitx2), consistent with the later
elaboration of teeth and tooth rows (Figures 1c and 2a).
Future tooth rows also show expression of pitx2, labelling
the lingual progression of the subsequent OB (Figure 3A
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Figure 2

The developmental program of Malawi cichlid dentitions. (a) Expression of pitx2 in the lower jaw (dorsal view) of
three Malawi cichlid species, Cynotilapia afra (CA), Metriaclima zebra (MZ), Labeotropheus fuelleborni (LF), during tooth initiation
and development. OB, odontogenic band (around 4 days post-fertilization (dpf)); I, first tooth to initiate (around 5 dpf); 34 t,
3—4-teeth stage (around 6—7 dpf). Black arrowhead in LF OB shows the extent of the initial field of odontogenic competence
prior to tooth germ initiation. Black arrowheads in CA, MZ, LF Istindicate the formation of the first tooth, note the extensive
region of competence in LF, later marking competent epithelium reflecting the future distribution of teeth (arrowhead, 3—4-
teeth stage; refer to Figure Ic). Scale bar 100 um. All panels are to the same scale. (b) Expression of pax9 in the lower jaw
(dorsal view) of three Malawi cichlid species CA, MZ, LF, during tooth initiation and development. OB, It, and 3—4 t as in (a).
Black arrows in OB for CA, MZ and LF mark the extent of the odontogenic field of expression within mesenchymal cells along
the mesiodistal jaw axis; the point of the arrow indicates the position along this axis where the first tooth will initiate. Black
arrowheads in Istfor CA, MZ and LF point to up-regulated expression in the mesenchyme surrounding the thickening dental
epithelium. Black arrowheads in CA, MZ and LF 34 t, show developing teeth with pax9 expression in the dental mesenchyme
surrounding the epithelial tooth germ, and not within the dental papilla. Scale bar 100 um. All panels are to the same scale. (c)
Expression of shh in the lower jaw (dorsal view) of three Malawi cichlid species CA, MZ, LF, during tooth initiation and devel-
opment. OB, Ist, and 3—4 t as in (a). Black arrowhead in LF OB marks the onset of tooth initiation within the primary OB (note
the asymmetry of dental initiation, left half of the dentary initiating first); tooth initiation will occur within this restricted band
although the area of dental competence is extended lingually (black arrow). Black arrowhead in LF I5tshows the extended OB.
MZ and LF 3—4 t shows the order of initiation and spacing of the first teeth. Numbers refer to the order of appearance. Black
arrowhead marks the future position of tooth 5, which is placed differently in MZ versus LF. Scale bar 100 um. All panels are to
the same scale.
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Figure 3

Thin sections of the developmental program of Malawi cichlid dentitions. (A)-(C) Metriaclima zebra (MZ) pitx2
expression within the oral and dental epithelium. (A), (B) 3—4-teeth stage, 7 dpf; (C) first-tooth stage. (A) Sagittal section (den-
tary), expression in the dental epithelium (tooth number | in the series, inner dental epithelium (IDE) and outer dental epithe-
lium (ODE); black arrowhead). Continued dental competence for the next row (odontogenic band (OB) 2) is shown by
expression in the lingual extent of the oral epithelium (arrow, OB2). (B) Sagittal section (upper jaw); pitx2 is expressed in the
IDE and ODE (arrowhead, tooth number | in the series). Expression within the basal epithelial cells denoting the competent
oral epithelium for future tooth initiation (OB2; arrow). (C) Coronal section (dentary) initial thickened epithelia of the first-
tooth germs (I, thickened dental epithelium; black arrowheads) labelled by pitx2. The competent field (OB1) continues laterally
from which new adjacent tooth germs will develop (arrow). (D)-(F) MZ pax9 in the dental/oral mesenchyme underlying the
thickened epithelium (D) (thickening stage of the first tooth) and surrounding the developing dental units (E), (F) (3—4-teeth
stage, 7 dpf). (D) pax9 (arrowhead) in mesenchyme (asterisk, dental epithelium, first tooth). Continued lateral expression in
mesenchyme underlies the odontogenic band of the first row (OBI, arrow). (E), (F) Oblique coronal sections (dentary) of MZ.
(E) pax9 expression is observed within the dental mesenchyme (arrowhead) of tooth 3 in the series (medial, on each half of the
dentary) and surrounding the developing epithelial tooth germ (arrow) within the mesenchyme and in (F); for orientation, the
thickened epithelium is forming down into the page; epithelium (E), mesenchyme (M, arrowheads), tooth | (arrow, |, develop-
ing down into the page). (G)-(I) LF shh expression in the dental epithelium (3—4-teeth stage, 6 dpf). (G) Sagittal section (dentary),
expression in the IDE of the first tooth in the series (I, black arrowhead). Black arrow, competent OB already marking the pre-
sumptive second row (OB2). (H) Epithelial thickening stage of tooth 3 in the series (3), sagittal section shh in the thickened den-
tal epithelium (black arrowhead). The red dashed line demarcates the epithelium joining the second OB (OB2, black arrow) with
the tooth germ. (I) Coronal section (dentary) showing the first three tooth germs in the series (1-3 in order of development)
shh is restricted to the IDE of tooth I, the epithelial germ in tooth 2 and the thickened epithelium in tooth 3. Directly above the
tooth germs (in this plane of section) is the second OB for the initiation of subsequent teeth. (J)-(L) MZ bmp2 in both the dental
epithelium and dental papilla (mesenchyme) (3—4-teeth stage, 7 dpf). (J) Oblique coronal section (dentary) expression within
thickened epithelium for teeth 2 and 3 in the series (epithelium; arrowhead). More mature developing tooth (number I, red
dashed line) showing dental papillary expression (mesenchyme). The region between the 3 tooth units of varying stages, the
ZOl, contains no bmp2 expression (arrow). Dental epithelium of tooth 3 initiating epithelial thickening stage, (arrowhead with
asterisk, 3) well spaced from the neighbouring germ. (K) Sagittal section (dentary) the maturing (cytodifferentiation) first tooth
(1) showing bmp2 in the dental papilla (mesenchyme; arrowhead) and simultaneous expression in IDE cells at the tip of the
tooth (arrow), equivalent to the primary enamel knot in mammals. (L) Coronal section (dentary); order of initiation of the first
three teeth (1-3) showing the variety of bmp2 expression. First tooth (I) shows dental papillary expression, second and third
tooth to initiate (2, 3) show epithelial expression, more so in (2) as developing tooth germ is present. All images are to the same
scale; scale bar in (A) is 20 um. Sections cut to a thickness of 25 um. E, epithelium; M, mesenchyme; Mc, Meckel's cartilage; pmc,
premaxillary cartilage.
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and 3B). Similar to studies in other fishes [38,41], we
found that fgf8 expression is not associated with initiating
tooth germs in Malawi cichlids (not shown).

