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Abstract
Background: The rapid and accurate identification of species is a critical component of large-scale
biodiversity monitoring programs. DNA arrays (micro and macro) and DNA barcodes are two
molecular approaches that have recently garnered much attention. Here, we compare these two
platforms for identification of an important group, the mammals.

Results: Our analyses, based on the two commonly used mitochondrial genes cytochrome c
oxidase I (the standard DNA barcode for animal species) and cytochrome b (a common species-
level marker), suggest that both arrays and barcodes are capable of discriminating mammalian
species with high accuracy. We used three different datasets of mammalian species, comprising
different sampling strategies. For DNA arrays we designed three probes for each species to address
intraspecific variation. As for DNA barcoding, our analyses show that both cytochrome c oxidase
I and cytochrome b genes, and even smaller fragments of them (mini-barcodes) can successfully
discriminate species in a wide variety of specimens.

Conclusion: This study showed that DNA arrays and DNA barcodes are valuable molecular
methods for biodiversity monitoring programs. Both approaches were capable of discriminating
among mammalian species in our test assemblages. However, because designing DNA arrays
require advance knowledge of target sequences, the use of this approach could be limited in large
scale monitoring programs where unknown haplotypes might be encountered. DNA barcodes, by
contrast, are sequencing-based and therefore could provide more flexibility in large-scale studies.

Background
Species identification is essential for large-scale biodiver-
sity monitoring and conservation [1]. Several molecular
methods have been employed for biodiversity studies, but
traditional methods such as allozyme analysis are usually
labor-intensive and irreproducible. Because of advances
in DNA-based technologies, approaches such as DNA

arrays and DNA barcoding have recently gained attention.
Both of these methods are based on comparative DNA
sequence analysis, but they have significant differences.

Micro- and macro-arrays rely on the hybridization of
short (i.e. 25 base) specific nucleotide probes to DNA
from the target organism and subsequent detection of the
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hybridization signal. Although array-based technologies
have been widely used in gene expression studies, their
use in biodiversity research has been less rigorous, mainly
targeting pathogenic microorganisms [2] and arrays of
environmental samples [3]. Pfunder et al [4], however,
have advocated an array-based method for the identifica-
tion of voles and shrews for biodiversity monitoring.
Although this study focuses on a limited number of spe-
cies, the authors have predicted that such an approach can
be used for the development of a so called 'Mammalia
Chip', in the case of mammalian species, or even a 'Biodi-
versity Chip' for monitoring key species of different taxa
from bacteria to mammals [4].

Species identification by DNA barcoding is based on
sequencing a short standardized genomic region of the
target specimen and comparing this information to a
sequence library from known species [5]. The proposed
standard barcode sequence for animal species is a 650-bp
fragment of the mitochondrial gene cytochrome c oxidase
I (COI, cox1). This DNA barcode has successfully been
used for the identification of species in various vertebrate
and invertebrate groups from birds to Lepidoptera [6-8],
and in different geographical settings from the arctic to
the tropics [6,9]. Additionally, smaller fragments (i.e. 100
bases) of the standard COI barcode – 'mini-barcodes' –
have been shown to be effective for species identification
in specimens whose DNA is degraded or potentially in
other situations where obtaining a full-length barcode is
not feasible [10]. Barcoding is now being extended to
other groups such as fungi, plants and protists, and the
Barcode of Life Initiative has gained international
momentum by the establishment of the Consortium for
the Barcode of Life (CBOL), which plans to assemble
DNA barcode libraries for all fish and birds [11].

Here, we compare the design and applicability of both
array-based and barcoding platforms for specimen identi-
fication in mammalian species. We have chosen mam-
mals because they constitute an important target for
biodiversity studies and include many endangered spe-
cies. However, mammalian species have not been broadly
targeted for developing array-based or barcoding identifi-
cation systems previously. A rapid identification method
will aid in the tracking of illegal trafficking of mammalian
species and their tissues. We have selected two mitochon-
drial loci for our analysis: COI – the proposed standard
animal DNA barcode – and cytochrome b (cytb), which is
commonly used as a species-level marker and particularly
so in mammalian biosystematics [4,12]. We used both of
these genes to test the possibility of designing a Mamma-
lia Chip. We also used these sequences and various size
fragments of them to test the feasibility of DNA barcoding
analysis for mammalian species. We targeted three data-
sets of mammalian species for these analyses: 121 species

across the taxonomy of mammals (mammalian dataset),
a dense sampling of 87 species of neotropical bats (bat
dataset), and a wide geographical sampling of a single
genetically diverse bat species (Sturnira lilium dataset).

