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Abstract

Background: Instructions to fabricate mineralized structures with distinct nanoscale
architectures, such as seashells and coral and vertebrate skeletons, are encoded in the genomes of
a wide variety of animals. In mollusks, the mantle is responsible for the extracellular production of
the shell, directing the ordered biomineralization of CaCOj; and the deposition of architectural and
color patterns. The evolutionary origins of the ability to synthesize calcified structures across
various metazoan taxa remain obscure, with only a small number of protein families identified from
molluskan shells. The recent sequencing of a wide range of metazoan genomes coupled with the
analysis of gene expression in non-model animals has allowed us to investigate the evolution and
process of biomineralization in gastropod mollusks.

Results: Here we show that over 25% of the genes expressed in the mantle of the vetigastropod
Haliotis asinina encode secreted proteins, indicating that hundreds of proteins are likely to be
contributing to shell fabrication and patterning. Almost 85% of the secretome encodes novel
proteins; remarkably, only 19% of these have identifiable homologues in the full genome of the
patellogastropod Lottia scutum. The spatial expression profiles of mantle genes that belong to the
secretome is restricted to discrete mantle zones, with each zone responsible for the fabrication of
one of the structural layers of the shell. Patterned expression of a subset of genes along the length
of the mantle is indicative of roles in shell ornamentation. For example, Has-sometsuke maps
precisely to pigmentation patterns in the shell, providing the first case of a gene product to be
involved in molluskan shell pigmentation. We also describe the expression of two novel genes
involved in nacre (mother of pearl) deposition.

Conclusion: The unexpected complexity and evolvability of this secretome and the modular
design of the molluskan mantle enables diversification of shell strength and design, and as such must
contribute to the variety of adaptive architectures and colors found in mollusk shells. The
composition of this novel mantle-specific secretome suggests that there are significant molecular
differences in the ways in which gastropods synthesize their shells.
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Background

The ability to synthesize rigid, mineralized structures is an
essential trait to the majority of metazoan taxa. Verte-
brates, echinoderms, mollusks, arthropods, brachiopods,
bryozoans, annelids, cnidarians and sponges, amongst
others, construct a spectacular diversity of endo- and exo-
skeletons as well as sensory and protective structures from
a range of minerals [1]. The importance of this trait is
highlighted by the observation that the so called 'Cam-
brian explosion' was accompanied by the diversification
of biomineralization mechanisms [2-4], despite the fact
that several lineages possessed this ability before the end
of the Proterozoic [5]. It is currently unknown whether
the molecular mechanisms used to create these structures
have been inherited from an ancestral biomineralization
repertoire, invented de novo, or are the result of an
unprecedented lateral genetic transfer [6].

The evolutionary origins, mode of construction, pattern-
ing and physical properties of the molluskan shell have
held the attention of scientists for centuries, however the
molecular mechanisms by which these structures are con-
structed are only now beginning to be elucidated [7-9].
The mollusk shell is assembled extracellularly and is an
ensemble of CaCO; and organic macromolecules (pro-
teins, glycoproteins, lipids and polysaccharides), which
are secreted by the mantle epithelium. The anterior edge
of the mantle tissue underlies the lip of the shell and
directs the ordered biomineralization of the different
structural layers of the shell and controls the patterning of
architectural and color features. While the structure and
function of a number of shell matrix proteins have
recently been characterized [7,10-17], the regulatory
mechanisms that govern these shell-building processes
remain largely unknown.

