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Abstract

Background: TBLASTN is a mode of operation for BLAST that aligns protein sequences to a
nucleotide database translated in all six frames. We present the first description of the modern
implementation of TBLASTN, focusing on new techniques that were used to implement
composition-based statistics for translated nucleotide searches. Composition-based statistics use
the composition of the sequences being aligned to generate more accurate E-values, which allows
for a more accurate distinction between true and false matches. Until recently, composition-based
statistics were available only for protein-protein searches. They are now available as a command
line option for recent versions of TBLASTN and as an option for TBLASTN on the NCBI BLAST
web server.

Results: We evaluate the statistical and retrieval accuracy of the E-values reported by a baseline
version of TBLASTN and by two variants that use different types of composition-based statistics.
To test the statistical accuracy of TBLASTN, we ran 1000 searches using scrambled proteins from
the mouse genome and a database of human chromosomes. To test retrieval accuracy, we
modernize and adapt to translated searches a test set previously used to evaluate the retrieval
accuracy of protein-protein searches. We show that composition-based statistics greatly improve
the statistical accuracy of TBLASTN, at a small cost to the retrieval accuracy.

Conclusion: TBLASTN is widely used, as it is common to wish to compare proteins to
chromosomes or to libraries of mRNAs. Composition-based statistics improve the statistical
accuracy, and therefore the reliability, of TBLASTN results. The algorithms used by TBLASTN are
not widely known, and some of the most important are reported here. The data used to test
TBLASTN are available for download and may be useful in other studies of translated search
algorithms.
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Background

BLAST [1,2] is a popular and effective tool for finding sig-
nificant alignments between a biological query sequence
and a database of subject sequences. BLAST has several
modes of operation, one of which aligns an amino acid
query sequence to a database of nucleotide sequences,
where the nucleotide sequences are often either fragments
of a genome or cDNAs representing expressed genes. This
mode of operation is known by the name TBLASTN.
TBLASTN operates by translating database nucleotide
sequences to hypothetical amino acid sequences in all six
reading frames and then aligning the hypothetical amino
acid sequences to the query.

TBLASTN is widely used as associating proteins with chro-
mosomes or with mRNAs is useful in many biological
studies. Despite this popularity, a performance evaluation
of TBLASTN has never been published. BLASTX, a related
variant of BLAST that aligns a DNA sequence to a protein
database, was described in Gish and States[3]. The
description of BLASTX in[3], written in 1993, is out-of-
date; the paper predates the implementation of gapped
alignments in BLAST. We present, in this paper, the first
description of the modern implementation of TBLASTN.

An issue of particular concern is the accuracy of the statis-
tics reported by TBLASTN. BLAST prints statistics, most
notably an expect value (E-value), to help users evaluate
the significance of alignments. These statistics are often
used as thresholds to distinguish alignments likely to be
due to a biological relationship from alignments that
occur simply by chance. It is known, however, that when
unrelated amino acid sequences with unusual composi-
tion are aligned, alignments with high score occur with
implausibly high frequency. In the context of BLASTP, a
program that aligns a protein query to a protein database,
Schiffer et al. [4], Yu et al. [5], and Altschul et al.[6]
describe how to generate amino acid scoring matrices
based on the composition of the amino acid sequences
being compared. Yu et al.[7] show that these composition-
ally-adjusted matrices yield more accurate statistics for
comparing the significance of protein to protein align-
ments than do the standard matrices.

For TBLASTN, the problem of sequences with biased com-
position is even worse than for BLASTP. Not only can the
hypothetical amino acid sequence contain translations of
coding regions for biased proteins, it can also contain
regions of compositional bias that are translations of non-
coding regions or out-of-frame translations of coding
regions. Applying composition-based statistics when one
of the sequences is a hypothetical amino acid sequence,
however, presents a challenge not present when both
sequences are proteins - it is not obvious which parts of
the hypothetical sequence to use when computing the
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composition. For this reason, until recently composition-
based statistics have been available only for BLASTP. In
this paper, we present methods for adapting composition-
based statistics to TBLASTN. We show that these methods
improve the statistical accuracy of TBLASTN without
unduly affecting retrieval accuracy.

Results

We have developed techniques and implemented soft-
ware for applying composition adjustment that takes into
account the differences between performing a search
against a protein database and performing a search
against a translated nucleotide database. We provide a
high-level overview of these techniques and their motiva-
tion here, but defer a detailed description of the algo-
rithms to the Methods section. We tested the effectiveness
of our implementation of composition-based statistics for
TBLASTN in two ways. First, we compared the statistical
accuracy of several variants of TBLASTN, some of which
adjust the scoring system to reflect the composition of the
sequences, others of which do not. Second, we performed
a ROC (receiver operating characteristic) analysis[8] of the
different variants of TBLASTN to test the retrieval accuracy
of the variants.

