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Abstract

Background: Dinoflagellates comprise an ecologically significant and diverse eukaryotic phylum
that is sister to the phylum containing apicomplexan endoparasites. The mitochondrial genome of
apicomplexans is uniquely reduced in gene content and size, encoding only three proteins and two
ribosomal RNAs (rRNAs) within a highly compacted 6 kb DNA. Dinoflagellate mitochondrial
genomes have been comparatively poorly studied: limited available data suggest some similarities
with apicomplexan mitochondrial genomes but an even more radical type of genomic organization.
Here, we investigate structure, content and expression of dinoflagellate mitochondrial genomes.

Results: From two dinoflagellates, Crypthecodinium cohnii and Karlodinium micrum, we generated
over 42 kb of mitochondrial genomic data that indicate a reduced gene content paralleling that of
mitochondrial genomes in apicomplexans, i.e., only three protein-encoding genes and at least eight
conserved components of the highly fragmented large and small subunit rRNAs. Unlike in
apicomplexans, dinoflagellate mitochondrial genes occur in multiple copies, often as gene
fragments, and in numerous genomic contexts. Analysis of cDNAs suggests several novel aspects
of dinoflagellate mitochondrial gene expression. Polycistronic transcripts were found, standard
start codons are absent, and oligoadenylation occurs upstream of stop codons, resulting in the
absence of termination codons. Transcripts of at least one gene, cox3, are apparently trans-spliced
to generate full-length mRNAs. RNA substitutional editing, a process previously identified for
mRNAs in dinoflagellate mitochondria, is also implicated in rRNA expression.

Conclusion: The dinoflagellate mitochondrial genome shares the same gene complement and
fragmentation of rRNA genes with its apicomplexan counterpart. However, it also exhibits several
unique characteristics. Most notable are the expansion of gene copy numbers and their
arrangements within the genome, RNA editing, loss of stop codons, and use of trans-splicing.
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Background

The origin of mitochondria by endosymbiosis has
emerged as a pivotal event in the evolution of eukaryotes.
All eukaryote groups that have been studied bear a deriv-
ative of this endosymbiont, and for most the resulting
mitochondrion is central to energy metabolism as well as
providing several other anabolic and catabolic functions
[1]. A relict, though functionally essential, mitochondrial
genome (or mtDNA) persists in all but a few anaerobic
eukaryotes, and the genes in these genomes firmly iden-
tify the original endosymbiont as an a-proteobacterium
[2]. The jakobid flagellate Reclinomonas americana has the
least derived mitochondrial genome characterized to date,
with at least 97 genes encoded on a single, circular-map-
ping 69 kb chromosome [3]. More typically mitochon-
drial genomes have been reduced to 40-50 genes
arranged on either circular- or linear-mapping chromo-
somes of 15-60 kb (although many plant mitochondrial
genomes have been secondarily expanded to several hun-
dreds to thousands of kb) [4].

In some eukaryotic groups, however, the mtDNA has been
modified more substantially, resulting in extremes in
genome structure. For example, trypanosomatid mtDNA
consists of a few dozen large circular molecules and sev-
eral thousand minicircles that encode guide RNAs that
participate in extensive U insertion/deletion RNA editing
[5]. Diplonemid mitochondria also contain multiple cir-
cular mtDNA molecules, each encoding gene fragments
that are trans-spliced to generate functional transcripts
[6]. Another example is the mtDNA in the ichthyospo-
rean, Amoebidium parasiticum: in this case, mitochondrial
genes are fragmented and dispersed over several hundred
linear chromosomes, totaling > 200 kb [7]. Over the
diversity of eukaryotes, mitochondrial genomes exhibit
other interesting characteristics, including the use of a
number of different non-standard genetic codes, many of
which involve alterations in start and, more rarely, stop
codons [8,9].

One large group in which particularly interesting mito-
chondrial genome variation has been found is alveolates.
Three major phyla make up alveolates: ciliates, apicompl-
exans, and dinoflagellates, with apicomplexans and dino-
flagellates being sister clades to the exclusion of ciliates
[10,11]. Within alveolates, ciliate mtDNA is the most con-
ventional, consisting of a linear molecule, 40-50 kb in
length, that codes for many of the standard mitochondrial
proteins found in other organisms [12]. By contrast, the
mtDNA of the apicomplexan genus Plasmodium is the
smallest known, consisting of a linear, 6 kb tandem repeat
[13] with only three protein-coding genes: cytochrome
oxidase subunit 1 (cox1), cytochrome oxidase subunit 3
(cox3) and cytochrome b (cob). In addition, ciliate mtDNA
encodes two ribosomal RNAs (rRNAs), but the corre-
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sponding apicomplexan genes are fragmented to an
unprecedented degree and scattered about the genome
[13,14].

To date, dinoflagellate mtDNAs have been the least well
studied of alveolate mitochondrial genomes, with existing
data pointing to a genome exhibiting several eccentrici-
ties. The first sequences isolated were four copies of cox1
from Crypthecodinium cohnii, each of which was found to
occur in a unique genomic context [15]. Southern blots
demonstrated multiple different copies of this gene that
varied in abundance, suggesting the C. cohnii mitochon-
drial genome is not as streamlined as in apicomplexans.
Subsequently, cob and cox3 have been found as well, and
multiple, sometimes fragmented copies of these genes
have now been reported from diverse dinoflagellates
(Gonyaulax polyedra, Pfiesteria piscicida, Alexandrium cat-
enella) [16-18]. Most unexpected, however, was the dem-
onstration that protein-coding transcripts are heavily
edited at the RNA level in diverse dinoflagellates [18,19],
unlike the case in either apicomplexans or ciliates.

To gain greater insight into the nature of dinoflagellate
mitochondrial genomes, we have generated a large body
of mitochondrial genomic and transcriptional data for
two distantly related dinoflagellate species, C. cohnii and
Karlodinium micrum. These data encompass more than 30
mtDNA fragments totaling > 42 kb, and more than 50
mitochondrial transcripts. This new information high-
lights several novel features of the organization and
expression of the dinoflagellate mitochondrial genome,
and concurrent studies in two additional distantly related
dinoflagellates, Amphidinium carterae [20] and Oxyrrhis
marina [21], corroborate a number of our findings.
Together, these data reinforce the conclusion that the
dinoflagellate mitochondrial genome has been substan-
tially reorganized since the divergence of dinoflagellates
and apicomplexans from a common ancestor.

Results

Genomic sequence reveals a complex mitochondrial
genome

Crypthecodinium cohnii

Previously reported C. cohnii cox] sequences indicated
multiple copies of the gene with different flanking
sequences [15]. To test if this genomic complexity extends
to other C. cohnii mitochondrial genes, we sequenced
multiple genomic clones containing cob and/or cox3. A
library of EcoRI restriction fragments constructed from a
fraction enriched in mtDNA was screened using a C. cohnii
cob gene probe, obtained by PCR. This screen recovered a
cob clone linked to a 57-bp cox3 fragment, which itself was
used to probe for cox3-containing clones. In total, 14
clones were characterized (11 cob, two cox3 and one con-
taining both), ranging in size from 2.5 kb to 5.4 kb (eight
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clones were 3.7 kb long). End sequencing and restriction
mapping identified six unique cob-containing clones, and
three unique cox3-containing clones. Four clones were
completely sequenced (Figure 1).

The largest clone, pc3#2.2 (5.4 kb), contains a complete
or nearly complete cob gene (see below), followed by
three other identifiable sequences: a 49-bp stretch identi-
cal to a sequence previously found in a cox1-containing
clone [15]; a 113-bp cox3 segment; and a 99-bp large sub-
unit (LSU) rRNA sequence corresponding to mitochon-
drial LSUG in apicomplexans [14]. Two additional cob
clones were sequenced, pcb#7 (3.7 kb) and pcb#2 (3.2
kb). Both encode cob, but with different flanking
sequences than in pc3#2.2. pcb#2 contains unique 3'
sequence immediately after the cob repeat, whereas pcb#7
contains additional common sequence with pc3#2.2 for
~1 kb before unique sequence occurs (Figure 1). Amongst
these clones, we observed two different 5'-flanking
sequences and three different 3'-flanking sequences (Fig-
ure 1). This arrangement recapitulates the organization of

pc3#2.2
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cox1 in C. cohnii mtDNA [15], i.e., a central repeat (1072
bp) containing most of the cob ORF) flanked by different
arrays of unique upstream and downstream sequences.
Partial sequencing of the remaining clones revealed an
additional unique 5'-flanking sequence (in pcb#8) and
one additional unique 3'-flanking sequence (in pcb#4
and pcb#9) in the immediate vicinity of the cob ORF (data
not shown).