It has long been acknowledged that the diversity of shell
types found in gastropod, bivalve and scaphopod mol-
lusks are achieved through the ordered secretion of pro-
teins and other molecules along the length of mantle [18-
21], however the full complexity and role of differential
gene activity in the mantle remains undescribed. The
color, structure and geometric pattern of a sea shell is a
historical record of the incorporation of proteins into the
shell matrix and onto its surface, and directly reflects the
gene expression activity of the mantle during the life of a
mollusk [22]. Using the vetigastropod Haliotis asinina
(tropical abalone) as a model, we sought to determine the
complexity of the mantle transcriptome. Abalone shells
are composed of three structurally-distinct layers: (i) the
inner nacreous (flat pearl) layer, consisting of layers of
aragonitic tablets encased within organic sheaths; (ii) the
calcitic prismatic layer, also containing organic macro-
molecules; and (iii) the outer periostracum, a thin organic
veneer that protects and decorates the shell [23]. The ante-
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rior edge of the abalone mantle epithelium is convoluted
and partitioned into discrete zones that produce each of
these layers [24]. Within each of these zones are a number
of cell types, which contribute to the construction and
patterning of the shell [25,26].

Here we assess the complexity of gene expression in the H.
asinina mantle, and explore the regulatory and structural
factors that contribute to the construction of the shell. Pre-
vious studies have demonstrated that the organic compo-
nent of the shell (often comprising less than 5% by dry
weight) is essential to its construction, and confers its
remarkable physical properties. For example, Lustrin-A
[11,27] is thought to impart fracture resistant, elastomeric
properties to the nacreous layer, while macromolecules
isolated from calcitic or nacreous environments can direct
the type of polymorph of CaCOj, that will be deposited in
vitro [28-30]. Unfortunately, shell matrix proteins are
often insoluble, highly acidic or complexed with miner-
als, making their purification very difficult [31]. To gain a
broader understanding of the molecular processes that
underlie seashell construction, we have analyzed
expressed sequence tags (ESTs) from the mantle of juve-
nile H. asinina. This approach allows for the identification
of gene products that are not necessarily incorporated into
the shell, but are nonetheless crucial for CaCO; precipita-
tion and other biomineralization events within the pallial
space adjacent to the mantle. Other mantle-localized,
secreted gene products not involved in biomineralization
will also be detected by this methodology. We have com-
pared this EST set with the recently sequenced L. scutum
(Patellogastropoda) genome in order to infer the degree
of evolutionary conservation between shell building
secretomes within one molluskan class.

Results and discussion

Structure of H. asinina shell and mantle

The juvenile shell of H. asinina is an ideal model system
with which to study the molecular events of shell con-
struction and patterning. A complex but regular chromatic
pattern adorns the outermost layer of the shell, the perios-
tracum. Here, a series of dots (either blue or orange) are
laid down on top of the ridges of the shell. The color of the
dot will be blue if it overlies a brown/red background, or
orange if it overlies a cream background (Figure la-c).
This model system is such that it allows for the spatial
mapping of gene expression profiles within the mantle to
patterning and structural events at the leading edge of the
shell.

The mineralogical composition of the shell is partitioned
dorso-ventrally into two major layers; a dorsal calcitic
layer and a ventral aragonitic layer (Figure 1d). The man-
tle epithelium, which secretes the proteins responsible for
the construction of these structures, is convoluted at its

Page 2 of 10

(page number not for citation purposes)