pax9, one of the earliest mesenchymal markers of odon-
togenesis in the mouse, is either absent from or weakly
expressed in the dentitions of zebrafish and Mexican tetra
[38]. By contrast, in Malawi cichlids pax9 is expressed ini-
tially in oral mesenchymal cells as a dental field along the
mesiodistal jaw axis (Figure 2b, OB stage, and Figure 3D),
then it is strongly up-regulated in the underlying mesen-
chyme at the epithelial thickening stage of the first tooth
(Figure 2b, first-tooth stage, and Figure 3D). Expression of
pax9 is then restricted to cells of the dental mesenchyme
enveloping the tooth during morphogenesis and is absent
from the cells of the dental papilla (Figure 2b, 3-4-teeth
stage, and Figure 3E and 3F). The expression of runx2
essentially replicates that of pax9 for the stages examined
(data not shown).

Expression of shh is up-regulated from the primary OB
into the individual tooth germs (Figure 2c and 3G-1I). shh
continues to be expressed during tooth morphogenesis,
marking the bell-shaped dental epithelium and later the
IDE of the tooth during cytodifferentiation (Figure 3G-I).
Notably, shh is never present in regions between or
around teeth, called the zone of inhibition (ZOI) [15-17].
In Malawi cichlids shh expression continues to label OBs,
marking subsequent initiation of more lingual tooth
rows, one at a time (Figures 2c and 3G-1I). C. afra does not
develop a third OB (nor a third row), while M. zebra and
L. fuelleborni initiate an OB for each future tooth row (see
Figure 4). bmp2 is co-expressed in the competent epithe-
lial OB with shh and pitx2. From the initial epithelial OB,
bmp2 expression is up-regulated in the cells of the con-
torted bell-shaped epithelial germ and continues to be
expressed during differentiation (Figure 3L) before
becoming localized to cells of the mesenchymal dental
papilla (Figure 3]-L). In addition, bmp2 is restricted to epi-
thelial cells at the developing tooth tip (Figure 3K), which
will differentiate to ameloblasts, partially responsible for
the secretion of enameloid, the first mineralized tissue of
the teleost tooth [42]. These are an equivalent set of cells
to the mammalian 'enamel knot'. bmp4 is expressed ini-
tially in the mesenchymal field along the mesiodistal axis
prior to tooth germ initiation, much like pax9 and at the
3-4-teeth stage bmp4 is restricted to the dental papilla
(data not shown [36]).