Of the three cob-containing clones described above, only
pcb#2 encodes a complete cytochrome b (Cob) protein
(see below). pc3#2.2 and pcb#7 share an alternative 3'
sequence that predicts a Cob C-terminal sequence lacking
24 amino acid residues compared with the pcb#2-pre-
dicted Cob as well as the corresponding Plasmodium falci-
parum Cob. This suggests that the pc3#2.2 and pcb#7 Cob
ORFs represent pseudogenes. Variable 3' coding
sequences were also seen previously for C. cohnii coxl,
with some coding sequences also truncated compared to
other dinoflagellate sequences [15].
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Schematic of C. cohnii mtDNA fragments. Mitochondrial sequences are drawn to scale, with coding sequence on either
the forward or reverse strand indicated above or below the line, respectively. Colored blocks indicate protein-coding genes

and hatched boxes denote rRNA genes. Coding sequence is identified by sequence similarity to gene homologues irrespective
of standard start and stop codons. Common sequence between fragments (> 99% identity) is indicated by horizontal dashed

lines and matching lowercase letters. Black boxes indicate locations and sizes of Southern blot probes. Large inverted repeats
(> 9) are indicated by black dot pairs above and below each sequence, and short proximal inverted repeats (> 6) are indicated
by paired vertical dashes. Minor differences of inverted repeat distribution between common sequence (dashed lines) are due

to the minor sequence differences.
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One cox3-containing clone (pc3#5) was also sequenced,
but it was found not to encode an intact cox3 gene.
Instead, this clone encoded 1339 bp identical in sequence
to the portion of pc3#2.2 that included the 113-bp cox3
segment and the 49-bp cox1 sequence (Figure 1). This
clone was also flanked by unique sequences, providing
further evidence that mitochondrial genes occur in multi-
ple genomic contexts in C. cohnii.

To further investigate the arrangements and relative num-
bers of mtDNA elements, Southern hybridization analysis
was performed using region-specific probes. As shown in
Figure 1, probes were generated specific to: the cob coding
sequence ('cob'); two cob 3'-flanking regions ('cb1', spe-
cific to pc3#2.2 and pcb#7; and 'cb3', specific to pcb#2);
the cox3 sequence ('cox3'); and the rRNA sequence LSUG
('rnl'). These probes were hybridized against a mtDNA-
enriched fraction hydrolyzed by EcoRI. With the 'cob’
probe, a strong signal was detected at 3.7 kb and weaker
signals at 4.8, 4.5, 3.5, and 3.0 kb (Figure 2). This result is
consistent with dominant EcoRI clones being 3.7 kb, and
with multiple genomic contexts for cob. Probing with 3'
flanking sequence 'cb1' revealed a similar banding pattern
to that generated by the 'cob' probe, indicating that this
region is typically contiguous with the cob coding
sequence. Probing with 'cb3' presented a very different
profile, with 10 bands ranging in size from 3.7 to 0.5 kb
and of varying intensity (Figure 2). The cb3 sequence evi-
dently occurs in numerous EcoRI fragments, some without
cob. Probing with 'cox3' and 'tnl' also revealed multiple
bands with varying intensity (Figure 2), again indicating
that these mtDNA elements are present in several different
genomic arrangements. Together these Southern data ver-
ify the existence of multiple copies of C. cohnii mtDNA
elements occurring in different contexts, and indicate that
up to 10 different arrangements occur for some of these
elements.

Karlodinium micrum

Putative mitochondrial genes were identified from a sur-
vey of 16544 K. micrum expressed sequence tag (EST)
sequences assembled into 11903 unique clusters [22].
Oligoadenylation of mitochondrial gene transcripts is
known from other organisms [23,24], and this also
appears to be the case in dinoflagellates as the poly(A)-
dependent K. micrum survey also contained many cDNAs
for mitochondrial genes. Mitochondrial sequences were
identified by homology to genes in other systems, and all
such cDNAs were fully sequenced. Using this strategy we
identified sequences representing the three protein-
encoding genes found in C. cohnii: cox1 (1 cDNA), cob (11
c¢DNAs) and cox3 (9 cDNAs). The average A+T content of
these sequences was 69% (compared to 49% for nuclear
genes, calculated from all 11903 K. micrum clusters), con-
sistent with their being encoded in the mitochondrion.
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Southern blot analysis of C. cohnii mtDNA with 32P-
labelled probes specific for mitochondrial gene and
flanking regions. A fraction enriched in mtDNA was either
untreated ('U') or EcoRI hydrolysed ('E') and the products
separated by gel electrophoresis. Blots were hybridized with
probes specific for cob, cob-flanking sequences ('cbl' and
'cb3'), cox3 or LSUG ('rnl') (see Figure | for probe locations).
Size markers are indicated to the left in kb pairs.

We found no other mitochondrial protein-coding
sequences exhibiting the strong A+T biases suggestive of
an origin from mtDNA (cox2 coding sequence, for exam-
ple, which is typically encoded in mitochondria but is
known to have been transferred to the nucleus in dino-
flagellates [25], contains 47% A+T). Several short cDNA
sequences, however, with high similarity to the frag-
mented apicomplexan mitochondrial tRNAs [14] (see
also GenBank acc. no. M76611 for updated annotation)
were identified. These correspond to apicomplexan LSU
rRNA fragments LSUA, RNA2, LSUE, LSUG and RNA10
(3, 1, 3, 1, and 9 cDNAs, respectively), small subunit
(SSU) rRNA fragment RNA8 (9 cDNAs), and an RNA
(RNA7, 7 cDNAs) that has yet to be assigned to either the
LSU or SSU rRNA. While these sequences have a lesser A+T
bias (56%) compared with the mitochondrial protein-
encoding sequences, the high similarity of these
sequences to their apicomplexan counterparts (see
below), and known oligoadenylation of these transcripts
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in apicomplexans [23,24], strongly implicates these
sequences as additional elements of the K. micrum
mtDNA.

With these 10 mtDNA tags, we used PCR to generate
genomic sequences corresponding to each gene and
regions linking them, with the aim of assembling large
portions of K. micrum mtDNA sequence. Intergenic
sequence recovered by this approach was used to provide
further priming sites to extend the sampling of K. micrum
mtDNA. In addition to amplification of individual genes,
a total of 20 distinct gene linkage products were generated
and fully sequenced (Figure 3B). This analysis yielded a
sequence in which mitochondrial genes were linked to
one another in many different contexts. Gene fragments
were also common, as were mtDNAs with three or four
distinct fragments or tandem repeats (Figure 3B). In total,
cob sequences were found in at least six mutually exclusive
linkages, cox3 in five, cox1 in four, LSUE in nine, RNA10
in six, RNA2 in five and RNA7 in one. Additionally, two
large cDNAs (GenBank accession EF443051, 5 854 bp;
and EF443052, 2153 bp) provided further evidence of
multiple copies of mitochondrial genes and gene frag-
ments linked in novel arrangements. EF443051, for exam-
ple, contains the LSUG coding sequence, a second partial
LSUG unit within a 170-bp repeat, the LSUA sequence,
the RNAS sequence, and an internal fragment of the cox1
gene (73 bp). These cDNAs also indicate that polycis-
tronic transcription occurs in dinoflagellate mitochon-
dria.

Intergenic sequences from the PCR clones were examined
for additional coding elements by comparison to publicly
available databases, specifically searching against K.
micrum ESTs as well as comparing the intergenic regions to
one another. No identifiable genes were found, but one
cDNA sequence (GenBank accession EF443049) was rep-
resented in one mtDNA clone, implicating this sequence
as an additional transcriptional unit of the mitochondrial
genome (Figure 3B, xvi). Comparison of intergenic
sequences to one another revealed numerous dispersed
repeated sequences with either 100% or very high degrees
of identity (Figure 3B, dashed lines). Overall, data from K.
micrum are consistent with those from C. cohnii, both
pointing to a complex genome organization evidently
underpinned by a high level of recombination within
dinoflagellate mitochondria.

Inverted repeats in mtDNA

Previous analysis of C. cohnii cox1 identified many short
inverted repeats in flanking, non-coding sequences [15].
We have applied a similar analysis to the C. cohnii cob- and
cox3-containing sequences, as well as the K. micrum
mtDNA data, and find a very similar pattern of repeat fea-
tures, although we also note some differences between the
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two taxa. Within the C. cohnii sequences, we screened for
inverted repeats of different length and distance between
them, and found two distinct but prevalent classes of this
element type. The first class is similar to those previously
described [15], and consists of very closely spaced, small
inverted repeats (> 6 nucleotides and no more than 5
nucleotides apart). These inverted repeats occur almost
exclusively within non-coding sequence, with the only
exceptions being at the very extremities of genes (Figure 1,
vertical dashes). A second class of inverted repeats consists
of longer repeat elements (> 9 nucleotides) no more than
50 nucleotides apart. Such inverted repeats are also preva-
lent in C. cohnii mtDNA, and are almost exclusively fea-
tures of the non-coding sequences (Figure 1, small
circles).