Compositional adjustment and TBLASTN

There are three critical differences between using a trans-
lated nucleotide database and using a database of known
proteins or protein fragments. First, each sequence stored
in a nucleotide database may contain more than one cod-
ing region in the same or different translation frames. Sec-
ond, the majority of the hypothetical amino acid
sequence data generated by translating a nucleotide
sequence does not correspond to any protein at all, due to
the fact that the location of open reading frames (ORFs)
in the nucleotide database is not provided to TBLASTN.
One is therefore often either translating a noncoding
region or translating a coding region in the wrong frame.
Third, the split of a genome into distinct database
sequences is performed at sometimes arbitrarily chosen
locations, for example when bacterial artificial chromo-
somes (BACs) are used to obtain the sequence data. Thus,
while for BLASTP we use each database sequence in its
entirety when computing composition, it would be coun-
terproductive to do so for TBLASTN.

For TBLASTN, we consider "windows" of hypothetical
amino-acid data when applying composition based statis-
tics. Each window contains part of a hypothetical coding
region for a protein, specifying a substring of nucleotide
data and a translation frame. BLAST identifies windows
that contain likely coding regions and then uses these
windows to compute the composition of the hypothetical
proteins. By focusing on smaller regions of the database
and frames most likely to contain true amino acids, we

Page 2 of 14

(page number not for citation purposes)



BMC Biology 2006, 4:41

capture enough information about the composition of the
hypothetical protein to accurately assess the significance
of the alignment.

Variants tested

We tested the statistical and retrieval accuracy of three var-
iants of TBLASTN. All three variants use exactly the same
heuristics, as described in the Methods section, to produce
a set of windows likely to contain a significant alignment.
Then, within each window, the hypothetical subject
amino acid sequence is filtered using the SEG[9] algo-
rithm, one of three forms of score adjustment is per-
formed, and alignments are recomputed.

Where the three variants differ is in what type of compo-
sitional adjustment is applied. The first version, which we
denote here by B-TBLASTN, provides baseline behavior; it
ignores the composition of the sequences and merely
scales the BLOSUMG62[10] matrix to have five more bits of
accuracy before rounding. This is performed so that the
scores from all three variants tested have comparable
scale. The second version, which we denote S-TBLASTN,
performs compositional scaling as described in Schiffer et
al.[4]. The third version, which we denote C-TBLASTN,
performs compositional matrix adjustment|5] condition-
ally as described in Altschul et al.[6].

Tests of statistical accuracy

To evaluate the effect of composition-based statistics on
statistical accuracy, we performed a series of tests using
randomly permuted sequences. One thousand protein
sequences were randomly selected without replacement
from the mouse (Mus musculus) genome for use as queries.
The sequences were permuted using their GenBank iden-
tification number as a seed to a random number genera-
tor; the permuted sequences are provided as Additional
file 1. A permuted sequence necessarily has the same com-
position as the original sequence, so the query set has the
same range of compositions as a sample of true proteins.

The P-value of the highest scoring alignment between
each query and the human (Homo sapiens) nuclear
genome was computed. P-values are related to the E-val-
ues reported by BLAST, through the formula

P=1-¢E

A P-value represents the probability that an alignment of
equal or greater quality will be found when the query and
database sequences are unrelated. Figure 1 is a log-log plot
of the distribution of P-values for each of the three vari-
ants of TBLASTN. The x-axis of the figure is a P-value, and
the y-axis is the number of queries whose best match had
P-value less than or equal to x. For a distribution that
matched theory perfectly, the plot would be the straight
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line that is shown on the figure. For this query set, B-
TBLASTN finds many more alignments that have low P-
value than theory would predict. For S-TBLASTN and C-
TBLASTN, the situation is much better. The plots for both
these variants lie mostly to the right of the ideal line, indi-
cating that the statistics are somewhat conservative, but
otherwise track the ideal line well.

ROC analysis of retrieval accuracy

Figure 1 demonstrates the accuracy of P-values when com-
position-based statistics are wused. However, it is
known[4,7] that the use of composition-based statistics
can have a small, adverse effect on the retrieval accuracy of
database searches. This counterintuitive result is thought
to be due to the fact that similar compositional bias is
itself evidence of biological relatedness|7].

To compare the retrieval accuracy of the three methods,
we performed a series of tests using a yeast (Saccharomyces
cerevisiae) genome. We generated ROC curves and scores
by taking a test set, first developed for the study in [11]
and later modified and used in [4], updating it to a newer
version of the yeast genome, and adapting it for use in
TBLASTN. This test set contains 102 protein domains to
be used as queries against the yeast nuclear genome. Lists
of true matches for each domain against a database of
yeast proteins are used to distinguish true from false pos-
itive alignments. The lists of true positive matches are
human curated. Because the locations of coding regions in
yeast DNA are well annotated, we were able to convert the
list of true positive protein matches to lists of true positive
locations on yeast chromosomes, as described in the
Methods section.

Figure 2 shows the ROC curve for each of the three vari-
ants tested. Figure 3 shows the same data in a semi-log
plot, using the scales of coverage and errors per query. The
higher a curve lies in the plot, the better the retrieval accu-
racy of the method. The B-TBLASTN curve is best, but the
S-TBLASTN and C-TBLASTN curves are not excessively
low. The differences seen between these curves are compa-
rable to the difference one would expect to see, based on
similar tests of protein-protein searches[7]. Conditional
compositional matrix adjustment, the method used by C-
TBLASTN, shows better retrieval accuracy than S-
TBLASTN. These results are consistent with the trend
reported in[6]. To quantify the difference between the
three methods, Table 1 shows the ROC scores for the three
methods, computed at several thresholds of false positive
matches. Table 1 shows the same trend as Figures 2 and 3.