These data, in conjunction with data reported earlier for
bmp4 [36], suggest that early patterns of gene expression
differentiate among Malawi cichlid dentition types. L.
fuelleborni, M. zebra and C. afra exhibit marked variation
in the field of odontogenic competence both in the epi-
thelium (pitx2, shh) and mesenchyme (pax9), in the spac-
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Figure 4

Patterning multiple tooth rows in Malawi cichlids. shh
and pitx2 are co-expressed in an odontogenic band (OB) for
every new tooth row. shh is expressed in a second OB in
Cynotilapia afra (CA) (arrow, 2) (around 12 days post-fertili-
zation (dpf)); the second row has started the process of initi-
ation (pitx2 CA arrow, 2). pitx2 is absent from the lingual
extent of the jaw margin and we propose that this lack of
pitx2 (and therefore combinatorial expression of both pitx2
and shh) is in part responsible for the lack of additional rows
(3, 4 and so on) in CA. Metriaclima zebra (around 12 dpf) ini-
tiates a third row and Labeotropheus fuelleborni (around 12
dpf) row 4, concomitant with OBs labelled by both shh and
pitx2. Expression is also visible in replacement teeth in the
first rows. Scale bar 100 um.

ing (bmp2, bmp4, pax9, runx2, shh) and in the size (bmp4,
pax9, runx2, shh) of the initial tooth germs. These differ-
ences are readily quantifiable (Table 1), arise before teeth
acquire their functional adult shape, and correspond
directly to the size and spacing observed in the adult den-
titions [26]. For example, C. afra embryos have the largest
initial dental germs and surrounding ZOI (Table 1) while
adults have the largest, fewest teeth (mean + SD of 1.3 +
0.20 per millimetre of jaw width) with the greatest inter-
unit spacing compared with the other two species, M.
zebra (3.3 + 0.52) and L. fuelleborni (4.8 + 0.74) [26]. The
measurements obtained from shh expression in Table 1
highlight an early developmental origin of dental diver-
sity among these three species. Streelman and Albertson
noted a similar pattern from bmp4 expression, with a com-
parable range of cichlid species [36]. While some meas-
urements shown here seem counterintuitive (for example,
Table 1b, columns 3 and 4), it is because species also dif-
fer in more subtle aspects of tooth initiation. C. afra never
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Table I: Size and spacing of tooth germs in three species of Malawi cichlids

@)

Species Diameter  ZOl including ZOIl medial to  ZOl distalto ZOI from MD length  Width of Area (um?)
of first first tooth first tooth first tooth First tooth of OB OB at level of first
tooth to second of first tooth tooth

OB

CA 2291 51.80 + 1.298 18.67 + 0.344 17.99 £ 0.482 8.80 £ 0.56 110.72 + 2221 +1.135 528.08 £
0.839 7.337 31.348

MZ 17.62 £ 44.05 + 0.898 16.50 + 0.213 12.87 £ 0.322  6.84 £ 0.084 116.62 + 23.02 £ 0.382 384.06 £
0.149 5.013 4.754

LF 14.87 + 39.9 + 1.697 11.95 +0.285 1524 £ 0392 7.28 +0.545 12091 + 19.4] +£0.782 26847
0.349 3.834 8.084

(b)

Species Diameter Inter-germ Inter-germ ZOl from MD length of Area(um?)
of first space between space between First tooth second row  of first
tooth first and next first and next to second OB tooth

medial tooth distal tooth OB

CA 25.68 16.64 +0.128 14.02 + 0.096 8.29 £ 0.266 140.02 + 3.669 684.57 +
0.359 19.248

MZ 18.19 + 19.63 + 0.222 11.96 +0.318 10.18 £ 0.434 13847 £2.897 435.09 +
0.231 19.98

LF 1837 £ 13.06 £ 1.112 20.33 + 1.065 8.02 + 0.295 168.39 + 5432 404.15 £
0.437 23.182

() We report mean values (three to five individuals) of measurements taken from the expression of shh at the first-tooth stage in the three cichlid
species: CA, Cynotilapia afra; MZ, Metriaclima zebra; LF, Labeotropheus fuelleborni. MD, mesiodistal; OB, odontogenic band; ZOI, zone of inhibition.

(b) Mean values (three to five individuals) from the 3—4-teeth stage. All values are in micrometres + SE.

initiates a tooth between the first three teeth to develop;
M. zebra has an initiation order that places tooth 5
between teeth 1 and 3, whereas L. fuelleborni initiates
tooth 5 between teeth 1 and 2 (Figure 2c). These early dif-
ferences in tooth size, spacing and organization are per-
haps surprising because cichlids (and all teleost fish)
continuously replace their teeth; therefore, we might have
expected inter-specific variety to develop gradually, over
multiple rounds of tooth replacement, from a common
dental 'ground’ state, as is the case for tooth shape [26].