BMC Biology 2006, 4:40

Figure |

The tropical abalone as a model for understanding
molluskan biomineralization. (a) Juvenile shell pigmenta-
tion follows a simple set of rules; dots are blue when in a red
field (*) and orange when in a cream field (1). (b) The decalci-
fied shell reveals a blue color within previous red fields (*).
(c) SEM reveals the topographic shell pattern with a ridge (r)
and valley (v) organization, and regularly spaced respiratory
pores (white arrows). Shells in (a-c) are 5 mm. (d) Pigmenta-
tion is restricted to the outer periostracum (Pe), which over-
lies the protein matrix (Pm). The mantle (Mt) continuously
secretes these structures. Insert, SEM cross section of the
shell, revealing the calcitic prismatic layer (c/pr) and the inner
aragonitic nacreous layer (a/nc). (e) The leading edge of the
mantle (dorsal view, anterior top) consists of two folds.
Between the ventral most inner (if) and outer folds (of) lies
the periostracal groove (§). At the anterior edge of the outer
fold there is a crease in the epithelium (arrow). SEM insert of
the same region. (f) Section through the mantle edge (dorsal
top, anterior right) highlighting the periostracal groove (§).
(g) TEM of solid boxed section in (f) reveals light (Lc) and
dark (Dc) staining secretory cell types, with microvilli (Mv).
(h) TEM section of dashed box in (f) reveals the brush bor-
der-like lining of this crease (large arrowhead). Secreted
extracellular material (arrows) is evident. Inset shows this
extracellular material (white arrowhead) possibly responsible
for the initiation of calcification. Scale bars: (e, f) 50 um; (g, h)
5 um.
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anterior edge. Between the two main folds (the inner and
outer folds) lies the periostracal groove (Figure 1e-g), into
which the periostracum is secreted and then extruded
onto the dorsal surface of the shell. We have identified a
second minor fold within the mantle of H. asinina that we
have termed the anterior crease of the outer fold (Figure
le, f and 1h). Although we cannot yet assign a specific
function to this structure, the fact that it possesses an
abundance of microvilli (Figure 1h) suggests that it is
actively secreting substances responsible for shell or peri-
ostracum construction.

Mantle expressed sequence tags

We have sequenced 530 randomly selected clones from a
cDNA library constructed from the juvenile mantle tissue
of the tropical abalone, Haliotis asinina (Linnaeus). These
sequences are available under GenBank accession num-
bers DW986183 to D(Q298397. This tissue was taken
from juveniles maintained in warm water (26-28°C) that
were rapidly depositing shell material, approximately 50
um per day [32]. From this survey, we have identified 331
unique EST clusters (unigenes) that are expressed in the
mantle (Figure 2; Additional file 1). Based on the presence
of conserved signal sequences and similarity to secreted
proteins in GenBank (Figure 2) we conservatively estimate
that 26% of these (85 unigenes) encode secreted proteins.
Amongst the 140 unigenes that lack both significant sim-
ilarity to sequences lodged in public databases (Figure 2)
and a signal sequence, some may be secreted via mecha-
nisms alternative to the classical signal peptide pathway.
Of the 106 intracellular unigenes that encode proteins
with significant similarity to GenBank sequences, 15
encode trafficking and mineral binding proteins, and are
likely to represent mechanisms essential for the supply of
shell building components. For example, based upon in
situ hybridization analyses (see below) and previous stud-
ies on bivalves [33,34], ferritin and calmodulin are likely
to be playing fundamental and evolutionarily ancient
roles in shell construction within the Mollusca.

When compared with EST surveys in other metazoan tis-
sues (e.g. various mouse |[35], pufferfish [36] and human
[36,37] proteomes), a markedly higher proportion (~two-
fold) of the genes expressed in the abalone mantle encode
secreted proteins. By extrapolation, we estimate that hun-
dreds of proteins are released extracellularly from the
mantle, and contribute to the fabrication of the shell. This
estimate however needs to take into consideration non-
biomineralizing secreted proteins that do not possess sim-
ilarity with previously described GenBank sequences. This
estimate is in marked contrast to the current number of
biomineralizing proteins isolated from the shells of other
gastropods and bivalves. With efforts chiefly focused on
the characterization of proteins from the nacreous layer
[38-41], fewer than 20 protein families have been shown
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Transcription factors 2% (6 clusters)
CCAAT/enhancer binding protein -1
CCAAT/enhancer binding protein -2
ETS-family transcription factor
Jun dimerizing protein
JunDLa

Six1 homoeobox protein

25%
(85 unigenes)

67 unigenes

Delta

. Extracellular proteins sharing significant
similarity with a GenBank sequence

. Conserved intercellular signalling

. Proteins possessing a signal sequence
with no similarity to GenBank sequences

Figure 2

(140 unigenes)