Results
Array-based analysis
Both COI and cytb performed well as templates for probe
design in mammalian dataset. However, we observed a
sharp decline in the number of unique probes in species
as haplotype diversity increased (Figure 1). For example,
no 25mer probe in either COI or cytb was shared by all
humans but also distinct from other species. We dealt
with this limitation by choosing three probes from each
species so that at least two probes should exactly match
sequences within the target species. Another considera-
tion was to ensure that the probes match among the first
150 bases from the 5' end of the target genes. This is
important as COI and cytb are longer than 1 KB and are
difficult to amplify in their entirety in samples with
degraded DNA (i.e. traces of tissues, processed material
and archival specimens) [10]. Our algorithm provided
COI and cytb probes for 90.9% and 98.4% of the species
in this mammalian dataset, respectively (Additional file
1). As for the bat dataset, we found a somewhat similar
result (using available COI sequences) and were able to
design probes for 89.7% of the species in this assemblage
(Additional file 1).

DNA barcoding analysis
Whole COI and cytb delivered similar results for the mam-
malian dataset, identifying all the species in our assem-
blage in a neighbor-joining (NJ) analysis [13] (Table 1).
The standard animal barcode – a 650 bp fragment at the
5' end of COI – identified 96.7% of the species (Table 1).
The same fragment size of cytb provided 98.3% species-
level resolution (Table 1). Significantly, mini-barcodes of
COI and cytb were also capable of discriminating among
species of mammals, although the resolution was some-
what lower (Table 1). Interestingly, in the COI data we
found that a mini-barcode positioned at nucleotides 437–
654 (mini-barcode 5 in Table 1) provided the same reso-
lution for species identification as the standard barcode
sequence. In contrast, all the cytb mini-barcodes provided
lower resolution as compared to a barcode-size fragment
of the cytb gene (Table 1). The results obtained in the NJ
analysis were confirmed when we plotted the sequence
length against the probability of obtaining a unique
sequence for each species. Interestingly, we found that the
minimum signal required to provide unique barcodes in
about 95% of the species in the mammalian dataset is a
short ~50 base fragment of the 5' region of either the COI
barcode or cytb gene, but the resolution decreases sharply
with smaller sequences (Figure 2).
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An evaluation of COI barcodes in a dataset with lower tax-
onomic diversity (compared to our mammalian dataset)
but with a somewhat higher density of sampling within a
confined taxonomic assemblage – 840 individuals of 87
species of neotropical bats – showed a 100% resolution

for species identification [14] (Table 2). Similar to the
mammalian dataset, mini-barcodes of 109 bases were
also capable of discriminating among more than 95% of
the species in this bat dataset (Table 2). In addition, the
minimum signal required to provide unique barcodes in
more than 95% of the species of bats was a short ~30 base
fragment of the 5' region of COI (results not shown).
Comparison of COI and cytb in 34 individuals of one of
these species, Sturnira lilium, across 13 sampling localities
in Central and South America suggests that both genes
provide similar resolution and can detect three geograph-
ical variants within this species (Figure 3). Similar resolu-
tion is achieved by using mini-barcodes of both COI and
cytb for this species (results not shown).

Discussion
This study reveals that both arrays and barcodes are useful
tools for the species-level identification of mammals. The
main limitation of the array-based approach is that it
requires advance knowledge of sequences in target spe-
cies. Because of a lack of exact matches, undiscovered hap-
lotypes or geographic variants could fail to anneal
properly to the probes on the array. While we tried to
avoid this problem by providing a set of three different
probes per species, this factor can substantially limit the
use of microarrays for large-scale biodiversity monitoring.
Additionally, to explore unknown species in a given taxo-
nomic group, it might be possible to design probe sets
that specifically bind to members of a higher taxonomic

Table 1: COI DNA barcodes of varied lengths and comparable 
fragments of cytb are capable of identifying mammalian species 
in test assemblage of 1585 individuals from 121 species.

Length % Res % K2P % Var

COI
Full gene 1557 100 14.9 56.3
Standard barcode 654 96.7 14.8 55.8
Mini-barcode 1 109 93.3 19.7 61.5
Mini-barcode 2 109 95 11.7 51.4
Mini-barcode 3 109 93.3 15.8 57.8
Mini-barcode 4 109 95 16.7 56.0
Mini-barcode 5 109 96.7 13.5 54.1
Mini-barcode 6 109 95 12.6 54.1
cytb
Full gene 1149 100 16.9 69.3
Barcode size 654 98.3 15.9 65.9
Mini-barcode 1 109 95 15.7 67.9
Mini-barcode 2 109 93.3 17.3 65.1
Mini-barcode 3 109 96.7 16 68.8
Mini-barcode 4 109 95 13.8 58.7
Mini-barcode 5 109 95 15.3 65.1
Mini-barcode 6 109 95 18.2 69.7

Res, resolution in neighbor-joining analysis [13]; K2P, genetic distances 
based on Kimura two-parameter nucleotide substitution model [20]; 
var, variable sites.