Organizing the periodic pattern with molecular 'spacers’

Given the set of molecules localized to the first tooth
germs (notably shh, but also pitx2 and bmp2), we hypoth-
esized that other factors expressed within the ZOI sur-
rounding these germs might guide the size and spacing of
early cichlid tooth units. We therefore analyzed the
expression of genes involved in a putative spacing mecha-
nism. We cloned three genes, eda, edar and wnt7b, with
antagonistic effects on shh in the initiation of mouse teeth,
mouse hair follicles and chick feathers [9,30,43-50]. edar
(data not shown) is expressed within the germs them-
selves in a pattern similar to shh (Figures 2c and 3G-1). We
observed the expression of both wnt7b and eda surround-
ing the initial shh-positive tooth germs (Figure 5a-c)

within the ZOI/inter-germ regions across the three spe-
cies.

eda is expressed locally and strongly surrounding the first-
tooth germ (expressing shh and edar) in all three species
(first-tooth stage data not shown). By the 3-4-teeth stage,
eda remains expressed in the mesenchyme locally and
heavily at the lingual margin of the first tooth in C. afra
and M. zebra (Figures 5a and 5b and 6A-C), but its lingual
expression is broader and more diffuse in L. fuelleborni
(Figure 5c). Notably, there appears to be a lateral bias in
the expression of eda in both L. fuelleborni and M. zebra,
which may reflect the influence of (or may influence) the
initiation of tooth 5 between existing germs 1 and 2 or 1
and 3, respectively. An apparent eda-negative region exists
in both L. fuelleborni and M. zebra where the fifth tooth in
the series will appear, a different position in each species
(Figure 5, middle column). C. afra lacks tooth initiation
between these first three positions, an arrangement that
continues into the adult dentition.wnt7b expression coin-
cides with the ZOI surrounding the first teeth in all species
(Figures 5 and 6D-F); this is best illustrated compara-
tively with image overlays with shh as depicted in Figure
5a-c.
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Figure 5

Organizing Malawi cichlid dentitions with the 'spacer' gene wnt7b and ectodysplasin. Left panel: wnt7b is expressed
in the zone of inhibition (ZOI) and inter-germ/inter-row spaces in (a) Cynotilapia afra (CA), (b) Metriaclima zebra (MZ) and (c)
Labeotropheus fuelleborni (LF). Red circles indicate shh-positive tooth germs; arrowheads point to expression associated with
initiating first-row teeth; arrows mark a lingual band of expression demarcating the shh odontogenic band (OB) of the second
tooth row. Right panel: eda expression is up-regulated lingually in association with the mesenchyme of the first teeth (red cir-
cles) of (a) CA, (b) MZ and (c) LF. Expression is strongest in CA and most diffuse in LF. Arrows mark a second band of expres-
sion (CA, MZ) or continued expression (LF) lingually. Middle panel: Composite jaws showing the expression of wnt7b (left) and
eda (right) in overlay with shh (false-colour, white). Arrows and arrowheads indicate expression in the ZOI of first-row teeth
and in association with the second-row OB. For MZ and LF, tooth positions are numbered in order of initiation and asterisks
mark the position of tooth number 5. All images from the 3—4-teeth stage; all specimens were stage-matched based on exter-
nal structures, that is, pectoral and caudal fin development and eye development and maturity (3—4-teeth stage for CA and LF
was 6 days post-fertilization (dpf) and for MZ it was 7 dpf). Overlay images from different individuals may show artefacts from
slight differences in alignment. Scale bars for the middle panel are 100 um.

Remarkably, these genes seem also to be employed in the
initiation and spacing of future tooth rows, an iterated
expression pattern similar to tooth germ organization
within each row. shh labels each OB for subsequent tooth
rows (Figures 2c and 4); eda and wnt7b are expressed
between the first tooth row and the OB of the second (Fig-
ures 5 and 6). Specifically, eda expression partly overlaps
that of shh in the lingual OB, while wnt7b is expressed
either side of shh. Thus, eda from the enveloping mesen-

chyme (Figure 6A-C) may induce and maintain shh
expression in tooth germs as well as in future tooth rows,
and planar epithelial wnt7b (Figure 6D-F) may inhibit
dental competence in these regions, similar to the role of
these molecules in other systems [9,30,44-48].
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Figure 6

Regulating tooth size and spacing. Thin sections of Metriaclima zebra (7 days post-fertilization; 3—4-teeth stage). (A)-(C)
eda expression within the mesenchyme (black arrowheads) surrounding the tooth germs (red dashed circle or black arrows;
numbers represent the order of appearance for the tooth shown). Note the expression of eda is restricted to the mesen-
chyme and is not present in the epithelium. (D)-(F) The expression of wnt7b is restricted to the epithelium (D), (E) (black
arrowheads) either side of the thickened dental epithelium (black arrow) and in inter-row space (white arrow). (F) A dentary
tooth germ (red dashed circle, tooth I) devoid of wnt7b expression. Expression is restricted to the non-dental epithelium
(black arrowhead); numbers 1-3 refers to the order of tooth appearance in the series; asterisk denotes the dental epithelium
that will express shh (see Figure 3G—l) and lacks wnt7b. wnt7b expression is present lingually restricting the second odon-
togenic band (white arrow, (D) and (F); see Figure 5). Sections cut at a thickness of 25 um. Scale bar in (A) is 20 um; all panels
are to the same scale. Mc, Meckel's cartilage; pmc, premaxillary cartilage.