Discussion

We have integrated composition-based statistics into
recent versions of TBLASTN. Another contribution of our
work is the development of a test set for translated
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Statistical accuracy of three variants of TBLASTN. One thousand queries were randomly selected from mouse pro-
teins, permuted, and aligned to human nuclear DNA. For each variant, we plot against x the number of queries with P-value
less than or equal to x. The solid line is the theoretically ideal distribution of these values.

searches (this test set is provided as Additional file 2. Our
tests show that use of composition-based statistics with
TBLASTN improves the statistical accuracy of the algo-
rithm. It does, however, have a small negative effect on the
retrieval accuracy.

Retrieval accuracy measures the ability of a method to find
true positive matches and rank them before false positives
matches. Statistical accuracy provides a means to distin-
guish the two groups by choosing a reasonable E-value
cutoff. Because of the tendency, shown in Figure 1, for
TBLASTN to overstate the significance of alignments with

biased composition, the use of compositional adjustment
improves the reliability of the method when it is used
with an E-value cutoff. In many applications, it is of par-
ticular importance to exclude false positive matches. For
example, in PSI-BLAST, the inclusion of false positive
matches in the results may corrupt the generated pro-
file[4]. Therefore, we are willing to tolerate a small decline
in retrieval accuracy for the sake of statistical accuracy.

Without composition-based statistics, the only way to use
an E-value cutoff to exclude false positive matches with
biased composition is to set the cutoff to a small number.
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A portion of the ROC curves for three variants of TBLASTN. The ROC curves were generated by analyzing the
results of aligning 102 queries against the yeast genome. The ROC-250 score for each version of TBLASTN is included in the
legend in parentheses after the name of the version. True positives are plotted against false positives, on a linear scale. The
total number of true positives possible in this test set was 988. Inset: part of the same ROC curves, plotted on a different scale

to show the separation between curves.

However, such a cutoff is too stringent for the majority of
matches that do not have strong bias. With composition-
based statistics, one can more confidently take E-values at
face value. The statistical interpretation of E-values then
provides guidance on how to choose E-value cutoffs. For
example, with perfect statistics, if one were performing
1000 tests, one would expect to find one false positive if
the E-value cutoff were set to 10-3. Figure 1 shows that
TBLASTN with composition based statistics produces E-
values that are somewhat conservative. Therefore, the E-

value cutoff may exclude some marginal true positives. In
many applications, it is worth excluding a few marginal
true positives to exclude the large number of false posi-
tives shown in Figure 1.

TBLASTN uses the BLAST heuristics to perform a database
search and so is capable of searching large nucleotide
databases relatively quickly. By focusing on applying fast
heuristics in six reading frames, however, TBLASTN does
not directly address some phenomena commonly found
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A semi-log plot of a portion of the ROC curves for three variants of TBLASTN. The same data as Figure2 in a semi-

log plot, using the scales of coverage and errors per query.

in nucleotide databases. Databases of expressed sequence
tags (ESTs)[12,13] contain "single-pass" cDNA sequences
that frequently contain frameshift errors. Each distinct
alignment reported by TBLASTN uses only one of the pos-
sible reading frames of the DNA sequence; TBLASTN does
not explicitly consider the possibility that an alignment
could be extended in another frame. The local algorithms
used by BLAST also do not search for splice sites or explic-
itly try to distinguish introns from exons.

TBLASTN includes heuristics that indirectly address the
issues of frame shifts and introns, without compromising
speed. TBLASTN uses a greedy algorithm to link nearby
distinct alignments and computes an E-value for these
linked sets[14]. Alignments are eligible to be linked if they

are in any of the three reading frames on the same strand
of DNA. Therefore, some cases of frameshifts can be
found. Moreover, an option may be set so that the algo-
rithm links alignments separated by relatively long
stretches of unaligned DNA. If this option is set, TBLASTN
is sometimes able to link exons of a gene together. How-
ever, frameshifts and exons are not labeled as such by
TBLASTN, and the only evidence that the sets are correctly
linked is that they are in a consistent order and yield a
lower E-value than each alignment would if taken on its
own.

By contrast, there are other software packages that do
make a special effort to handle frameshifts and possibly
introns. To our knowledge, the earliest translated search
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Table I: ROC scores for three variants of TBLASTN. ROC scores for three variants of TBLASTN, at several thresholds of false
positive matches. These scores were generated by analyzing the results of aligning 102 queries against the yeast genome.

Program 50 150 250
B-TBLASTN 0.458 + 0.004 0.478 + 0.002 0.484 + 0.001
S-TBLASTN 0.454 + 0.004 0.471 £ 0.002 0.478 £ 0.001
C-TBLASTN 0.455 + 0.004 0.474 + 0.002 0.481 + 0.001

algorithm is described by Peltola et al.[15], which explic-
itly treats frameshifts and introns as part of a dynamic pro-
gram. Several other methods based on dynamic
programming have been proposed [16-23]. These meth-
ods generally make frameshifts or introns, or both, part of
the dynamic programming formulation.