Microarray probesFigure 1
Microarray probes. Species with only one representative 
sequence were easy to design probes for. However, it is 
more challenging to find probes that were unique within spe-
cies but capable of distinguishing between species when that 
species has several known haplotypes. Data is from 150 
bases of the 5' region of COI (A) and cytb (B).
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DNA barcodes of COI and similarly sized sequences from cytb demonstrate three distinct geographically and genetically distinct groups within the neotropical bat species Sturnira lilumFigure 3
DNA barcodes of COI and similarly sized sequences 
from cytb demonstrate three distinct geographically 
and genetically distinct groups within the neotropical 
bat species Sturnira lilum. Individual variation between 
cytochrome b sequences is greater than those within bar-
code sequences but resolution is internally consistent. The 
trees are assembled by using K2P genetic distances [20] in a 
neighbor-joining method [13]. Bootstrap values (1000 repli-
cates) for major geographic lineages are shown above each 
branch. Photo of Sturnira lilum courtesy of Royal Ontario 
Museum.

Surprisingly short barcode sequences are capable of distin-guishing between speciesFigure 2
Surprisingly short barcode sequences are capable of 
distinguishing between species. Even 50-base barcodes 
can discriminate between >95% of species. The analysis is 
performed by adding sequence information from the 5' 
region of COI (A) and cytb (B) and calculating the probabili-
ties.

Table 2: COI DNA barcodes of varied lengths are capable of 
identifying species in test assemblage of 840 individuals from 87 
species of neotropical bats.

Length % Res % K2P % Var

COI
Standard barcode 654 100 20.9 44.5
Mini-barcode 1 109 95.4 23.8 50.5
Mini-barcode 2 109 97.7 17.6 40.4
Mini-barcode 3 109 97.7 22.8 45.9
Mini-barcode 4 109 100 22.7 41.3
Mini-barcode 5 109 100 20.2 45.0
Mini-barcode 6 109 97.7 19.3 46.8

Res, resolution in neighbor-joining analysis [13]; K2P, genetic distances 
based on Kimura two-parameter nucleotide substitution model [20]; 
var, variable sites.
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level such as genus or family. However, in a situation such
as S. lilium, with different geographical variants of up to
8% sequence variation in their COI/cytb genes, a probe set
that is designed for the species in one locality might not
bind to members of the species in other localities (results
not shown). This hit or miss situation could make array
technology less desirable in biodiversity monitoring
across a wide geographic region. In fact, the current appli-
cations of microarrays are usually focused on a limited
number of taxa [4]. Because of this, assembling a 'Mam-
malia Chip' might not be a feasible approach for biodiver-
sity monitoring of all mammalian species.

Because barcoding is a sequencing-based technology, it
avoids the problem of unknown haplotypes. New haplo-
types can be compared to existing databases of barcodes,
and they can be assigned to a particular species using
probabilistic algorithms [15,16]. The final assignment of
a new haplotype to a described species or its assignment
to a new species will be achieved through comprehensive
taxonomic analysis, which requires different types of data
[17]. Our analysis supports this argument in all three
datasets. While smaller fragments were less powerful in
resolving some closely-related species, obtaining more
sequence information in these cases (i.e. full-length bar-
code versus mini-barcode or the whole gene versus the
barcode-size fragment) can increase the resolution [10].
However, while standard barcode-size fragments (650 bp)
can be readily obtained in a single PCR amplification/
sequencing from freshly collected or frozen tissue speci-
mens, it is difficult to obtain 650-bp barcodes from spec-
imens whose DNA is degraded (i.e. dried museum
samples) [10]. The high effectiveness of mini-barcodes
means that biomonitoring through barcodes can target
different types of specimens, including museum samples
or traces of tissues with degraded DNA [10]. The mini-bar-
code strategy also enables exploration of the use of mas-
sively parallel sequencing platforms, such as
pyrosequencing-based [18] 454 Life Sciences sequencers,
for barcoding applications. Interestingly, this technology
uses an emulsion PCR approach for simultaneous ampli-
fication of several thousand 100–200 base DNA mole-
cules in one reaction. This approach will therefore allow
the use of mini-barcodes on environmental samples,
which have traditionally been targets for array-based tech-
nology.