Hedgehog signalling is required for initiation of periodic
dental patterning

Our data suggest that the ZOI has an important role in
patterning the size (and spacing) of the shh-positive tooth
germs, especially the first unit to initiate. We speculated
that the first tooth might possess unique regulatory prop-
erties as a source for continued induction and patterning
of the dental program. We tested the role of the first tooth
as a source of communicative signal for the organization
of the dentition using targeted chemical inhibition of the
hedgehog pathway at the first epithelial thickening stage.
C. afra embryos at the first-tooth stage (five days post-fer-
tilization (dpf); Figure 2c) were treated for 24 hours in 50
UM cyclopamine in 1% DMSO (based on protocols in
[52]), thus spanning the time from the initiation of the
first tooth to the three-teeth stage (6 dpf), by which time
the second row OB had established territory. A subset of

treated embryos further developed for an additional 24
hours under standard conditions (7 dpf; Figure 7a and
7b); the remaining embryos from the same brood were
allowed to develop for an additional six days (12 dpf; Fig-
ure 7c and 7d) to span the period of both first row erup-
tion and development of the lingual tooth row (Figures 4,
7 and 8). Treated C. afra fixed at 7 dpf showed varying low
levels of shh expression localized to a reduced number
(one or two) of tooth germs on each side of the dentary
and the OB for the second row (Figure 7b). shh expression
appears within the region allocated for the ZOI (seen as
shh-negative inter-germ regions in all controls; Figures 2c
and 7a) normally expressing eda and wnt7b (Figures 5 and
6), suggesting a breakdown in both the initiation and
spacing mechanisms (Figure 7b). Expression of eda in
treated C. afra was absent in regions of tooth development
(data not shown), implying that eda may respond to sig-
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1.0% DMSO Control 50uM Cyclopamine at 5dpf

Shh 7dpf

100 pm
—

Figure 7

The hedgehog pathway is essential for dental periodic patterning in Malawi cichlids. Control (1% DMSO) treated
(2) and cyclopamine treated (b) Cynotilapia afra embryos (7 days post-fertilization (dpf)) showing shh expression in the lower
jaw dentition (arrowheads). Cyclopamine (and DMSO) was administered to C. afra embryos at 5 dpf for 24 hours; embryos
continued to develop for a further 24 hours under standard conditions and were fixed at 7 dpf. Weaker levels of shh expres-
sion in cyclopamine-treated fish along with a disturbed initial pattern of tooth germs and second odontogenic band (b) com-
pared with the 1% DMSO control (a). Note three tooth germs on each half of the dentary in the control (a) compared with
two tooth germs on each half of the dentary in embryos treated with cyclopamine (b) (arrowheads). C. afra that were treated
for 24 hours at 5 dpf (as above) continued to develop for a further 6 days (12 dpf) to stages where teeth of the first row are
expected to erupt and teeth should be developing in the second tooth row (see Figures 4 and 8). Compared with the 1%
DMSO control (c) the cyclopamine-treated C. afra (d) failed to develop a dentition; a single tooth shard (arrowhead) is seen
unattached within the epithelium above the ossified lower jaw (alizarin red preparation).

nals from, or downstream of, the hedgehog pathway. 1%  In all treated individuals that were allowed to develop for
DMSO control C. afra showed patterns of shh expression  a further six days (fixed at 12 dpf), we found that the first
identical to standard controls (untreated). tooth continues partial development and shows signs of
mineralization, although it does not complete develop-
ment or attachment (Figure 7d). With the exception of a
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Figure 8