The FASTA package[24] has for some time implemented a
version that aligns a protein to a nucleotide sequence
translated in either three or six reading frames. The meth-
ods described in[21] and[22], which are able to align
through frameshifts, have been incorporated into the
FASTA package. The relevant dynamic programs are
approximately solved using the FASTA heuristics.

References [15,17-20,23] do not discuss the statistics
reported by the algorithm, and we are not aware of any
reference to what statistics they propose to report. None
indicate that they wish to take the composition of the
sequences into account when evaluating significance. The
method described in[16] is based on Bayesian probabili-
ties, but does not take amino acid composition into
account. References describing translated searches in
FASTA[21,22,24] do not describe the statistics reported,
but the use of statistics in FASTA is well documented|[25].
FASTA does not use any notion similar to composition-
based statistics, but rather uses a posteriori statistics based
on the actual scores of alignments found for a particular
query. Therefore, the composition of the query indirectly
affects the statistics reported, as it affects the observed dis-
tribution of scores. We prefer an a priori approach explic-
itly using the composition of the sequences being
compared, particularly because this approach can take the
composition of regions of the subject sequence into
account.

Hein[26] and Gelfand et al.[27] describe algorithms that
handle introns and frameshifts by linking multiple dis-
tinct alignments. TBLASTN is similar in that it also uses
linking, though the algorithms used to perform the link-
ing are quite different. Hein describes an algorithm simi-
lar to BLASTX][3] that joins ungapped alignments. There is
no explicit treatment of frameshifts. Gelfand et al. use a set
of heuristics, based in part on the presence of splice sites,
to create a collection of ranges in the nucleotide sequence
that they consider most likely to be coding exons of a

gene. They translate each block in one reading frame and
perform a gapped alignment to a query protein. Then,
they link distinct blocks together to predict a complete
gene. Neither[26] or[27] discusses statistics or make any
mention of using composition when evaluating the signif-
icance of alignments.

Another approach to aligning a protein to a nucleotide
sequence is to use Hidden Markov Models (HMMs). This
is the approach taken by Birney et al.[28,29] in the pack-
age GeneWise and Halperin et al.[30] in the package
FramePlus. Both packages use HMMs to model nucleotide
sequences, and explicitly include states and transitions
that model frameshifts and intron-exon structure. Durbin
et al.[31] explain how to use the transition probabilities in
a profile HMM to arrive at a P-value for an alignment.

There has also been interest in aligning nucleotide
sequences by translating both sequences in all six reading
frames and aligning the resulting amino acid sequences.
BLAST, BLAT[32] and MUMmer[33,34] all have modes of
operation that align nucleotide sequences in this fashion.
BLAT also has modes of operation that align protein
sequences to translated nucleotide sequences, though
these modes are not described in[32]. BLAT is designed to
find high percent identity matches quickly, whereas
BLASTX and TBLASTN are designed to perform a thor-
ough search for homologs. Because of its different pur-
pose, BLAT finds many fewer alignments than does
TBLASTN. In default mode on the yeast test, BLAT finds
only 54 true positives in total, whereas B-TBLASTN finds
386 before the first false positive. To our knowledge, nei-
ther BLAT nor MUMmer takes any special action to handle
introns or frameshifts when operating in translated mode.
MUMmer does not report P-values or E-values for align-
ments, nor adjusts scores to account for composition.
BLAT does not report E-values in its default output format,
but provides E-values in alternate output formats that
roughly mimic output formats provided by BLAST.

The lack of explicit treatment of frameshifts and introns
must be considered a disadvantage of TBLASTN. Further
research into how TBLASTN can be modified to handle
these issues is indicated. We emphasize, however, that the
improvement in statistical accuracy reported in this paper
is a step toward that goal. Accurate statistics improve reli-
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ability in any application in which an E-value cutoff is
used. This reduces the number of possibilities that must
be considered when evaluating intron-exon structure or
testing for the presence of frameshifts.

Other ways to improve the quality of TBLASTN results are
under investigation, including the algorithm and data
structure used to find the initial short matches, sometimes
called "seeds". For example, Brejova et al.[35] proposed
various discontiguous seed patterns with "don't care"
positions and did a large-scale test to suggest that these
would improve performance of BLASTP (and hence, likely
also TBLASTN).

Conclusion

We present here the modern implementation of TBLASTN
and describe how composition-based statistics, previously
available only for protein searches against a protein data-
base, has been made available for TBLASTN. We show that
composition-based statistics improve the statistical accu-
racy, and therefore the reliability, of TBLASTN results,
with only a small loss in retrieval accuracy.

TBLASTN is widely used, as it is common to wish to com-
pare proteins to chromosomes or to libraries of mRNAs.
The primary advantages of TBLASTN are that it is well-sup-
ported, widely and freely available, under active develop-
ment, and integrated with other NCBI tools. TBLASTN
may be used from NCBI's web page[36], where it is linked
with NCBI databases and other resources. BLAST is sup-
ported by the NCBI Help Desk and a dedicated group of
software engineers and information technology special-
ists. NCBI provides on-line tutorials and face-to-face
workshops on the use of BLAST and other NCBI resources;
see[37]. Details of the algorithms used by TBLASTN, how-
ever, have not previously been published and are not
widely known.