Analysis of K. micrum mtDNA showed that inverted
repeats are also a feature of intergenic sequences; how-
ever, in this case only the larger class of inverted repeats
was found, with none of the smaller, closely spaced
inverted repeats occurring in any of the mtDNA sequences
(Figure 3). Again these repeats are almost exclusively
located within intergenic regions, with genic inverted
repeats only occasionally present, within gene extremities.
No equivalent inverted repeats were found in a random
sample of 10 K. micrum nucleus-encoded gene sequences
(10630 nucleotides total). The sequences of repeated ele-
ments in both C. cohnii and K. micrum are consistent with
secondary structures such as stem loops and hairpins, and
in both cases the repeated elements that could form such
stem structures are typically G+C rich, in spite of the A+T
bias of these organelle genomes. The inverted repeats
described here are also distinct from secondary structural
elements of the rRNAs (see below) that typically consist of
imperfect inverted repeats. Densely packed inverted
repeats, primarily in intergenic regions, was also recently
described from A. carterae mtDNA [20]. In this case,
imperfect inverted repeats were predicted to form stems of
50-150 nucleotides, with AT-rich loops of ~10-30 nucle-
otides. While inverted repeats therefore appear to be a
consistent feature of dinoflagellate mitochondrial
genomes, the elaboration of these elements is variable
between taxa, with shorter repeats only present in C. coh-
nii.

Mitochondrial gene transcripts lack stop and start codons
Extensive substitutional RNA editing of transcripts occurs
in dinoflagellate mitochondria, so exactly where an open
reading frame begins and ends can only be tentatively
inferred from genomic DNA. Accordingly we used K.
micrum cDNAs, and publicly available mRNA sequences
from several other dinoflagellates, to identify the ends of
all three protein-coding genes.
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Figure 3

Schematic of K. micrum mitochondrial cDNAs (A) and 20 mtDNA fragments generated by PCR (B). Gene
sequences in (A) correspond to the longest cDNA data generated for each gene (see also Figure 4). Mitochondrial sequences
are drawn to scale, with coding sequence in (B) on either the forward or reverse strand indicated above or below the line,
respectively. Colored blocks indicate protein-coding genes, textured black boxes indicate rRNA genes. cDNA lengths (in
nucleotides (nt)) are indicated in (A), and corresponding nucleotide matches in PCR fragments are accordingly indicated in (B).
Common intergenic sequences (> 99% identity) between PCR fragments are indicated by dashed lines and matching lowercase
letters. The letter 'g' indicates matching sequence to unidentified cDNA EF443049. Inverted repeats are indicated by black dot
pairs above and below each sequence.
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Absence of stop codons

Oligoadenylation of transcripts apparently occurs
upstream of any canonical stop codon in all protein-
encoding transcripts analyzed, and for only one gene does
oligoadenylation create an in-frame canonical stop
codon. This lack of encoded stop codons applies to tran-
scripts for cob, cox3 and cox1 represented from multiple
species. All 11 cob transcripts from K. micrum are oligoad-
enylated at the same point, which corresponds to the
expected C-terminus of Cob homologues (Figure 4), but
does not include an in-frame stop. The 3' ends of tran-
scripts from four other dinoflagellates (P. piscicida, Proro-
centrum minimum, G. polyedra, A. carterae) are
oligoadenylated at precisely the same position (Figure 4).
For cox1, the mRNA sequences from four taxa (P. mini-
mum, P. piscicida, A. carterae, and Karenia brevis) are all oli-
goadenylated at the same position, where the protein
sequence is predicted to terminate (Figure 4); once again,
none of these encode a stop codon.

The K. micrum cox3 cDNAs present an even more interest-
ing situation. Five of nine ¢cDNAs are oligoadenylated
approximately 40 codons upstream of the predicted C-ter-
minus, and without an in-frame stop codon (Figure 4).
However, another four cDNAs are oligoadenylated a fur-
ther 129 nucleotides downstream; these cDNAs encode
amino acid sequence with high similarity to the C-termi-
nus of Cox3. In this case, oligoadenylation follows a U
residue creating an in-frame UAA stop codon. The genera-
tion of an in-frame stop codon concomitant with oligoad-
enylation is also apparent in Amphidinium cox3 mRNA;
however, as in K. micrum, other cox3 Amphidinium tran-
scripts are oligoadenylated prematurely, within a few
bases of the premature oligoadenylation site in K. micrum
cDNAs (Figure 4). Alternative oligoadenylation sites have
also been reported for cox3 transcripts in the dinoflagel-
late G. polyedra [16].

A potential alternative stop codon was sought among
these transcript data by looking for a codon that occurs
exclusively in the 3' region of these coding sequences.
However, no such candidate codon could be identified
either within or between the taxa surveyed, nor is there
any evidence for use of a non-standard genetic code (with
the possible exception of start codons, see below). More-
over, oligoadenylation consistently occurred at the posi-
tion where the protein sequence is expected to terminate,
leaving little or no apparent untranslated region (UTR).

Alternative start codons

Dependence on a standard ATG start codon also is appar-
ently relaxed in dinoflagellate mitochondria. From multi-
ple dinoflagellate species mRNAs for the three protein-
coding genes extend beyond conserved N-termini, sug-
gesting these transcripts are likely to be full length, but all
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lack a plausible N-terminal AUG (Figure 4). Existing
genomic sequences corroborate the lack of initiating
ATGs.

Transcript data for cox3 from three species (K. brevis, K.
micrum and G. polyedra) and cox1 from K. micrum are all
apparently full length based on protein alignments and all
lack an AUG in the terminal region (Figure 4). The corre-
sponding genomic region upstream of K. micrum coxl
does not contain an in-frame ATG until 615 nucleotides
upstream of the conserved sequence, and 11 stop codons
fall between them, supporting the likely absence of an
ATG from this gene. Genomic sequences for C. cohnii cox1,
however, do contain an in-frame ATG ~13 codons
upstream of N-terminal sequence conservation seen
among dinoflagellates. While it is possible that this partic-
ular ATG serves as the initiator codon in this taxon, the
lack of any sequence conservation with the corresponding
K. micrum sequence within this 13-residue stretch (Figure
4) suggests that this might also represent a chance ATG
within the 5' UTR.

K. micrum cob mRNAs do encode an AUG close to the site
where sequence conservation with other Cob proteins
begins, but on close inspection there is conserved
sequence upstream of this codon (Figure 4). Further, cob
from the early-diverging member of the dinoflagellates,
Oxyrrhis marina, lacks this AUG or any other upstream of
this region [21]. In mRNAs of all other available species
(K. micrum, K. brevis, and P. piscicida) there is strong con-
servation of the four predicted amino acid residues
upstream of this ATG (F, V/L, L, L), further suggesting that
translation likely initiates upstream of it (Figure 4). The
conservative change of this second residue, V to L, among
dinoflagellate taxa (and V to I in the genomic sequence for
C. cohnii) supports the inference that this region likely rep-
resents protein-coding sequence rather than UTR. Some
conservation of this sequence with Plasmodium Cob is also
apparent (Figure 4). None of the four apparently full-
length K. micrum cob genomic sequences encodes an addi-
tional ATG codon between this region of conservation
and the next in-frame stop codon (Figure 4), and the same
situation is seen in a P. piscicida cob sequence. The C. cohnii
genomic sequences are the only cases to date where poten-
tial ATG codons do occur in this upstream sequence (Fig-
ure 4). However, two of these occur well upstream of any
5'-sequence conservation among dinoflagellates, and
would represent unusually long (5'-extended) and diver-
gent Cob proteins in these cases (Figure 4).