A periodic pattern generator for diversity in Malawi cichlid dentitions. (A) A cross-section through three thickened
tooth germs showing planar signalling in the zone of inhibition (ZOl)/inter-germ space (grey, wnt7b) demarcating the location
of teeth (green, shh and edar), with contribution from dental mesenchyme (blue, eda, bmp4, pax9 and runx2). Non-dental mes-
enchyme, purple. (B) The proposed interactions of wnt7b and eda (around the thickened tooth germs) with shh and edar
within the thickened epithelial germ [9,30,44-51] in the context of our observations. wnt7b acts as an inhibitor of shh during
tooth patterning and eda from the mesenchyme acts as an activator maintaining shh, perhaps via the eda-receptor edar, within
the tooth germ. Whnt signals (possibly including wnt7b) may induce eda in the mesenchyme. DE, dental epithelium; DM, dental
mesenchyme; OE, oral epithelium; OM, oral mesenchyme. (C)-(K) the induction of each tooth row acts in a 'copy-and-paste'
mechanism utilizing the same genes for the pattern and organization of teeth and new tooth rows. Differential regulation of the
genes during periodic patterning lead to the species diversityRedeployment of genes from OB/ establishes new tooth rows
periodically in a lingual progression until the 'copy-and-paste' mechanism fails, due lack of combinatorial pitx2 and shh, essential
for sequential row addition. Upper panel (C)-(E) around 5—6 days post-fertilization (dpf); middle panel (F)-(H) around 67 dpf;
lower panel (I)-(K) around 12 dpf; each panel represents the left half of the dentary in dorsal view. (C)-(E the first tooth initi-
ates from OB, a combinatorial expression of pitx2 (white) and shh (green). The initial pitx2 positive region is greatest in LF, with
more rows. Up-regulation of shh and edar in the epithelial germs plus the establishment of a ZOI (eda and wnt7b) set the size
and space restriction for the epithelial tooth germs. Local eda surrounds the first germ for each species (darker blue denotes
stronger local expression of eda, which later becomes a broader domain and less intense, lighter blue). (F)-(H) eda remains
strong and local in CA and at this stage (3—4-teeth stage) is broader and less intense in LF. CA does not initiate more than two
tooth rows because pitx2 is constrained along the oral-aboral axis (lingual to the first teeth). The size, spacing and positioning
of teeth and tooth rows is regulated by the interactions of wnt7b (grey), eda (blue) and shh (green) within the pitx2-positive
field (white; see the main text and Figure 5). Future tooth row initiation in (J) MZ (OB3) and (K) LF (OB4) depends on the lin-
gual co-expression of pitx2 and shh. (I) CA does not initiate a third row of teeth, and lacks co-expression of shh and pitx2 in a
third OB (see Figure 4). Arrows mark the direction of tooth initiation for continued tooth addition on older rows. (I)-(K) eda
and wnt7b expression domains are predicted from earlier stages. A more diffuse expression of eda (light blue) will continue to
regulate size, spacing and row initiation of first-generation teeth. Numbers indicate the order of appearance for tooth rows. S,
jaw symphysis.
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mineralized remnant of the first tooth, all other teeth,
adjacent to the first and in subsequent rows, failed to
develop (Figure 7d). Knockdown of the hedgehog path-
way at the 3-4-teeth stage resulted in a functional, pat-
terned and replacing dental system (data not shown).
These observations demonstrate that when perturbed (via
the hedgehog pathway) at the first-tooth stage, the dental
programme cannot recover, despite continued cycles of
periodic patterning past this stage in untreated individu-
als.

The periodic pattern generator for dental diversity

The comparison of gene expression across Malawi cichlid
species with divergent dentitions suggests a simple model
implicating pitx2, eda and wnt7b, and their interaction
with shh and edar, as primary features of a periodic pattern
generator for diversity in Lake Malawi cichlid dentitions
(Figure 8). The model accounts for two aspects of dental
patterning: how to put tooth rows in jaws, and how to put
teeth in tooth rows. Our data suggest that the combina-
tion of pitx2 and shh is required for a competent field of
tooth initiation (the OB, Figures 2, 3, 4 and 8). M. zebra
and L. fuelleborni exhibit expanded expression of pitx2 lin-
gually on the embryonic lower jaw; C. afra does not (Fig-
ure 2). pitx2 and shh are also co-expressed in each
subsequent OB for M. zebra and L. fuelleborni (Figure 4);
C. afra does not initiate a third OB. Therefore, the lack of
lingual/oral co-expression of pitx2 and shh in C. afra (Fig-
ures 4, 8F and 81) may account for the reduction in row
number compared with the other species (Figures 4, 8G
and 8J, H and 8K, respectively). The lack of combinatorial
expression of shh and pitx2 in the oral region of zebrafish
may partially explain the lack of teeth [38]. Here we show
that this mechanism likely accounts for variation in tooth
row number among Malawi cichlids. Thus, molecular
mechanisms used to pattern the first row of teeth (the
only row of teeth in mammals and most vertebrates) are
redeployed as 'triggers' of dental competence and initia-
tion in each subsequent row. We suggest that the initia-
tion of new tooth rows follows a 'copy and paste'
mechanism wherein the dental expression network is
redeployed for each new tooth row. Therefore, our model
posits that preceding tooth rows are required as a source
of signal to initiate the next lingual row during sequential
addition.