The test sets and methodology discussed in this paper may
be useful in other studies of translated nucleotide search
algorithms. We have made the data used to perform the
ROC analysis of TBLASTN available as Additional file 2.

The advances described in this paper have been integrated
into the NCBI C and C++ software distributions; the com-
putational modules involved are mirrored between the
two distributions. Options for applying composition-
based statistics with TBLASTN are available on NCBI's
BLAST web page[36]. A command-line executable, blast-
all, that has TBLASTN as one of its modes of operation, is
available for download from the same URL. Source code
and precompiled executables for some platforms are pro-
vided. We describe the options required to make blastall
run TBLASTN with composition-based statistics in the
Methods section.

http://www.biomedcentral.com/1741-7007/4/41

Methods

In this section, we outline the algorithm used to compute
the composition of database sequences and to apply com-
position-based statistics in TBLASTN. Then we further
describe the tests reported in this paper: the executables
used, the tests sets, and details about the methods.

Compositional adjustment in TBLASTN

The BLAST heuristics[2] use a general scoring system, such
as the PAM[38,39] or BLOSUM|[10] series of matrices, to
discover database sequences likely to align to the query
and likely starting points for alignments. In BLAST, an
alignment is known as a high-scoring pair, or HSP[40]. A
list of HSPs for each significant query-subject pair is cre-
ated using a multi-stage algorithm. At each stage, HSPs
may be culled from the current list for a number of rea-
sons, including having insufficiently high score, being
contained in a higher-scoring HSP, or sharing an endpoint
with a higher-scoring HSP. As a result, while each succes-
sive stage of the BLAST algorithm requires significantly
more computation for each HSP, fewer HSPs need be con-
sidered.

Compositional adjustment, whether used by TBLASTN or
other modes of operation, is applied only in the final
stage of a BLAST search. In this fashion, modes that use
compositional adjustment apply the fast heuristics of
BLAST to locate regions likely to contain, and starting
points likely to lead to, high-scoring alignments. They
apply compositional adjustment only before the most
sensitive and most computationally expensive alignment
algorithm, the computation of a gapped alignment that
includes information specifying the locations of gaps,
information known as the "traceback". The list of HSPs
produced by this final gapped alignment, after being fil-
tered for insufficiently significant or redundant HSPs, is
the list presented to the user.

Steps for applying compositional adjustment

At a high level, the steps of composition adjustment,
applied individually to each query-subject pair, are as fol-
lows: (1) compute windows of interest using the list of
HSPs from preliminary stages of the BLAST algorithm; (2)
obtain translated subject data for the windows and filter it
to remove uninteresting subsequences; (3) compute the
composition of the subject region for each HSP to be rea-
ligned; (4) compute a scoring matrix for each HSP to be
realigned, based on the composition of the subject region
of that HSP and on the composition of the query; (5) per-
form a gapped alignment with traceback to recompute the
list of HSPs, using the new scoring matrices. In practice,
these high-level steps are interleaved to reduce memory
requirements.
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Computing windows of interest

For each match between the query and a subject sequence,
the compositional adjustment algorithm is given a sepa-
rate list of HSPs. Each HSP specifies, along with other
information, a range in the subject sequence that has been
aligned to the query. These ranges are used as follows to
compute a list of windows. First, a preliminary list of win-
dows for the subject sequence is created. This list contains
one window for each HSP, the window that surrounds the
subject range of the HSP, including 600 bases to the left
and right of the subject range if that much sequence data
is available. Then a final list of windows is created by join-
ing windows in the same translation frame if they touch
or overlap. For each window, a list of HSPs corresponding
to the window is maintained.

Obtaining and filtering subject data

The nucleotide subject data within a window is obtained
and translated using that window's translation frame. The
SEG[9] algorithm with window size 10, low-cutoff 1.8,
and high cutoff 2.1 is used to mask low-complexity
regions in the subject window. The parameters were cho-
sen as a result of the study[4]. A low-complexity region is
typically dominated by a few distinct residues often, but
not always, in a repetitive pattern. Typical examples are
polyglycine or polyproline monomers. Alignment scores
that include the scores of low-complexity regions tend to
overstate the significance of the alignments and lead to
many false positive matches.

The effect of applying the SEG algorithm to an amino acid
sequence is to replace each residue in a low-complexity
region with the X character: a character that is assigned a
small negative score when aligned to any character,
including itself. The subject data are filtered before com-
positionally adjusted scoring matrices are computed, and
occurrences of the X character are ignored when comput-
ing the composition of a sequence. Unlike the composi-
tion-adjustment code, the preliminary stages of the BLAST
search do not filter the subject data.