This study also provides evidence that both COI and cytb
are useful species-level molecular markers for mammalian
species. This finding is in agreement with earlier work [4].
However, when it comes to selecting a molecular marker,
it is also important to consider operational issues such as
the availability of robust PCR primers, standardization
across a wide range of taxa, the robustness of amplifying
shorter fragments in PCR reactions of degraded DNA, and

the prevalence of mitochondrial nuclear pseudogenes.
Our study further confirms that the standard COI barcode
can be applied to mammalian species with a similar high
species-level resolution as has been observed in other ani-
mal taxa tested.

Conclusion
DNA-based methods such as DNA arrays and DNA bar-
codes provide substantial potential for biodiversity mon-
itoring. However, as the scale of analysis increases, for
example in large biodiversity surveys or analysis across
wide taxonomic assemblages or different types of speci-
mens, the scalability and sensitivity of these approaches
become critical issues in their applicability. Our analyses
using three different datasets of mammalian species span-
ning a wide range of taxa, suggest both DNA arrays and
DNA barcodes provide high resolution (i.e. ~95%) across
mammalian species. Because DNA arrays might fail to
anneal to undiscovered haplotypes of a given species,
their use is limited to taxa with known sequences. DNA
barcoding, however, provides a higher flexibility for the
identification of species in large taxonomic assemblages
because it is based on obtaining sequence information
that can be used for linking unknown haplotypes to
known species.

Methods
Sequence information
We used COI and cytb genes for array-based and DNA bar-
coding analysis of mammalian species by using three tax-
onomic datasets. The first dataset was selected to allow
comparison of the sequence information in the two genes
from the same individuals of the same species in a wide
taxonomic assemblage of mammals. We used all of the
completely sequenced mitochondrial genome sequences
of mammals to build this dataset. We downloaded the
whole mitochondrial genome sequences of 1585 individ-
uals from 121 mammalian species from GenBank (Addi-
tional file 2) and extracted the COI and cytb sequences
from them. We refer to this dataset as the mammalian
dataset. Our second dataset was selected to test the feasi-
bility of arrays and barcodes in a dense and species-rich
neotropical mammalian fauna: 840 individuals from 87
species of bats. This dataset included COI sequences from
a recent barcode study on bats [14]. We refer to this data-
set as the bat dataset. Finally, a third dataset was used as
an extension to the bat dataset to compare the utility of
both COI and cytb in DNA barcoding of 34 individuals of
a single species of bat, Sturnira lilium, from a wide geo-
graphic range: 13 localities across nine countries in Cen-
tral and South America. We refer to this dataset as the S.
lilium dataset. Some COI and all cytb sequences for this
third dataset were produced in this study (see Additional
file 2 for GenBank accession numbers).
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Array-based analysis
For designing arrays, we chose COI and cytb as separate
templates for a probe design algorithm. We assume that
probes will be hybridized with amplicons from either COI
or cytb of unknown specimens. Our algorithm searched
for unique, species-specific sequences, but also considered
intraspecific variation among haplotypes of each species
(where different halpotypes were available). We designed
probes that were 25 nucleotides long and hence suitable
for Affymetrix-style single-channel microarrays (Addi-
tional file 1). Probes were chosen so that the theoretical
probe-target melting temperatures fall within the range of
53.5–58°C, and the GC content falls within the range of
37–54.2%, as recommended by Pfunder et al [4]. We
designed three probes for each species by using this algo-
rithm (see below). We selected the first 150-bp sequences
from the 5' end of each gene as a putative amplicon from
which to select the probes (see below).

DNA barcoding analysis
For DNA barcodes, we evaluated whole COI and cytb
genes as well as various smaller fragments of the two as
potential barcodes. For example, we analyzed the whole
COI gene of 1557 bases and then performed the same
analysis on a 654 base fragment of the 5' region of this
gene – corresponding to the standard DNA barcode
sequence – as well as smaller, equally-divided 109-bp
fragments of the barcode region (i.e. positions 1–109,
110–218 and so on). A similar analysis was performed on
cytb by selecting the 5' region of this gene as a potential
654 bp barcode-size region. We used this same analysis
for both bat datasets. We counted the number of species
with non-overlapping barcodes (i.e. barcodes that
uniquely identify individuals of a species) in a neighbor-
joining (NJ) analysis [13] as a measure of resolution [19].
In order to investigate the minimal sequence information
required to perform DNA barcoding analysis, we plotted
sequence length of putative COI barcodes and cytb gene
(sequence information being added incrementally from
the 5' end of gene) versus the probability of finding
unique barcodes for each species.
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