Trans-splicing of cox3

Included among the K. micrum cox3 cDNAs were four
inferred to be full length (839 nucleotides) based on pro-
tein alignments (Figure 4), and five inferred to be prema-
turely oligoadenylated at nucleotide 712. Despite the fact
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A
Cob 3’
L. pol mRNA B FFLYELSFLWIGAQFP\JEKFLS - - FISKKKKK"
P. pis mRNA e FRASL SFLWIGIIOF POEKFLS - —®Af 13SKKKKK"
P. min mRNA B FFLIAYLSFLWIGAQFPQEKFLS - —{&88 13RKKKKK"
A. car mRNA ~13SIASRSTLi o ale O TIZHS iy i - -Spe i TLKKKKK"
K. mic mRNA P FLYELS®LWIGAQFPQEKFLS - -[SSESKKKKK"
K. mic gDNA R FFLLSLWIGAQFPQEKFLS —- 1S3 SFYLLFLYAVAHPVNGSSKGFRFIIS.
C. coh gDNAl  -|@gSIfaiCy LYL/PLEISVCCCQRIIG.
C. coh gDNA2  -|¥gSI)aiCly
P. fal gDNA -JgMCA) RN ILFICSGIFVLHRRTHYDYSSQANT
Cox3 3’
A. car mRNA;  -fRCigg S NRKKKKK"
A. car mRNA,  -JRiigai LS MK 6RS SEVHLF XS SEEEE FYWHFVEMLWLF I LT viziieeed
K. mic mRNA;  -jAiaainavedriasss Pi.KKKKK"
K. mic mRNA,  -jRiggiig(ednafas PUKIVWFIN ARVERaRg NLON- - - -~ L KKKK"
P. fal gDNA -18:83S; 0\ (A RRAAT 4 )3 TRITEL YDTSTEWFUNEFG SYIVIPHTDQITIL EFL
Cox1l 3’
P. pis mRNA - GILLTFSPMHFLGFNVMPRRIPDFPDSFHSWNFLSSIGSGITLLSFGiLitue e
P. min mRNA - GILLTFSPMHFLGFNVEPRRIPDFPDSFHSWNFLSSIGSGITLLSFRIL g
K. bre mRNA B LTVGILLTFSPMHFLGFNVMPRRI PDFPDSFHSWNFLSSIGSGITLLSFAMLI GG
A. car mRNA - GIFLTFHPEHFLGFNEMPRRIEDFPDSFHSWNFLSSIGSGITLLSFMLiNN e
K. mic gDNA BT FEGILLTFSPMHFLGFNVMPRRI PDFPDIIFHSWNFLSS IGSGITLSFGM LIt S st e YA ARG
P. fal gDNA -F LTF]PMHFLGFNVMPRRI PDEPDINSYEWNTEES I GSENT LSRR ?E
B
Cob 5’
K. bre mRNA
P. pis mRNA A8 S 3 (el g bR Y FVLLMKSHLQSYPCP)
K. mic mRNA
K. mic gDNA IIFP.HSFYFYKTPEIPEFFYFVISLFSFCNLVTQH/ISLLFLFNLNGSYNISLISSFS E ‘faauAnlc3:ikel ) s -l0:
P. pis gDNA GLYFLKLINV.MKMNLQSNGSLNW . RQTTVDNDL . WPDLIFYHICNCLLIPNSSFYCLYRI TN ARl ifel a0l
C. coh gDNA SIYSYYLLVGQKSGHWFVGPTLGQCVAGHYVQHSFYL GMKPKQFFYSLGHVAKCFTSGPV]QfiS
P. fal gDNA
Cox3 5’
K. bre mRNA TRLIFKTGIC LFFQ
K. mic mRNA QLLYFGFS] LEF}
G. pol mRNA HEPGERLCFLCFIEEISAWRLV. CVFEHYSFLA
C. mer gDNA MSNL, VL{FLigE----- LVS
R. ame gDNA PRITS GTLC —————

N. oli gDNA
H. sap gDNA
P. fal gDNA FI'F-NI'SNIKA ALTSLYG SL KYJjgS------—------—-----

Coxl 5’

P. pis mRNA
K. bre mRNA
K. mic mRNA
K. mic gDNA
C. coh gDNA
P. fal gDNA

Figure 4

Absence of conventional stop and start codons represented in protein alignments of dinoflagellate Cob, Cox3
and Cox|. Predicted amino acid sequence termini represent (A) 3' and (B) 5' sequences from cDNA and gDNA. Blue
sequence indicates conceptual translation of 3' oligo(A) tract of mRNA:s. Identical and similar residues are indicated by black or
grey backgrounds, respectively. Inferred differences between cDNA and gDNA sequences of the same taxa correspond to
RNA editing changes. Only longer cox3 mRNAs (mRNA,) encode an in-frame stop codon, generated by oligoadenylation fol-
lowing a terminal U. The 5' sequence termini represent either the limit of reverse transcription of mMRNAs, or inferred transla-
tions of 5' genomic coding sequence (gDNA). Cob 3' sequence 'C. coh gDNAI' corresponds to clone pcb#2, while 'C. coh
gDNA2' corresponds to clones pc3#2.2 and pcb#7. Underlined K in 'K. mic mRNA' (B, Cox| 5') indicates the site of a 10-nt
deletion relative to 'K. mic gDNA'. Underlined Ms (B, Cob 5' and Cox| 5') indicate possible initiation codons found in-frame,
but upstream of conserved sequence. Non-dinoflagellate homologues included for comparison of protein termini are: P. fal,
Plasmodium falciparum M7661 |; C. mer, Cyanidioschyzon merolae, BAA34657; R. ame, Reclinomonas americana, AAD11871; N
oli, Nephroselmis olivacea, AAF03208; H. sap, Homo sapiens, AAZ02899. Dinoflagellate taxa and accession numbers: K. mic, Kar-
lodinium micrum, this study; C. coh, Crypthecodinium cohnii, this study; L. pol, Lingulodinium polyedrum, CD810189, CD810189; G.
pol, Gonyaulax polyedra, AF142470; P. pis, Pfiesteria piscicida, AF357518, AF463413, AF357518, AF357521; K. bre, Karenia brevis,
CO062170, CO065693, CO062289, CO060561; A. car, Amphidinium carterae, CF064846, CF065669, CF06481 1, CF067165; P.
mic, Prorocentrum minimum, AY030285, AF463415.
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that the longer cDNA is likely the functional cox3 mRNA,
a genomic copy corresponding to it could not be ampli-
fied from genomic DNA using multiple primer combina-
tions (all of which successfully amplified the
corresponding fragments in RT-PCRs; data not shown).
The longest product obtained from genomic DNA corre-
sponded to nucleotides 50-712 of the full-length cox3
sequence. Six genomic fragments containing cox3
sequence were obtained by amplifying between genes,
and these suggest that the gene is fragmented in the
genome (Figure 3B, xv, xvi, xvii, xviii, Xix and xx). Notably,
three unique cox3 genomic sequences are truncated at
nucleotide 712, precisely where the short cox3 transcripts
are oligoadenylated (Figure 3B, xv, xvi and xx). Immedi-
ately downstream is a stop codon, and subsequently no
further sequence similarity to cox3. Similarly, the only
genomic sequences found to encode the 3' end of the long
transcript are 5'-truncated at nucleotide 718, with
sequence unrelated to cox3 upstream of this point (Figure
3B, xvii and xviii). Taken together, these data suggest that
the long cox3 transcript is the product of trans-splicing,
where nucleotides 1-712 are joined to nucleotides 718-
839 arising from two different genomic fragments. The
intervening five nucleotides (713-717) are all A residues
in the full-length cox3 transcript, suggesting that trans-
splicing occurs within the oligo(A) tail of the upstream
transcript.

Mitochondrial rRNAs are fragmented in a similar pattern

as in apicomplexans

SSU and LSU rRNAs are encoded in all characterized mtD-
NAs; however, until recently [17] no mitochondrial rRNA
sequences had been described from dinoflagellates. In
this study we have identified several discrete, short
sequences with strong similarity to components of the
highly fragmented rRNAs of apicomplexans [14] (Gen-
Bank acc. no. M76611). From K. micrum, we obtained
c¢DNA sequences representing five LSU rRNA fragments
(LSUA, RNA2, LSUE, LSUG, and RNA10), one SSU rRNA
fragment (RNA8), and one unassigned rRNA fragment
(RNA?7), all of which correspond to known transcriptional
units of the Plasmodium mitochondrial genome. We also
identified an additional LSU rRNA fragment, LSUF, as
well as LSUE and LSUG, from an EST survey we previously
conducted in Heterocapsa triquetra [26]. Alignment of
LSUA, LSUE, LSUF, LSUG and RNA10 to their Plasmodium
LSU homologues is shown in Figure 5. SSU rRNA frag-
ment RNA8 and unassigned fragment RNA7 share 66%
and 74% sequence identity to Plasmodium homologues,
respectively. For each fragment, multiple cDNAs were
sequenced (with the exception of RNA2 and LSUG), and
oligoadenylation was found to occur at a consistent site
(Figure 5). Although these cDNAs are all relatively short,
the 5' ends could not be definitively determined from
these cDNAs because the 5'-lengths were variable. Further,
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genomic copies (where they are known) encoded con-
served sequence upstream of the 5' ends of cDNAs of
LSUE and LSUG (Figure 5).