SEG filtering may also be applied to the query sequence.
SEG filtering of the query is a command-line option for
both BLASTP and TBLASTN. The programs differ in that
SEG filtering of the query is off by default in BLASTP but
on by default in TBLASTN. We did not filter the query in
any results reported in this paper. The SEG parameters
used to filter the subject sequence apply a higher thresh-
old for declaring a region to be low-complexity than do
the default parameters used to filter the query. The reason
that the query sequence is more stringently filtered is that
the query sequence is used at every stage of the BLAST
algorithm. SEG filtering of the subject only occurs at the
final stages of a BLAST search, and under-filtering the data

http://www.biomedcentral.com/1741-7007/4/41

within a subject window will effect only a single compar-
ison.

Computing the composition of the subject

For TBLASTN, the sequence data and the subject ranges of
the HSPs within a window are used to determine a range
likely to contain correctly translated amino acid data. The
window is searched strictly to the left of the subject range
of the HSP to find the rightmost occurrence of a stop
codon. If one is found, then the location 20 characters to
the right of the stop codon is the left boundary of the com-
position range, with the restriction that the entire subject
range of the HSP be included. If no stop codon is found,
then the left endpoint is the left endpoint of the window.
The symmetric rule is applied to the right.

The intent is not necessarily to locate the stop codon that
terminates the protein, but rather to use the presence of a
stop codon to indicate that the hypothetically translated
codon lies in a noncoding region. Indeed, the noncoding
region may be an intron rather than the true end of the
amino acid sequence. Because we are not attempting to
find a terminating stop codon, we propose a symmetric
rule to determine the sequence range to use for composi-
tion adjustment even though biological translation is
asymmetric.

In a random DNA sequence with 50% GC content, one
would expect to find a stop codon in a hypothetically
translated amino acid sequence on average once every 21
characters. Therefore, we institute a 20 character margin
between the stop codon and the range to use for compo-
sition adjustment, with the restriction that the entire sub-
ject range of the HSP be included.

Given a particular region, TBLASTN considers only the 20
standard amino acids when computing composition; the
X character, the stop character, and all other nonstandard
characters are completely ignored. When the length of the
sequence is used in the compositional adjustment algo-
rithms, the value used does not count occurrences of
ignored characters.

Computing compositionally-adjusted scoring matrices
Schiffer et al.[4] and Yu et al.[5] show how to adjust sub-
stitution scores for the 20 standard amino acids. For the
standard amino acids, we apply those techniques. These
papers do not, however, discuss the treatment of rarely
occurring amino acids, two-letter ambiguity characters,
the X character, or the stop character. We discuss the treat-
ment of the X and stop characters in this section, because
they occur commonly in TBLASTN searches. We discuss
the treatment of the other characters in Additional file 3.
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The stop character occurs frequently in translated
sequences and occasionally within significant alignments.
An occurrence of the stop character usually indicates that
one is translating a noncoding region or a coding region
in the wrong frame. Of course, a stop character can also
simply mark the end of translation. However, stop charac-
ters occur within significant alignments for several rea-
sons: the subject sequence may contain a pseudogene; the
subject sequence may be mitochondrial DNA, in which
certain codons that are stop codons in nuclear DNA are
translated to true amino acids [41-43]; the subject
sequence may contain a stop codon that is converted in
vivo to a selenocysteine[44,45] or pyrrolysine[46] residue;
the subject sequence may represent a gene, such as the hdc
gene in D. melanogaster[47,48], that encodes a protein
product by mRNA readthrough; or there may be a
sequencing error in the subject sequence.

Appropriate scoring of the stop character is essential to
TBLASTN. Any character aligned to a stop character
should be given a negative score, but not a negative score
of such large magnitude as to disallow valid alignments
containing a stop codon. BLAST uniformly assigns letters
aligned to a stop codon an integral score that, given the
scale being used, is as close as possible to -2 bits.

As just discussed, biologically meaningful and statistically
significant TBLASTN alignments may sometimes contain
translated stop codons. However, the presence of many
stop codons in noncoding regions and out-of-frame cod-
ing regions renders it very unlikely that these regions will
yield high-scoring alignments by chance. Accordingly, for
E-value calculations, TBLASTN assumes the length of a
database sequence to be the length of the protein yielded
by translation in a single reading frame, even though
translation is in fact performed in all six reading frames.
That many database DNA sequences are noncoding over
much of their lengths may be one explanation for the gen-
erally conservative statistics of S-TBLASTN and C-
TBLASTN shown in Figure 1.

Because of the application of the SEG algorithm, the X
ambiguity character is common, and the treatment of X
characters can significantly effect the performance of the
algorithm. We score alignments with X as follows. When
either compositional matrix scaling or compositional
matrix adjustment is used, substitution scores are com-
puted for all standard amino acids. Then, for all variants
tested here, the score of aligning a standard amino acid i
in the query sequence to an X in the subject is computed
using the formula:

score(i,X) = round(min|:1,2],€§score(i,j)><P’_ :| ] (1)
; j
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where 8 is the set of standard amino acids and Pj' is the

probability of amino acid j in the subject sequence. In
other words, the score of matching a standard amino acid
with X is the expected value over all matches of that amino
acid with a standard amino acid, provided that this value

is less than -1. For B-TBLASTN and S-TBLASTN, Pj' is the

actual frequency of the amino acid in the subject region;
for C-TBLASTN, the probabilities are computed using
pseudocounts, as described in [6]. A formula analogous to
Equation(1) is used to compute the score of aligning an X
character in the query to a standard amino acid in the sub-
ject. The score for aligning X to itself is the smaller of the
expected score of aligning any two standard amino acids
and -1, rounded to the nearest integer.