K Conserved intercellular signalling 1 cluster
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Trafficking 5% (15 unigenes)
16 Kda calcium binding protein
calmodulin

clathrin light polypeptide
cysteine-rich protein

ferritin -1

ferritin -2

metallothionein

mucin-like peritrophin

myosin XVllla

organic anion transporter
organic solute transporter
RhoA

similar to cubilin

solute carrier family 6

solute carrier family 39

42%

. Proteins possessing a signalling
sequence/extracellular proteins

Proteins lacking a signal sequence
with no similarity to GenBank seqguences

Proteins involved in intracellular trafficking

. Intracellular proteins sharing significant
similarity with a GenBank sequence

I Transcription factors

Categorization of 331 genes expressed in the H. asinina mantle. A total of 331 non-redundant ESTs were clustered
using ClustalWV and placed into one of five categories according to (i) the presence/absence of a signal sequence, whether they
are (i) a trafficking protein, (iii) a transcription factor, (iv) a signaling molecule or (v) have no identity with existing sequences in
GenBank. Proteins predicted to be secreted are further subdivided.

to contribute to shell formation to date [7,8]. Strikingly,
of the 85 unigenes that encode putative secreted proteins
in the Haliotis asinina mantle, 67 (80% of the secretome)
do not share significant similarity to any sequences in
GenBank (Figure 2). However, several novel secreted open
reading frames (ORFs) possess motifs comparable to pro-
teins in other organisms, such as GGYGLGL repeats - sim-
ilar to the elasticity regions of Spidroin, an elastomeric

spider silk protein [42] - and proline-rich repeats
(LXPLSXIPVXXPXAX) as found in plant cell walls [43]. In
comparison, 140 of the 246 intracellular genes (57%) do
not match sequences in GenBank.

Interestingly, BLAST alignments between H. asinina man-
tle ESTs and genomic trace sequences from the gastropod
L. scutum, which is estimated to be sequenced to 8x cover-
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age and is currently being assembled [44], reveals that
only 13 of the 67 (19%) novel secreted proteins in Haliotis
appear to have identifiable homologues in the Lottia
genome (Additional file 2). These 13 genes may be
involved in conserved aspects of shell construction in gas-
tropods and possibly other mollusks. In contrast, the
remaining 54 novel secreted proteins are likely to either
represent genes that evolved after these gastropod lineages
split, have been lost in the Lottia lineage or a combination
of these two scenarios. Likewise, many previously discov-
ered molluskan shell matrix genes do not have clear
homologues in the Lottia genome (See Additional File 3
for results of these searches against Lottia genome traces).
The few shell matrix proteins, such as Lustrin [11], Perlu-
cin [45] and Mucoperlin [46], are likely to be conserved
components of molluskan shells, although their general
function in shell fabrication and evolutionary origins are
currently unknown. Together, these data suggest that the
complex secretome involved in mollusk shell construc-
tion is encoded primarily by rapidly evolving genes.