For C. cohnii, the LSUG sequence identified on EcoRI clone
pc3#2.2 was analyzed by 3' RACE and the site of oligoad-
enylation was shown to be identical to that in the corre-
sponding K. micrum and H. triquetra cDNAs (Figure 5).
Northern analysis of C. cohnii RNA showed a single LSUG-
positive band at ~108 nucleotides [27]. This size corre-
sponds well with the limit of conservation among LSU
rRNA sequences, as well as the size of the Plasmodium
LSUG. C. cohnii LSUE was also amplified and the ends
determined by 5'-cDNA sequencing and 3' RACE (Figure
5). Northern hybridization against mitochondrial RNA
confirmed the presence of an ~200 nucleotide RNA spe-
cies [27].

The oligoadenylation sites for mitochondrial rRNA frag-
ments are identical among dinoflagellates, and either
identical or within a few nucleotides of those observed in
Plasmodium (Figure 5). The 5' ends of these sequences,
whether defined experimentally (LSUE and LSUG from C.
cohnii) or by sequence conservation, are also very similar
to those of their Plasmodium counterparts. The only possi-
ble exception is K. micrum RNA2, where the sole cDNA
obtained contained substantial upstream (305 nucle-
otides) and downstream (79 nucleotides) sequence com-
pared to the region with similarity to Plasmodium RNA2.
However it is possible that this cDNA represents an
unprocessed precursor, and accordingly further work is
required to substantiate the size of this putative rRNA frag-
ment. Secondary structure predictions for dinoflagellate
sequences LSUA, LSUE, LSUF, LSUG, RNA10 and putative
RNA2 (limited to the region of similarity to the Plasmo-
dium RNA2) all indicate that the expected folding and
intermolecular base pairings occur (Figure 6), and these
fragments are likely to contribute to a viable reconstituted
LSU rRNA, as for Plasmodium.

RNA editing

Protein-coding genes

RNA editing has been described for cox1, cob and cox3
transcripts from diverse dinoflagellates, including the cob
mRNA of K. micrum [18-20]. Comparison of K. micrum
c¢DNA and corresponding mtDNA sequences for the three
genes identified here confirms this conclusion for tran-
scripts of cob, and further shows that cox1 and cox3 tran-
scripts are also edited. The average density of editing of the
cox1 transcripts is one substitution per 36 nucleotides and
this value is consistent with other studies in different spe-
cies [18,19]. By contrast, editing in cox3 transcripts is over
twice as dense, at one substitution per 17 nucleotides,
making cox3 the most heavily edited gene transcript in
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CAAGLGATCTAGETIRXE TETAA
AR éCAEGTGATCTZM

S 337

T.pyr 212 TT ETA'IEAGACCCGAAECEAAGTGATCTA‘
A.tha @TAGTTE‘TCTATTEGACCCGAAACC ARSGATCTAGHE? 200
E.col 602 o1 GRleeCe TTRAGT TGN ER T AGACCCGARACCEGTGATCTAGH A 742
T.pyr TTAGGGGTGAAAGGCEATCAAACTTHGETATAGCTGGTTTchHCGAAA:cmTT V\GTAGEGT A T TTAEETTENARTANGRAIETA 472
A.tha eleIe T AGGGGTGAAAGGCCAARCAARRT GGATATAGCTGGTTTTCCGCGAAATCTATT# 2 GTC GG—— G"GGTAGAGCAC CAUGEE 333
E.col eleleTEG GGGTGAAAGGCCAATCAAACEEGGABATAGCTGGTTETCCRC ECTATTTIGGTAGEGEETC TV CT—- e R TEs 875
K.mic LSUE 1 P¥Xelel 4\ GGTCCTAAGGTAGCAAAAT TCCT TGCHGGTAAGT TCCGTCCAGCAT GAESGGTGTAACGACT TCLUCACTGTCCTAGCC 101
K.mic LSUE gen  --------- GRTGATATTH T XS E S ERICAGAAGGT! cerccTanceTaccaaraTTCCTTAC GETAAGTTCCCTC O \ecATCARCe TG TARC GACT TC R cACTeTdicTAGCCTIEGTC TR A
H.tri LSUE 1 Y GGTCCHAAGGTAGCAAAATTCCTTGHC-GGTAAGTTCCGTCJGCATGGGTGTAACGACTTCCACTGTCHCTAGCC BAGTCTCH ANCT)
C.coh LSUE 1 NNN ~GTAAGTTCCGTCCR(§AT A ~GGTGTAAEGACTTCCACTGTCHCTAGC BAGTCTCH d 118
P.fal LSUE 1 A ALY CGGGTAAIETCCGTCCTGCATGARSGGTGTAACGACT TCCECARTGTCECTAGHETEAGRCTC] 4 119
T.pyr 1310 AW GTAACESTEACGGTCCTAAGGTAGCAAAAT TCCTTGECGGGTAAGT TCCGTCCTGCATGAMGGTGTAACGACTECeIECTGTCCEANVXSiAGRC TCY 4 1452
A.tha 1496 WTRGLY AGTAACTeTAACHGTCCTAAGGTAGCEAAATTCCTT CGETAAGTECGHCCTGC AR A d 1638
E.col bRy PR e T {EA T O GAAGCCCCGGTARACGGCGGCSGTAACTATAACGGTCCTAAGGTAGCEARAT TCCT T A A AGl) 3 2014
K.mic LSUE 102 TA_ JGGAAERCCAACGGCCAGACGGTAAGACCCTGGCACCTTT®CTTC C:EAAAAAAAAAA
K.mic LSUE gen Aciic A TA'GHGG B Ca ACGGCCAGACGETARGACCCTAGCACCTT TiCTTC - - ————e-
H.tri LSUE 100 AGuarbdeleTinT - TA'GHGGAA‘ CAACGGCCAGACJ“AAGACCCTGHGCACCTT eCTTCTRCTEEEELEEEEEE!
C.coh LSUE 119 TEATCTGTA. dGGAnEH CCAACGGCCAGAEG‘AAGACCCTGTGCACCTT \8CTTC!
P.fal LSUE 120 THGAATTATC'TGAATAT GGARE c-CGGccEGACGGTAAGAccCTGHGCACCTTHACTTc - $4A2A2222222
T.pyr EPEEN - rTcaAT TR TCORTGAARATC C-TATT‘ GACGG:AAGACCCTHTG(ECCTTTACT ATCHETARARA - - -RTTRR TTRT TRIAPTAACTASACA A-| TrTAARARTEGAR 1585
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H.tri LSUF
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K.mic RNA10 1 GG T TGGCAAAGGCGCTAC G U A I CAL GAGE TS T GTACGALAGGA RAGGAAAG
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E.col 2629 -- ——— AR[herGTEl

.
Figure 5

Dinoflagellate LSU rRNA sequences aligned to those

of their fragmented apicomplexan counterparts. Intact

LSU rRNAs from the mitochondrion of a ciliate and plant and from a bacterium are included in the alignment. Color groups

indicate distinct rRNA cDNAs with oligoadenylation shown i
LSUG and RNAI0 (lowercase sequence denotes primer sites
micrum genomic and cDNA sequences. Red box indicates the
sequences. K.mic, Karlodinium micrum; H.tri, Heterocapsa triqu
M7661 |; A.tha, Arabidopsis thaliana, YO8501; T.pyr, Tetrahyme

n italics. K. micrum genomic sequence (gen) is included for LSUE,
used for RNA10 gen). Yellow highlights differences between K.
conserved domain of the sarcin/ricin loop represented in RNAI0
etra; C.coh, Crypthecodinium cohnii; P.fal, Plasmodium falciparum
na pyriformis, M58010; E.col, Escherichia coli, D 12649.

dinoflagellates. Editing of cob mRNA lies in between these
extremes, at one substitution per 25 nucleotides.

In the case of cox1 transcripts, four types of substitutional
changes were detected at 42 sites. Of these, 48% were A to
G substitutions, followed by U to C (21%) and smaller
proportions of C to U and G to C edits (17% and 14%,
respectively). This observation is consistent with cox1
mRNA editing occurring in other species, where most
(80%) of the reported changes are A to G and U to C sub-
stitutions [18,19]. So far, G to C changes have only been
observed in mtDNA-encoded mRNAs of dinoflagellates,
whereas A to G changes have only been reported in
nucleus-encoded mRNAs. cox3 mRNA editing types are
generally consistent with those observed in cox1 and cob
mRNAs. Five types of substitutional changes were

observed at 50 sites, of which 42% were A to G changes,
followed by C to U and U to C edits (28% and 22%
respectively), as well as three G to A edits (6%) and a sin-
gle G to C edit (2%). For both cox1 and cox3 mRNAs, the
majority of substitutions occur at the first or second posi-
tions of affected codons (88% and 96%, respectively), and
over 90% of editing events result in a change in predicted
amino acid. In K. micrum cox3 mRNA (and cox1 and cob
mRNAs of other dinoflagellates [18,19]), editing also
removes a UAG codon, which is typically a stop codon but
is apparently unassigned in dinoflagellates.