Performing a gapped alignment with traceback

Routines that apply composition-based statistics do not
merely rescore alignments, but rather recompute them.
Alignments are computed using one of two techniques. By
default, the x-drop algorithm [2,49] is applied to a set of
starting points specified in the lists of HSPs provided from
previous stages of the BLAST algorithm|[1,2]. As a result of
modifications made during the course of this project, one
may alternately specify that the rigorous Smith-Water-
man|50] algorithm be applied within each window. If the
x-drop algorithm is applied, the composition is computed
individually for each HSP that is realigned. If the Smith-
Waterman algorithm is used, the composition of a win-
dow is taken to be the composition of its highest-scoring
HSP. Pooling the composition of the subject regions of
several HSPs within a window is problematic because the
HSPs do not necessarily belong to the same alignment, or
even to the same linked set of alignments. The default in
TBLASTN is to use the x-drop algorithm, and we use the x-
drop algorithm in the tests presented in this paper.

The following pseudocode shows how alignments corre-
sponding to a single query-subject match are recomputed
when the x-drop algorithm is used. In the pseudocode, g
represents the query data, ‘W is a list of windows, D is
a source of sequence data, and params is a structure con-
taining all parameters needed for gapped alignment. The
variable A represents the new set of alignments to be
returned, and M represents a compositionally adjusted
scoring matrix. The HSP_IS_CONTAINED and
WITH_DISTINCT_ENDS described
below; the action of the remaining routines should be
clear from their names.

routines will be
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Algorithm |
Redo alignments in a window.

function REDO_ONE_WINDOW (g, w,
cutoff_score)

D, params,

AL
Hewindows. hsps

SORT_BY_SCORE(H)

s<—GET_TRANSLATED_SUBJECT (w, D)
for i«0 to length(H)-1 do
h«H[i]

if forall 0< j <i not HSP_IS_CONTAINED(h, H [j])
then

M<«—ADJUST_COMPOSITION (g, s, h, params)

a<—CALC_X_DROP_ALIGNMENT (g, s, h, M, par-
ams)

if a.score>cutoff _score then

A «WITH_DISTINCT_ENDS (a, A)
end if
end if
end for
return A
end function

The HSP_IS_CONTAINED routine returns true if the HSP
provided as its first argument is contained in the HSP pro-
vided as its second argument. An HSP is considered to be
contained in a second HSP if its query and subject bounds
are contained in the query and subject bounds of the sec-
ond HSP and if the second HSP has equal or higher score.

The WITH_DISTINCT_ENDS routine adds the alignment
a to the set of alignments A if and only if A does not
already contain an equal- or higher-scoring alignment
that shares an endpoint with a. If a is added to A, then
WITH_DISTINCT_ENDS filters A to remove any lower-
scoring alignments that share an endpoint with a. In this
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fashion, repeatedly calling the routine
WITH_DISTINCT_ENDS ensures that the final list of
alignments does not contain an alignment that shares an
endpoint with a higher-scoring alignment. When two
alignments share the same endpoint, the higher-scoring
one is the preferred alignment; the lower-scoring align-
ment is a suboptimal artifact of the BLAST heuristics.

The x-drop algorithm requires a starting point (p,, p,) that
will force an alignment between offset p,, in the query and
p,in the subject. It computes an alignment in both direc-
tions starting from this point. A starting point is defined
for each HSP that is realigned. If possible, the starting
point that was originally used to compute the HSP is
reused. Due to the effects of SEG filtering and the newly
computed scoring matrix, however, the previous starting
point may no longer be desirable; it may lie in a region of
nonpositive score. We discuss the rule used to validate the
existing starting point, and if necessary choose a new one,
in Additional file 3: tblastn_suppl.pdf.

Finally, we remark that Algorithm 1 is also correct pseu-
docode for BLASTP, which performs protein-query, pro-
tein-database searches. The difference is that for BLASTP
there is only one window for each subject sequence: the
window that includes the entire sequence. Moreover, for
BLASTP the composition of the entire subject sequence is
always used when performing compositional adjustment.
Therefore, the compositionally adjusted matrix is neces-
sarily the same for each HSP in a window and need only
be computed once. In practice, the same code is used for
both TBLASTN and BLASTP to implement Algorithm 1,
but for BLASTP a conditional is used to ensure the matrix
is only computed once for each window.

Test sets and programs used

We describe below the specific executables, data sets, and
methods used to generate the results presented in this
paper. The variants of TBLASTN reported here were writ-
ten in C, and, as noted below, some variants are available
as part of the NCBI C and C++ software distributions; the
computational modules involved are mirrored between
the two distributions. Numerous auxiliary programs used
to automate testing and summarize results were written in
C, Perl, Python, and Bourne shell script.