Localized expression of mantle genes

In order to infer the function of a subset of these ESTs, we
selected 22 for spatial expression analysis on the basis of
whether they were novel, predicted to be secreted, pos-
sessed repetitive domains and/or shared significant simi-
larity with a gene likely to play a role in biomineralization
(Figure 3). Of these, 11 are novel and one appears to have
a homologue only in the Lottia genome (i.e. gastropod-
specific; Figure 3M). The spatial expression patterns of
these 22 mantle ESTs reveals a diversity of territories and
cell types in the mantle (Figure 3), and highlights the
modular nature of the mantle tissue [24]. Some of these
(9 of 22) are expressed homogenously in one or more
zones responsible for the creation of different shell layers.
For example, LustrinA, first isolated from Haliotis rufescens,
the gene product of which contributes to the elastomeric
properties of the nacreous layer [11,27,47-50], is
expressed, along with two other novel genes, in the man-
tle territory responsible for the production of the inner
nacreous layer (Figure 3X-Z). Other evolutionarily con-
served genes, including calmodulin and a calcium-bind-
ing protein, are expressed continuously along the length
of the mantle within both the inner fold and the anterior
crease of the outer fold (Figure 3I-L), while others, such
as ferritin, are expressed only in the outer fold (Figure 3M,
N). The shared spatial expression of ferritin and calmodu-
lin genes between the Bivalvia and Gastropoda suggests
they play a conserved role in the formation or modifica-
tion of the periostracum [34,51]. The remaining 13 genes
analyzed here are restricted to specific mantle territories
and are expressed discontinuously along the length of the
mantle; either in the inner fold alone (Figure 3E-G), the
inner mantle fold and the anterior crease of the outer fold
(Figure 3H), the anterior crease of outer fold alone (Figure
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30-V), or the anterior zone of the outer fold the mantle
(Figure 3W). The dynamic spatial expression of these
genes along the length of the mantle, regardless of precise
zone, implies that they are contributing to the patterning
of shell structure and/or coloration [52,53].

Blue pigmentation gene

Has-sometsuke (HasSom) is the only gene in this study to be
expressed in the anterior zone of the outer fold of the
mantle (Figure 3W and 4) and the only gene to map pre-
cisely to a shell pigmentation pattern (Figure 4). HasSom
transcripts are only detected in territories of the mantle
that underlie regions of the shell that are producing blue
dots and fields of red, which become blue upon de-calci-
fication (Figure 1). Blue dots (Figure 1a) correspond to
zones of high HasSom expression relative to regions of red
(Figure 4). The relative abundance (blue dot or red field)
or absence (cream field) of this single gene product is con-
sistent with a role in creating the juvenile shell pattern.
Interestingly, BLAST alignments indicate the derived Som-
etsuke protein shares weak similarity to the ependymins,
a family of rapidly evolving extracellular glycoproteins
previously only found in deuterostomes ([[54]; Supple-
mentary Figure 1] and Additional File 4). There is cur-
rently no evidence of this protein family encoded in
ecdysozoan and basal metazoan genomes; we could not
detect an ependymin gene within the Lottia, Nematostella,
Amphimedon or Hydra genomes. Ependymin is highly
expressed in vertebrate cerebrospinal fluid [55] and may
be involved in echinoderm tissue regeneration [56]. With
disparate roles in these three phyla and apparent loss from
many genomes, it is difficult to infer the ancestral role of
this protein in the Bilateria. However, various functional
features of this protein, including its ability to bind cal-
cium [57] and to undergo polymerization into insoluble
fibrils [55] support a role for Sometsuke in shell construc-
tion and patterning.

Conclusion

The spatial expression profiles of the genes surveyed here
support the supposition that specific mantle zones influ-
ence the crystal morphology of discrete layers of the
mature shell. Underlying these structural differences is a
zone-specific secretome. It appears likely that highly
dynamic gene expression patterns along the length of a
given mantle zone contribute to shell patterning. In the
case of juvenile H. asinina, these patterns include: the
ridge and valley architecture; the periodic formation of
respiratory pores, the regular deposition of blue and
orange colored dots on the ridges, and the swathes of
cream and red/brown fields that cover the shell. The cor-
respondence of HasSom expression with shell coloration
indicates that there are direct relationships between gene
expression and shell patterns, which allows for under-
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Figure 3