Analysis of the 20 cDNAs corresponding to cox3 and cob
offers further insight into the process of RNA editing in
dinoflagellates. Despite overall uniformity of transcript
editing, some cDNAs exhibit pre-edited states. K. micrum
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LsuG

Figure 6

Predicted secondary structures of dinoflagellate
mitochondrial LSU rRNA fragments. RNA sequences
were deduced from RNA and DNA sequences, and struc-
tures were modelled on the secondary structure of E. coli
LSU rRNA. Fragments correspond to K. micrum RNA2,
LSUA, LSUE, LSUG and RNAIO, and H. triquetra LSUF. Note
that the potential hairpin at the 5' end of RNAI0 does not
have a counterpart in E. coli LSU RNA. Only a portion of the
RNA2 cDNA sequence is shown; also, the actual 5' terminus
of LSUA (and LSUF) likely extends past the sequence shown.
Positions of the dinoflagellate fragments are mapped onto the
full E. coli LSU rRNA structure, inset. Putative Watson-Crick
and wobble base pairs are indicated by lines and dots respec-
tively, GoA pairs by open circles, and non-canonical pairs by
closed circles. Positions enclosed by a circle are editing sites,
with the post-edited nucleotide shown. Oligoadenylation is
indicated by italics. Helices are numbered according to the E.
coli 23S rRNA structure [61].

cox3 and cob contain 50 and 44 editing sites, respectively,
with the cDNAs analyzed here representing in total 343
and 231 potential editing events, respectively. However at
nine of these sites in the cox3 cDNAs, and five in the cob
cDNAs, the pre-edited nucleotide occurs, indicating 2.6%
and 2.2% 'non-edits’, respectively. These 'non-edits' were
present in only a few cDNAs (two and three for cob and
cox3, respectively), suggesting that the great majority of
cDNAs represent mature transcripts. The pre-edited sites
are scattered throughout the transcripts where they are
found, occur between other edited sites, and in no obvi-
ous order in any sequence. These pre-edited sites may
indicate editing failures, in which case such transcripts
could give rise to defective translation products. Alterna-
tively, they may represent editing intermediates. If the lat-
ter is the case these data suggest that editing does not
occur in a linear sequence along each transcript. Pre-
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edited mitochondrial cDNAs have also recently been
found in A. carterae mtDNA [20].

rRNA transcripts

Comparisons of IRNA cDNAs to genomic sequences are
constrained by the smaller sizes of these sequences (for
example 63 nucleotides for RNA7), in particular where
PCR has been used to amplify genomic sequence a greater
portion of this sequence represented primer binding sites
and therefore cannot be used in such a comparison. Nev-
ertheless, from the available data, there is no evidence of
editing of RNA8, RNA10 or RNA7. For LSUE, complete
genomic sequence (170 nucleotides) was available from
the internal regions of five PCR fragments, with the major-
ity of the sequence available from a further four PCR prod-
ucts using LSUE primers. These sequences were identical
to the cDNAs except for three consecutive nucleotides that
were absent in two of the three LSUE cDNAs obtained
from the EST survey. To test this anomaly, a further five
cDNAs were independently generated, and these all con-
tained the three nucleotides, and therefore were identical
to genomic LSUE sequences and to one of the original EST
sequences. These results suggest that the three-nucleotide
deletions seen in two cDNAs represent a rare artifact,
likely generated during reverse transcription, and that K.
micrum LSUE is likely also not edited.

There was, however, evidence of substitutional editing for
LSUA and LSUG. In both cases genomic copies of these
sequences differed from transcripts: in LSUG at eight posi-
tions and in LSUA at six positions (Figures 5 and 6). Con-
sistent with the protein-coding genes, these substitutions
consist mainly of A to G (36%), C to U (43%) and U to C
(14%) substitutions, with one case of C to G. Given that
dinoflagellate mitochondrial genes occur in multiple cop-
ies, recovery of further, independently isolated copies of
these genes will be required to substantiate these infer-
ences of rRNA editing. Evidence for rRNA editing has also
recently been reported with the dinoflagellate A. catenella,
where two inferred editing events were identified for the
'LSUE-like' rRNA [17].

Discussion

Prior to this study our view of the dinoflagellate mito-
chondrial genome was gleaned from relatively sparse
molecular data obtained from several diverse dinoflagel-
late taxa. These data nevertheless provided a tantalizing
view of a mitochondrial genome displaying several eccen-
tricities. Coding sequences for entire or partial versions of
cox1, cob or cox3 have been shown to occur in multiple
copies and in different genomic contexts in C. cohnii
[15,27], G. polyedra [16], P. piscicida [28], and A. catenella
[17]. These data paint a picture of dinoflagellate genomes
in sharp contrast to the minimalist 6 kb apicomplexan
mtDNA, which encodes single copies of these genes,
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tightly packed together [13]. Similarly, extensive RNA
editing has been described in mRNAs from diverse dino-
flagellates [18-20], a process that does not occur in api-
complexans. In this study we have generated a much more
comprehensive body of mitochondrial genomic and tran-
script data for two dinoflagellate species, C. cohnii and K.
micrum, and these data are bolstered by a concurrent mito-
chondrial genomic study of the dinoflagellate A. carterae
[20]. Together, these results reinforce the view that the
dinoflagellate mitochondrial genome has diverged radi-
cally in form from that of apicomplexans, despite the per-
sistence of some intriguing similarities.

Mitochondrial genome content and form

Compared to the complement of 43 to 52 genes in the
mitochondrial genome of ciliates [12], the most basal
member of the phylum Alveolata, the very low informa-
tion content of apicomplexan mtDNA (three protein-
encoding genes - cox1, cox3 and cob - and ~23 short tran-
scription units that encode the functional SSU and LSU
rRNAs) clearly shows that there has been considerable
mitochondrial gene loss and/or relocation to the nucleus
during alveolate evolution. We infer that much, if not all,
of this gene relocation must have occurred prior to the last
common ancestor of dinoflagellates and apicomplexans.
In EST surveys, we have only identified the same three
protein-coding genes (cox1, cox3 and cob); moreover, we
found no other mitochondrial ORFs of known function in
> 28 kb and > 14 kb of mtDNA sequence from K. micrum
and C. cohnii, respectively. These findings are consistent
with the previous demonstration that cox2, an otherwise
nearly ubiquitous component of mitochondrial genomes,
has been relocated to the nucleus in both apicomplexans
and dinoflagellates [25,29]. The only additional genes we
identified are ones representing the mitochondrial SSU
and LSU rRNAs, which together with cox1 and cob are uni-
versally present in mtDNA. No tRNA genes have been
found linked to mtDNA sequences, similar to apicompl-
exans, where tRNAs are apparently imported into mito-
chondria from the cytoplasm [13].

Dinoflagellates and apicomplexans also share the charac-
teristic of highly fragmented SSU and LSU rRNAs. Frag-
mentation of mitochondrial rRNA genes has been
documented in the mitochondrial genomes of several
eukaryotes, including ciliates [30,31], several green algae
[8,32-36] and a fungus [37]. The degree of fragmentation
in apicomplexan mitochondrial rRNA is more extreme
than in these other cases, with 23 fragments for the SSU
and LSU rRNAs reported to date, coding regions for which
are rearranged and interspersed with other genes in the
genome [14]. From within three disparate dinoflagellate
taxa we have identified eight rRNA fragments similar to
fragments in P. falciparum, and three of these TRNA species
have also recently been reported from two further taxa, A.
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catenella and O. marina [17,21]. The dinoflagellate rRNA
fragments mostly appear to correspond to their Plasmo-
dium counterparts in length and sequence termini, sug-
gesting that a stable level and pattern of fragmentation has
been inherited from the common ancestor of dinoflagel-
lates and apicomplexans. Given that ciliate mitochondrial
rRNAs are comparatively intact (encoding bipartite SSU
and LSU rRNAs, and with only the fragmented LSU rRNA
gene rearranged; see [12]), the extreme fragmentation in
dinoflagellates and apicomplexans must have occurred
since their divergence from ciliates.

Despite a similar gene content the arrangement of dino-
flagellate and apicomplexan mitochondrial genomes is
radically different. Where the apicomplexan genome is
relatively simple and compact, the dinoflagellate mito-
chondrial genome is complex, with multiple copies of
each gene imbedded within different genomic contexts.
Gene fragments and non-coding regions are also repeated,
altogether suggesting a great deal of recombination in the
genome, which is also consistent with the lack of
sequence divergence among the multiple copies of these
elements. Shotgun sequence data recently published for
the A. carterae mitochondrion corroborate this picture of
a recombining complex genome, and further suggest that
the majority of the mitochondrial genome (~85%) might
be non-coding [20].