The combination of comparative gene expression data
and perturbation of the hedgehog pathway suggests that
the correct initiation and maintenance of the first-tooth
germ, via activation of shh, is necessary for the periodically
patterned dental programme in Malawi cichlids (Figure
8). Comparison of the cyclopamine phenotype at the first-
tooth to the 3-4-teeth stages shows that disturbing the
development of the first-tooth germ has an effect on the
entire dentition, whereas disrupting the dentition at later

http://www.biomedcentral.com/1741-7007/6/32

stages results in a mildly reduced phenotype with addi-
tional teeth forming and completing development. We do
not yet understand the molecular mechanisms (for exam-
ple, decreased epithelial proliferation and/or increased
cell death) of this severe dental phenotype at the first-
tooth stage.

Our data imply that eda and wnt7b, expressed in the ZOlI,
regulate initial tooth germ size and position within rows,
through interactions with shh; wnt7b inhibits the germ
through planar epithelial signals (Figures 5 and 6D-F)
and eda maintains the tooth germ (shh and edar) from
within the surrounding mesenchyme (Figures 5 and 6A-
C). The ZOI may not lie solely within the layers of the epi-
thelium and we suggest that inhibitor/activator controls
signal from within the underlying mesenchyme that
envelops the thickened dental epithelium [34]. Once the
periodic pattern is established, other molecules may act as
inhibitors from within the developing tooth unit, for
example bmp2, which is present both in the early epithe-
lial thickening and within the dental papilla (mesen-
chyme) during maturation (Figure 3J-L), and bmp4,
which is restricted to the dental papilla (data not shown;

[36]).

The expression of eda in the mesenchyme surrounding the
developing dental germs of cichlids (Figures 5 and 6A-C)
is more similar to that deployed during the patterning of
feather placodes and salivary primordia [9] than that
observed in mammalian dentitions, where it is restricted
to epithelium [44,46]. In our model, a large initial tooth
germ in C. afra results from sustained local and intense
eda expression on a comparatively similar inhibitory
background of wnt7b (Figure 5a). The size of this tooth
germ is reduced in M. zebra (Figure 5b) and L. fuelleborni
(Figure 5c) because the eda expression broadens earlier
(especially for L. fuelleborni), a heterochronic imbalance
setting the stage for more, closely packed shh-positive
tooth germs (Table 1 and Figure 8). Consistent with our
results, transgenic mice (K14-eda) with increased levels of
Ectodysplasin  expression exhibit larger tooth germs
[48,52]. Furthermore, Eda null mutant mice have reduced
tooth germs [48,53-55]. However, in the mouse, effects of
Eda on tooth size correlate positively with effects on tooth
number; for example, higher levels of Eda lead to a single
extra molar [49,52]. Our data and model point to an
important distinction between overall levels of eda and its
spatial expression over time. An earlier dispersion of eda
expression after initiation of the first tooth (as in L. fuelle-
borni), rather than continued localized expression around
that first-tooth germ (as in C. afra), may in fact lead to the
production of more, smaller tooth germs (Figure 8).

The position of subsequent tooth rows is also specified in

part by the expression of wnt7b and eda in our model.
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Mesenchymal eda plays a permissive role in the position-
ing of the lingual OB (Figures 5 and 6A). In C. afra, its
expression is strongest medial to the first tooth, while in
M. zebra and L. fuelleborni it appears more as a band along
the mesiodistal axis (Figures 5 and 6A-C; also see the sec-
ond row tooth positions in Figure 1). wnt7b also appears
to demarcate the location of the second row, as its expres-
sion is either side of the shh-positive second OB (Figures 5
and 6D-F) and, in a similar iterative manner to the pat-
terning of individual tooth units, wnt7b is restricted to the
inter-row space (Figure 5a-c). Once the initiation of the
primary dental pattern for each row is established, the
essential nature of shh and genes that occupy the ZOI is
lost; although they likely continue to be expressed during
further morphogenesis (Figures 3 and 6), these molecules
are probably no longer required for initiation of the sec-
ondary, replacement dentition [13].

Conclusion

Periodically patterned phenotypes such as the dentitions
of Lake Malawi cichlids present important exemplars for
evolutionary developmental biology. The discipline has
heretofore focused on the molecular basis of evolutionary
novelty among distantly related organisms [35,56] or the
genetic/transcriptional basis of discrete trait loss among
closely related groups [51,57]. Trait elaboration (for
example, bigger, longer, stronger [58,59]) is more difficult
to study because phenotypes are subtler, but this remains
the more common type of evolutionary change [37]. Den-
tal diversity is an intermediate case; quantitative elabora-
tion takes the form of gain or loss of discrete units. Our
results support the general model that old genes, and
entire developmental modules, are deployed anew to gen-
erate micro-evolutionary novelty in iterative structures.