Modular spatial expression of mantle ESTs. Localized expression of 22 H. asinina ESTs in the juvenile mantle revealed by
whole mount in situ hybridization (WMISH). (a) A representative de-shelled 5 mm (anterior-posterior) juvenile animal viewed
dorsally. (b) Schematic representation of the animal shown in (). The gills (g), digestive gland (dg), adductor muscle (am),
epipodial tentacles (ept), right mantle lobe (rml), eyespot (es), cephalic tentacles (ct) and left mantle lobe (Iml) are indicated. (c)
The mantle tissue that covers the majority of the dorsal surface of the animal is shaded grey. The region illustrated in each
uppercase panel below is indicated by the dashed box, and in each lowercase panel by the red box. (d) A schematic represen-
tation of the distal region of the mantle tissue where biomineralization takes place, corresponding to the red box in (c). The
posterior zone of the outer fold (pzof), anterior zone of the outer fold (azof), periostracal groove (pg), inner fold (if), and ante-
rior edge of the outer fold (aeof) are indicated. The first panel (uppercase) in each pair is a dorsal view of the anterior end of a
juvenile, the second (lowercase) is a magnified view of the dissected mantle edge. Arrows in the first panel of each pair indicate
the mantle and representative staining patterns. (E-G) Genes expressed discontinuously within the inner fold of the mantle. (H
and h) Gene expressed discontinuously within both the inner mantle fold and the anterior crease of the outer fold. (I-M) Genes
expressed continuously within both the inner fold and the anterior crease of the outer fold. (N and n) Gene expressed contin-
uously within the anterior crease of the outer fold. (O-V) Genes expressed discontinuously within the anterior crease of outer
fold. (W and w) HasSom expressed discontinuously within the anterior zone of the outer fold the mantle. (X-Z) Genes
expressed ubiquitously within the posterior zone of the outer fold, corresponding with the area of nacre production. See Addi-
tional File | for details of ESTs used for in situ hybridization. Representative scale bar in (e) (for the second panel in each pair)
is 200 um. All animals possessed shells of between 5 and 6 mm (anterior-posterior).
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Figure 4

HasSom expression correlates with shell pigmenta-
tion. (a) Juvenile H. asinina shell prior to whole mount in situ
hybridization against HasSom. (b) The same shell partially
decalcified. (c) Dorsal view of shell-less juvenile illustrating
HasSom expression (arrows). (d) Dissected portion of the
mantle (corresponding to the boxed region in c). Coloured
lines indicate corresponding regions of the shell and perios-
tracum in (a) and (b). A cross section (insert) shows HasSom
expression restricted to the dorsal surface of the outer fold
(white arrowhead), and to the dorsal surface of the periost-
racal groove (black arrowhead).

standing the molecular basis of structural and color pat-
terning.

The modular design of the molluskan mantle [24,58],
along with distinct patterning mechanisms within each
zone, allows for immense variation in shell structure and
pattern in shell-building mollusks. This morphogenetic
system, combined with a complex and rapidly evolving
secretome, as revealed here, is likely to have provided the
foundation from which the incredible diversity of mol-
luskan shell shapes and patterns has evolved. Despite the
advantages of this approach to the rapid identification of
novel biomineralizing proteins, it must be pointed out
that common post-translational modifications (glycosyla-
tion, lipid transfer etc.) that are likely to greatly increase
the diversity of the organic matrix, will not be detected by
this approach, and further underscores the fact that we are
some way from a detailed understanding of how nature
generates these functional and beautiful structures.