Gene expression in dinoflagellate mitochondria

Within the K. micrum EST survey, long cDNAs that
encoded several mitochondrial genes or gene fragments
(the longest being 5854 bp) were noted. By contrast, most
mitochondrial ¢cDNAs we recovered encoded a single
gene, suggesting the longer transcripts may be rapidly
processed into shorter molecules. Polycistronic transcripts
up to 5.9 kb are also known from apicomplexan mtDNA,
these are rapidly processed to short, single-gene tran-
scripts [38]. Interestingly, the polycistronic transcripts
from K. micrum are not edited, indicating that RNA editing
acts on the individual gene transcripts.

The use of alternative initiation codons in dinoflagellate
mitochondrial genes is consistent with what is seen in the
mitochondria of other alveolates. In Plasmodium species,
cox1 and cox3 lack an in-frame ATG, and while cob does
contain a ATG near the initiation site, it is uncertain
whether initiation occurs at this site or upstream of it [24]
(as in the case of dinoflagellate cob). ATT and ATA have
been proposed as alternative initiator codons in Plasmo-
dium species [39] (as well as some animal, fungal and
algal mitochondrial genes [9,40]). Several mitochondrial
genes from the ciliate Tetrahymena pyriformis also appar-
ently use alternative initiation codons of the form ATN or
NTG: in the case of cob an ATG within eight codons of the
predicted N-terminus is apparently ignored, with GTG
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used in its place [41]. Thus, there are precedents for reli-
ance on codons other than ATG for translation initiation
within alveolates. Potential initiator ATN/NTG codons
exist in all three Karlodinium mitochondrial genes; how-
ever, a broader survey of dinoflagellates or analysis of pro-
tein sequences will be necessary to identify the most likely
candidates.

An absence of stop codons is more unusual. In T. pyri-
formis all mitochondrial protein-coding genes terminate
with TAA [12]. TGA encodes tryptophan (as in several
mitochondrial systems [9,42]) and TAG is simply not
used. All three Plasmodium mitochondrial protein-coding
genes also use TAA [24]. By contrast many dinoflagellate
mitochondrial gene transcripts appear to lack any termi-
nation codon. With only a single known exception (a cox3
fragment from Lingulodinium polyedrum [16]), transcripts
are oligoadenylated upstream of any of the standard ter-
mination codons, and RNA editing does not generate an
in-frame stop. Further, in none of the transcripts is a sense
codon uniquely localized in the 3' region in such a way as
to suggest that it serves as an alternative terminator (as in
[8,43]). The oligoadenylation of K. micrum cox3 mRNA
does produces a UAA codon, as is also the case for cox3
transcripts for A. carterae and O. marina [21], that suggests
that cox3, unlike cox1 or cob, might utilize conventional
stop. Such a mechanism for reconstituting a functional
UAA is known to occur in some mammalian mitochon-
drial transcripts [40].

It is unclear how the mitochondrial translation machinery
might cope with the absence of termination codons.
Release factors that are essential for disassembly of the
ribosome usually recognize specific codons, so the
absence of these codons could block ribosome disassem-
bly. There are precedents in other mitochondrial systems
for the lack of termination codons: transcripts of two
plant mitochondrial genes have been shown to be oli-
goadenylated upstream of in-frame stops [44]. Proteins
encoded by both of these genes can be detected, indicat-
ing that the corresponding transcripts are successfully
translated. In human mitochondria, a rare mutation has
been shown to ablate a stop codon, and yet the corre-
sponding protein is still detectable is these cell lines [45].
Eubacteria are known to be able to rescue damaged mRNA
molecules that have lost their termination codon by use of
a specialized RNA with properties of both a tRNA and an
mRNA [46]. These so-called tmRNAs restart protein syn-
thesis by providing a terminal mRNA section that encodes
a functional stop codon. It has been speculated that an
equivalent system might be used in plant and animal
mitochondrial systems where mRNAs lack stop codons
[44,45]. Indeed, tmRNA-like RNA species have been iden-
tified in the mitochondria of jakobid flagellates such as R.
americana; however, these RNAs lack the terminal mRNA-
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like segment of a conventional tmRNA [47]. Moreover,
the C-terminal tag provided by a tmRNA normally targets
the modified protein for degradation rather than for func-
tion [48]. Whatever the actual mechanism of translation
termination in dinoflagellate mitochondria, it appears to
present a clear difference with respect to protein synthesis
termination in ciliate and apicomplexan mitochondria.

Lastly, we have found a likely case of trans-splicing of
dinoflagellate mitochondrial transcripts, which adds a
further layer of complexity to genome organization and
expression in these organelles. While we cannot conclu-
sively eliminate the possibility of a complete cox3 coding
sequence in dinoflagellates we have not been able to
detect an intact gene. This negative result is consistent
with all other studies to date, which report only partial
cox3 sequences from five different dinoflagellate taxa [16-
18,20,28] (note that the A. catenella cox3 is reported as
complete [17], but it lacks approximately 300 nucleotides
compared with homologs in other dinoflagellates and in
apicomplexans). All available data from genomic frag-
ments and transcripts suggest that the complete cox3 tran-
script is generated by trans-splicing. Such trans-splicing
has not been reported for either apicomplexan or ciliate
mitochondria. In ciliates nad1 is split into two segments
[12] but they are independently transcribed, and there is
no evidence of splicing of the corresponding transcripts to
create a continuous, complete nadl ORF [41]. Trans-splic-
ing occurs in plant mitochondria [49,50], but in these
cases the coding breakpoints are flanked by group II
intron elements, which form secondary structures that
mediate the splicing events. We have no evidence of group
IT introns in dinoflagellate mtDNA, but we do note that
the intergenic sequences contain numerous inverted
repeats consistent with extensive secondary structure,
which might conceivably facilitate splicing events. The
unique nature of the dinoflagellate trans-splicing is also
evident from the inclusion of five A residues at the splice
boundary that appear to derive from the oligo(A) tail of
the upstream fragment. The removal of any downstream
sequence by oligoadenylation prior to splicing argues
against the involvement of a cis-acting element such as a
group II intron in the splicing process. It is conceivable
that oligoadenylation of the short 5' cox3 transcript could
serve as a degradation signal for these short transcripts, as
has been observed in human mitochondria [51]. How-
ever, lack of a complete cox3 coding sequence, coupled
with the fact that the site of oligoadenylation corresponds
with the break in coding sequence of 5' and 3' cox3 por-
tions, suggests that the short cox3 transcripts are impor-
tant intermediates in the generation of the complete cox3
transcripts.
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RNA editing

The RNA editing observed in K. micrum cox1, cob and cox3
mRNAs is consistent with the level and type of editing
observed in cox1 and cob mRNAs in other dinoflagellate
species [18-20], with the exception that cox3 is even more
heavily edited than either of cox1 or cob. While some edit-
ing sites are conserved, others are unique to certain taxa,
suggesting that new editing sites are constantly evolving in
dinoflagellates. In this study we also found evidence in K.
micrum of editing of rRNA fragments LSUG and LSUA.
RNA editing of A. catenella LSUE has also recently been
reported [17]. At present the data are insufficient to assess
the conservation of rRNA editing sites among taxa; how-
ever, two inferred editing sites in A. catenella LSUE are not
edited in K. micrum, suggesting that rRNA editing sites are
constantly evolving as with those in protein-coding genes.

Whether RNA editing plays some functional role in dino-
flagellate mitochondria is unclear. From analysis of pro-
tein-coding genes in several dinoflagellates, Lin et al [19]
noted that the majority of editing events are to either a C
or G, thus generating a net reduction in A+U content from
the bias of ~70% for the coding sequences. We observe
this trend also in Karlodinium protein-coding sequences.
This re-tailoring of mRNA sequences might better accom-
modate the suite of nucleus-encoded tRNAs that are likely
imported from the cytoplasm, and which typically partic-
ipate in the decoding of nucleus-encoded mRNAs having
a more balanced A+U content [19]. Ribosomal RNA is
also sensitive to A+U content, with secondary structure
elements such as hairpin loops better stabilized by G-C
than by A-U pairs; thus, helical regions tend to be rela-
tively more G+C rich than other rRNA domains. While the
available data for rRNA editing are limited (14 editing
sites), it is interesting that the editing types in TRNAs have
an overall neutral impact on A+U content. Indeed the A+T
content of mitochondrial genomic sequence specifying
rRNAs is already much reduced (56%) compared to that
of the protein-coding genes. This observation might add
weight to the notion that editing helps correct (at the RNA
level) the A+T skew of protein-coding genes.