Methods

Fish husbandry

Embryos and fry of three species of Lake Malawi cichlids
(C. afra, M. zebra and L. fuelleborni) were raised to the
required stage in a recirculating aquarium system at 28°C.
Embryo ages (in dpf) were set after the identification of
mouth brooding females (day 0). Embryos were then
removed from the mouths of brooding females and, if
required, were maintained for further development in
separate culture tanks at 28°C.

Sequences

Cloned sequences used to generate digoxigenin-labelled
antisense riboprobes from Malawi cichlid species have
been deposited in GenBank (accession numbers:
EU867210 - EU867219). Many of the genes were identi-
fied through partial genome assemblies of L. fuelleborni
and M. zebra [60] and cloned from M. zebra and L. fuelle-
borni cDNA libraries. Sequences of cDNA used to generate
the probes are identical across the three species. Overall,
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these species exhibit almost no sequence divergence; the
average nucleotide diversity for comparisons across the
Malawi assemblage is 0.2%, less than among laboratory
strains of the zebrafish [60].

In situ hybridization

To ensure the embryos of the three species were of equiv-
alent stages (especially during gene expression compari-
sons), specimens were stage-matched based on external
features, including pectoral and caudal fin development
and eye development and maturity. Specimens for in situ
hybridization were anaesthetized in tricaine methanesul-
fonate (MS222, Argent) and fixed overnight in 4% para-
formaldehyde (PFA) in 0.1% phosphate-buffered saline
(PBS) at 4°C. Whole-mount in situ hybridization experi-
ments were based on protocols from [12] and modified as
follows: embryos were transferred to methanol for dehy-
dration and stored at -20°C. Specimens were rehydrated
through to PBS with Tween-20 and digested with 4-10
pg/ml proteinase K (PK); the final concentration was
based on the specific stage of embryo/fry (for example,
embryos at approximately 5 dpf were digested with 5 pg/
ml PK). Following hybridization, embryos were washed
in TST (10 mM NaCl, 10 mM Tris-HCI, Tween-20 in depc-
H,0). During the colour reaction stage of the protocol, all
embryos were allowed to fully develop the colour. Thus,
embryos were continuously transferred into fresh NBT/
BCIP solution (Roche) in NTMT until full staining had
ensued; this was determined after multiple regions of
known expression became positive. Specimens were stage-
matched based on external features, including pectoral
and caudal fin development and eye development and
maturity. All in situ hybridization experiments were per-
formed with multiple specimens (multiple individuals
were fixed at regular intervals, within single broods, then
repeated at least twice with alternative broods) to fully
characterize the expression patterns within and across the
three species. After colour reaction (NBT/BCIP, Roche)
embryos were washed in PBS and fixed again in 4% PFA,
before whole-mount imaging using a Leica Microsystems
stereomicroscope (MZ16). Embryos were embedded in
gelatin and chick albumin with 2.5% gluteraldehyde. The
gelatin-albumin blocks were post-fixed in 4% PFA before
sectioning. Thin sections were cut at 15-25 pm using a
Leica Microsystems VI'1000 vibratome.

Cyclopamine manipulation of the hedgehog pathway

From a single brood of 24 individuals, 14 C. afra embryos
were treated with cyclopamine (LC Laboratories) com-
pound (50 uM) from a stock (5 mM cyclopamine in
DMSO) to make up a final 1% DMSO solution in fish
water. Five C. afra individuals were used as a 1% DMSO
control, under the same incubation conditions as the
treated embryos (Figure 7a and 7c). A further five individ-
uals were kept as standard controls (wild-type), develop-
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ing in the Georgia Institute of Technology aquarium.
Treatment and control experiments were performed in
ventilated Petri dishes spinning at 28°C in an oscillating
platform culture incubator (Barnstead Lab-Line Max
4000). Following the treatment experiments and for the
controls with DMSO, fishes were washed 10 times in fresh
fish water to remove any remnant of cyclopamine com-
pound or DMSO before transferring to culture vessels con-
taining at least 300 ml of fish water, changed daily until
ready for analysis. Although initial experiments with 50
UM cyclopamine using 1% (of 95%) ethanol as the sol-
vent (suggested by the manufacturer, LC Laboratories and
previous reports [51,61]) showed differential expression
patterns of shh to the 1% ethanol control experiments, ali-
zarin red preparation of embryos raised to 12 dpf showed
gross phenotypic effects on the ethanol-administered con-
trols. Therefore, we substituted 1% DMSO for ethanol sol-
vent, after which controls could not be distinguished from
standard controls (untreated). While DMSO is not the
best solvent for cyclopamine because of limited solubility
above concentrations of 4 mg/ml, at the low concentra-
tions used for enhanced viability of treated embryos,
DMSO proved to be a better solvent than ethanol because
of lower solvation temperatures and faster solvation times
from -20°C storage temperatures.
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