Methods

Library construction, sequencing and EST annotation

A directionally cloned cDNA library was constructed from
total RNA extracted from the mantle tissue of ten 7-15
mm juvenile H. asinina using a BD Biosciences SMART
library construction kit. Phages were converted into plas-
mid DNA following the manufacturer's instructions and
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sequenced using ABI chemistry v 3.1 [59]. EST sequences
were clustered using ClustalW [60,61] and inspected visu-
ally to yield consensus contiguous sequences and a non-
redundant collection of ESTs. ESTs were first annotated
based on SWISSPROT and NCBI nucleotide, protein and
EST database searches at the National Center for Biotech-
nology Information (NCBI) using the BLAST [62] family
of programs [63] and classified according to function
[64]. At the time of writing 900,172,457 L. scutum traces
were available from the NCBI trace archive [65]. These
traces were downloaded and searched against our dataset
using the standalone BLAST package (TBLASTx and
TBLASTn algorithms with default gap costs and the
BLOSUMG62 matrix). Putative ORFs were identified in
ESTs either through sequence similarity or ORF Finder
[66] and manual inspection. Among the novel ESTs
(those ESTs sharing no significant similarity with publicly
available sequences) only ORFs larger than 50 codons,
encoded by the positive strand, and beginning with a
methionine residue were accepted. All conceptually
derived protein sequences were assessed for the presence
of a leader sequence using the SignalP 3.0 [67] server [68]
and were classified into extracellular or intracellular cate-
gories. An EST encoding a novel protein was only accepted
as destined for secretion if both SignalP 3.0 algorithms
(neural network and hidden Markov model) identified
the presence of a signal peptide and a cleavage site, and if
the Markov model probability was higher than 90% (in
most cases this was >95%). Sequences are deposited at
NCBI under accession numbers DW986183 to
DW986511. Has-vm2 and Has-lustrin have accession num-

bers DQ298397 and DQ298402 respectively.

In situ hybridization, histology and electron microscopy

Juveniles (1-10 mm) of H. asinina were relaxed with 1 M
MgCl, in seawater and then fixed for 1 h in 4% parafor-
maldehyde, 0.1 M 3-(N-morpholino) propane sulfonic
acid pH 7.5, (MOPS), 2 mM MgSO,, 1 mM ethylenegly-
coltetra-acetic acid (EGTA) and 0.5 M NaCl. Fixed animals
were then washed five times with 100% ethanol and
stored in 75% ethanol at -20°C. All DIG-labeled ribo-
probes were produced using either SP6, T3 or T7 RNA
polymerase and a PCR amplicon of the desired clone. Sev-
eral sense controls were performed with probes of various
GC contents and lengths to assess background patterns.
Endogenous alkaline phosphatase activity of the mantle
tissue was also assessed and found not to be present fol-
lowing the in situ procedure. Whole mount in situ hybrid-
ization (WMISH) was performed as previously described
[69] usually at a hybridization temperature of 62°C. Sec-
tions (6 um) were produced by mounting juveniles that
had undergone WMISH in EPON 812 and sectioning
using a Leica Ultracut T. Prior to WMISH shells were
removed by incubation in 1x PBS, 4% paraformaldehyde
and 350 mM EDTA. Gene expression within the mantle
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was correlated to shell patterning activity by photograph-
ing individual shells prior to decalcification and relating
this to WMISH results.

For transmission electron microscopy, juveniles were
relaxed as described above and mantle tissue was dis-
sected and processed according to [70]. Briefly, tissue was
prefixed in low osmium (0.05% OsO, in 4% glutaralde-
hyde, 0.2 M Na cacodylate, 0.1 M NaCl and 0.35 M
sucrose, pH 7.2) for 10 min. This was followed with a pri-
mary fixation in the same fixative, but lacking osmium,
for 1 h. The tissue was then washed twice in buffer (0.3 M
NaCl and 0.2 M Na cacodylate, pH 7.2) before a post fix-
ation in osmium (1% OsO,, 0.3 M NaCl and 0.2 M Na
cacodylate, pH 7.2) for 1 h. Samples were then dehy-
drated through a graded series of ethanol, embedded in
EPON 812 and 60 nm sections taken using a Leica
Ultracut T. Sections were stained with uranyl acetate and
lead citrate and viewed in a JEOL JEM 1010 transmission
electron microscope at 80 kV.

For scanning electron microscopy, whole juveniles with
the shell removed were fixed and dehydrated as described
above, then infiltrated and dried overnight in hexameth-
yldisilisane. Juveniles and unfixed shells were mounted
on stubs, sputter-coated with platinum and viewed in a
JEOL JSM 6300 scanning electron microscope at 15 kV.
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