The mechanism of RNA editing in dinoflagellate mito-
chondria is also unknown; however the possibility of a
guide RNA (gRNA)-assisted mechanism, similar to that
employed in trypanosomatid mitochondria [52], has
recently been suggested [20]. Nash et al [20] report that
gene fragments encoded in mitochondria sometimes
encode the 'corrected' nucleotide at an inferred editing site
(in 6 out of 25 sites for which they had data). Thus such
fragments could encode templates that direct the editing
events of full-length transcripts. We analyzed the K.
micrum data for similar evidence of post-edited nucle-
otides represented in gene fragments. From five fragments
(representing unambiguously truncated genes) that span
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71 editing sites across the three protein-encoding genes,
only one site in one of the fragments corresponds to a 'cor-
rected' nucleotide seen in cDNAs at an inferred editing site
(nucleotide 30 in the cob gene). An independent copy of
the cob genomic sequence verified that this nucleotide dif-
ference is genuine (not a PCR error). Hence this might
represent an example of an editing template in K. micrum;
however, if gRNAs are responsible for all editing events, a
very large number of additional fragments must exist to
direct the remainder of the changes. Clearly further work
is required to shed light on the mechanism of RNA editing
in dinoflagellates.

Future directions

A key question that remains is whether the observed diver-
sity of dinoflagellate mitochondrial genes, gene frag-
ments, and repetitive elements derives from a single
mtDNA molecule or from multiple chromosomes. A sim-
ilar scenario of mitochondrial genes occurring as multiple
copies and fragments is seen in the ichthyosporean A. par-
asiticum, a unicellular organism closely related to animals
[4]. In this protist, several hundred small linear chromo-
somes constitute the mitochondrial genome, each encod-
ing a smattering of genes and partial genes. Diplonemids,
members of the phylum Euglenozoa, also contain frag-
mented genes on separate circular mitochondrial chromo-
somes [6]. It is unknown whether either of these unusual
situations applies to the organization of the dinoflagellate
mitochondrial genome; however, in this regard we make
two preliminary observations. One is that long-range PCR
was unable to generate longer contiguous sequences link-
ing the many mtDNA elements we report in this study.
Rather, additional short unique gene linkages were
obtained, and it is clear that we have yet to sample the full
diversity of gene combinations. Secondly, the presence of
individual genes in partial tandem repeats (see Figure 3B,
vi and viii) is consistent with minicircles, as seen in dino-
flagellate plastid genomes [53]. If these cases represent
true minicircles, we have been unable to amplify a corre-
sponding sequence to close these circles (note that Figure
3B, vi and vii contain unique sequence relative to vi and
viii, respectively). It is also possible, of course, that the
tandem repeats that we observe are simply a consequence
of further recombination events, and the high diversity of
gene combinations.

Conclusion

A greater depth of sampling of dinoflagellate mitochon-
drial DNA and mRNA has provided a clearer view of a
complex genome and many peculiarities of gene expres-
sion. We find that the dinoflagellate mitochondrial
genome shares several features in common with the
mtDNA of its apicomplexan sister lineage, but also many
novel characteristics. Features in common for the two lin-
eages are: (1) a very high level of gene relocation from the
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mitochondrion, (2) extensive TRNA gene fragmentation
and dispersal, and (3) use of non-standard initiation
codons. Features unique to dinoflagellates are: (1) gene
copy number expansion and reorganization, (2) loss of
stop codons from protein-coding genes, (3) mRNA trans-
splicing, and (4) RNA editing of protein-coding and rRNA
transcripts. These data demonstrate a remarkable burst of
organelle genome evolution in dinoflagellates following
divergence from Apicomplexa, and also challenge our
understanding of the mechanistic details of genome
maintenance and expression, most notably translation
termination.

Methods

Cell culture, nucleic acid extraction, and mtDNA cloning
C. cohnii cells were cultured and nucleic acids extracted as
previously described [54].K. micrum and H. triquetra were
cultured as previously described [22,26] and genomic
DNA was extracted using the DNEasy Plant Minikit (Qia-
gen, Hilden, Germany). For C. cohnii, a fraction was
enriched in mtDNA by isolating mitochondria via subcel-
lular fractionation. This fraction was hydrolyzed with
EcoRI and ligated into pBluescript KS+ (Stratagene, Cedar
Creek, Texas, USA), following which plasmids were trans-
formed into competent E. coli cells [55]. Hybridization
probes 'cob' and 'cox3' (see Southern blot analysis,
below) were used to identify positive clones by hybridiza-
tion of colony lifts [56]. For K. micrum PCR was used to
amplify mtDNA fragments using oligonucleotides (20-22
nucleotides) designed from mitochondrial genes identi-
fied from an EST survey [22] using TBestDB [57]. PCR
products were cloned into pGEM® -T Easy vector
(Promega, Madison, Wisconsin, USA) and fully
sequenced. Additional primers were designed from
sequence derived from these products. Analysis of DNA
sequences was performed with the software package
Sequencher™ 4.2.2 (Gene Codes Corporation, Ann Arbor,
Michigan, USA). Protein alignments were made with the
software packages Clustal X [58] and McClade (Sinauer
Associates, Massachusetts, USA). New sequences have
been submitted to GenBank (GenBank accession num-
bers EF442995-EF443047, and AM773790-AM773803).

Southern blot analysis

Five hybridization probes were generated using PCR and
restriction products as template. The 'cob' probe (753
nucleotides), corresponding to positions 1386-2138 in
pcb#2 and encompassing most of the cob reading frame,
was amplified by PCR using cob51 (5'-CTGTGGTCCAGA-
TATCTTTC-3") and cob296 (5'-CTTCTAATGAATTATCTG-
3') primers. 'cb1' (430 nucleotides) was generated by PCR
from pcb#7 using primer sets P51 (5'-CTATCTAAATC-
CTATAAACAATG-3'; positions 2411-2433) and P25 (5'-
AAGGATTTGGTITCITGATG-3'; positions 2821-2840)
and 'cb3' (716 nucleotides) from pcb#2 using primer P50
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(5'-CTGCCAGAGAATTATTGGTTAAC-3") and M13
reverse vector-based primer. 'cox3' was generated by
BamHI hydrolysis of a cox3-containing clone previously
prepared. The deduced amino acid sequence of this 300-
nt fragment exhibited a high degree of identity with that
of cytochrome oxidase subunit 3 (Cox3) in P. falciparum
(amino acids 272-289). All of these fragments were puri-
fied from gels and used as templates in random hexamer
radiolabelling as previously described [54]. A final South-
ern hybridization probe, 'ml' (specific for LSUG), con-
sisted of an 18-mer  oligonucleotide  (5'-
GGTTAGAAACTGTCGCTG-3') that was 5' 32P-end-
labelled [56]. Unincorporated isotope was removed by
spin chromatography using a Sephadex G-25 MicroSpin™
column (Pharmacia,,,,,,, London, UK). Southern hybridi-
zation and filter washing conditions were as previously
outlined [54] using RNase A-treated DNA samples to
eliminate any RNA contamination.

Transcriptional analysis

K. micrum and H. triquetra transcripts were inferred from
cDNAs prepared as previously described for EST surveys
[22,26]. Complete sequences were generated from cDNAs
maintained as frozen E. coli clones. RT-PCR was used to
amplify mRNA sequences not represented in the initial
EST survey (e.g. full length cox1). The 3' ends of transcripts
were inferred from oligoadenylation sites.

For C. cohnii, 3'-end mapping of rRNAs was performed
using 3'-RACE. Briefly, isolated mtRNA was incubated
with recombinant yeast poly(A) polymerase (USB) and
0.5 mM CTP for 20 min followed by a 10 min incubation
with 0.5 mM ATP using the same conditions as previously
outlined [59,60]. cDNA synthesis was performed using
AMV reverse transcriptase (Promega) with an oligo(dT)
primer (5'-AATAAAGCGGCCGCGGATC-
CAATTTTTTTITTTTTTTIVN-3') [61] following manufac-
turer's protocols. The <cDNA was used in PCR
amplification with primers P4 (5'-AATAAAGCG-
GCCGCGGATCCAA-3') and either LSUG4 (5'-AGAAGAT-
TCCATTGGAAG-3') for LSUG, or LSUE4 (5'-
AAGGTAGNNNAATTCCTTGATAGG-3") for LSUE. PCR
amplification products were cloned into pT7Blue T-vector
(Novagen) and sequenced. LSUE 5'-end sequence was
generated by cDNA sequencing using primer LSUE2 (5'-
TTCATGCAGGACGGARMTTACCC-3'. Ribosomal RNA
sequences were manually fitted to the Escherichia coli sec-
ondary structure models [62] and the structure diagrams
were drawn using the program XRNA (B Weiser and H
Noller, personal communication).
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