Executables used

TBLASTN is a mode of operation for the blastall executa-
ble. This executable is available for download from[36].
The C-TBLASTN and S-TBLASTN variants are available as
a set of options to the blastall executable. S-TBLASTN is
invoked using the command-line options "-p tblastn -F F
-C 1". C-TBLASTN is invoked using similar options, but
with "-C 1" replaced by "-C 2". B-TBLASTN is not currently
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available as a set of command line options. TBLASTN may
be run without composition-based statistics, by omitting
the "-C" option, but the default version runs with lower
precision than B-TBLASTN. Executables that run B-
TBLASTN and the specific versions of S-TBLASTN and C-
TBLASTN used in this paper are available for download
at[51].

The blastall executable by default uses BLOSUMG62 to per-
form alignments of amino acid sequences, and this is the
matrix used in all stages before composition adjustment is
performed. The "-F F" option disables SEG filtering of the
query sequence. SEG filtering of the subject sequence is on
by default in any of the composition adjustment modes.
We consider filtering both sequences to be unnecessary;
when we tried filtering both sequences, we saw no
improvement in statistical accuracy, but did see a decline
in the ROC scores (data not shown).

Tests using randomly permuted queries

To measure how effective composition-based statistics is
at eliminating false matches with low E-value, we per-
formed a series of tests using randomly permuted amino
acid sequences from the mouse (Mus musculus) genome.
One thousand protein sequences were randomly selected
from the list of RefSeq[52] mouse proteins current on Jan-
uary 10, 2006. Sequences were permuted using their Gen-
Bank identification number as a seed to a random number
generator. The permuted sequences are provided as Addi-
tional file 1.

We aligned the permuted sequences to a database of chro-
mosomal sequences from the reference assembly of build
35 of the human (Homo sapiens) genome, released August
26, 2004. The database includes chromosomes X and Y
and the unplaced sequence fragments included in the
build. We omitted the mitochondrial genome from the
database, however, as these sequences are known
(see[42]) to have a different genetic code than nuclear
DNA.

ROC score tests on the yeast genome

To test the effectiveness of various modes of composition
adjustment for TBLASTN, we performed a number of tests
using the yeast nuclear genome. We downloaded the yeast
genome from[53], a site containing reference genomes
curated by NCBI staff. The version of the genome that we
used was created on May 16, 2005.

We aligned a set of 102 protein domains to the yeast
nucleotide genome using TBLASTN. This test set was first
developed for the study in [11]. An updated version was
used in [4], in which a human curated list of true positive
matches to the yeast proteome was used to generate ROC
scores. For the tests described here, we updated the true
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positive list to reflect changes in the published yeast
genome. The updated list contains 987 query-subject
matches to 894 distinct subject sequences. The version of
the test set used in this paper is provided as Additional file
2.

In the yeast genome, each known yeast protein is anno-
tated with the location and strand of its coding region.
These annotations allow us to adapt the test set for use
with TBLASTN as follows. For TBLASTN, alignments are
divided into three categories: (1) alignments that match a
query to the coding region of a known true positive
match; (2) alignments that match a query to a known cod-
ing region that is not a true positive match; and (3) align-
ments that do not match a known coding region. An
alignment is said to match a query to a coding region if the
subject portion of the alignment overlaps the coding
region and is on the same strand.

It is not uncommon for there to be more than one align-
ment between a query and a coding region. Indeed this is
expected; protein-protein searches also report multiple
alignments between pairs of proteins. When there is more
than one alignment to a coding region, only the lowest E-
value alignment between a particular query and the cod-
ing region is used when computing ROC scores. No
attempt is made to apply a similar rule to noncoding
regions. All alignments that do not overlap a coding
region are categorized as false positive matches and
counted when computing ROC scores.

We made two explicit exceptions to this scheme for classi-
fying hits. The first exception is to add a particular pseu-
dogene (Entrez Gene ID 850644) to our list of coding
regions and to make the pseudogene a true positive for
one of our queries, raising the maximum possible number
of true positives to 988. Each of the variants tested found
an alignment to this pseudogene with E-value smaller
than 10-12. The pseudogene is expressed and produces a
functional protein under certain conditions [54-56].
Though this region is labeled as a pseudogene, we do not
believe an alignment algorithm should be expected to dis-
tinguish it from a true gene. The second exception is to cat-
egorize a particular alignment that overlaps one true
positive coding region and one false positive coding
region as a true positive match. This overlap is reported by
all three variants of TBLASTN.
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Additional material

Additional File 1

Permuted mouse sequences. Sequence data used to test the statistical accu-
racy of TBLASTN. These data are not suitable for inclusion in a sequence
database, as they have been randomly permuted and no longer represent
true biological sequences. See the README included in the archive.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1741-
7007-4-41-S1.1gz]

Additional File 2

Yeast data set. queries and lists of true positives for performing ROC anal-
ysis of translated nucleotide search algorithms. Also contains the exact ver-
sion of the yeast genome used in the experiments described in this paper.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1741-
7007-4-41-S2.tgz]

Additional File 3

Supplemental information. discusses rules for the treatment of nonstand-
ard amino acids and for determining a staring point for gapped alignment
when the current starting point is unacceptable.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1741-
7007-4-41-S3.pdf]
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