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Abstract
Background: Present protein interaction network data sets include only interactions among
subsets of the proteins in an organism. Previously this has been ignored, but in principle any global
network analysis that only looks at partial data may be biased. Here we demonstrate the need to
consider network sampling properties explicitly and from the outset in any analysis.

Results: Here we study how properties of the yeast protein interaction network are affected by
random and non-random sampling schemes using a range of different network statistics. Effects are
shown to be independent of the inherent noise in protein interaction data. The effects of the
incomplete nature of network data become very noticeable, especially for so-called network
motifs. We also consider the effect of incomplete network data on functional and evolutionary
inferences.

Conclusion: Crucially, when only small, partial network data sets are considered, bias is virtually
inevitable. Given the scope of effects considered here, previous analyses may have to be carefully
reassessed: ignoring the fact that present network data are incomplete will severely affect our
ability to understand biological systems.

Background
Molecular networks such as protein interaction, transcrip-
tional or metabolic networks are widely seen as integra-
tive and coherent descriptions for the whole complement
of molecular processes inside a cell [1]. There has been
considerable interest in their structure, their functional
organization and their evolutionary properties. For
important model organisms such as Saccharomyces cerevi-

siae, Caenorhabditis elegans and Drosophila melanogaster
there are now extensive protein interaction data deposited
in public-domain databases and serious attempts are
being made at elucidating the human protein interaction
network (PIN) [2,3]. These network data sets – extensive
though they are thanks to experimental advances and in
silico prediction – do not cover the entire network. In par-
ticular they do not include all the proteins in these organ-
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isms and represent samples only from much larger
networks.

But a network introduces a set of relationships and poten-
tial dependencies between the constituent nodes and
these may be broken up in the subnet. By subnet we mean

a subset  of the nodes of the overall global network 
and the interactions among them (i.e. the induced sub-
graph of a set of nodes); depending on how the nodes in

 are chosen, properties of  will be different from

those of . Until very recently, all studies surprisingly
ignored the effects of the incompleteness of molecular
networks [4] despite the fact that the sampling properties
of networks can lead to systematic differences between the
properties of networks and their subnets (discrepancies

can be further inflated when the nodes in  are chosen in
a highly ascertained manner [5]). While random subnets
of classical random graphs have properties that can be
taken as representative of the true network, most net-
works, notably the popular scale-free classes of networks,
will display noticeable and qualitative differences
between networks and their subnets. This early work was
followed by an analysis of Han et al. [6], who reported
results regarding the effects of sampling on the degree dis-
tribution of PINs and further theoretical studies by Lee et
al. [7]; Hakes et al. [8] considered not subsampling but the
question of the effect of data-set selection on structural
inferences of networks, which can also have considerable
impact on the analysis and may explain differences
between analyses. A host of other network statistics can be
considered in addition to the degree distribution, Pr(k), in
order to assess the structure [9]; these include the cluster-
ing coefficient and network motifs (see Methods for defini-
tions). Importantly, all of these will be different for
subnets compared with the true network and it is essential
to understand the extent to which subnet properties other
than the degree distribution differ from those of the true
network. As we will show, this is to a large extent a ques-
tion of how the subnet is created (that is, how nodes are
chosen), and the statistic under consideration. A useful
general premise we have found is that subnetworks differ
more from the true network in non-local properties: i.e.
their degree distributions will be more "similar" (in a
loose sense which has been made somewhat more precise
[5,10]) than, for example, motif spectra [11,12].

It is thus important to understand the extent to which the
sampling properties of networks affect our inferences
regarding structure, function and evolution. Considerable
effort has been invested in understanding, for example,

the functional organization and evolutionary properties
of PINs, and contradictory results have been reported in
the literature which are probably affected by many factors
in addition to incomplete data. We have recently studied
statistical sampling properties of network ensembles [4,5]
in considerable detail: the results suggest that when t80%
of the nodes in a network are sampled at random, the
shape of the degree distribution of the subnet, Pr*(k), will
be virtually indistinguishable from that of the true net-
work. Current PIN data comprise interactions only among
a relatively small number of the proteins known to be
present in the different organisms. For S. cerevisiae, for
which sampling is most complete, present publicly avail-
able data sets include interaction data among ≈4900 out
of an estimated 6000 proteins. We have therefore taken
the present S. cerevisiae PIN as a starting point for our
analysis. We compare results for subnets with those of the
assumed 'true' network. This study is meant as a qualita-
tive investigation into how incomplete sampling has
affected studies into PINs and not as a quantitative assess-
ment of the reliability of the present dataset. Despite the
noise in the present yeast PIN, the S. cerevisiae data will
give us a more realistic representation of a true PIN than
theoretical network models.

We will show that the sampling nature of a real network
does indeed lead to different properties in the subnets
compared with the true network. Sampling properties of
networks have hitherto been largely ignored – whereas the
poor data quality has attracted considerable attention
[13,14] – but may lead to large variances and biases for
network statistics obtained for different subnets, and act
independently of noise. In light of the present analysis it
may be necessary to reevaluate previous results for biolog-
ical networks. In the context of systems biology this study
demonstrates both the importance of performing care-
fully delimited studies of well-defined aspects of systems,
and the potential pitfalls of analyzing only parts or com-
ponents of complex biological systems. Clearly the way
the data have been collected needs to be considered
before an analysis, and the sampling properties of net-
works need to be included in the analysis explicitly and
from the outset.

Results
Network sampling schemes
Assuming random sampling of nodes leads to great sim-
plifications in the mathematical analysis [4]. In reality,
however, experimenters are more likely to pick some pro-
teins than others and quite generally we can assume that
each protein has probability 0 <pi < 1. Then the number of
nodes in the subnet is given by

 

 
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
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Equally, we can determine the average probability of sam-
pling a node

As N becomes large (strictly as N → ∞) it is possible to

show that we can use  rather than the individual pi to

determine the sampling probabilities of random net-
works.

Sampling properties of networks
Uncorrelated random networks are networks which are
maximally random conditional on a given degree distri-
bution [15,16] (thus their degree-degree correlations may
be different from zero); in such a case it is possible to
express expectation values of many interesting network
characteristics in terms of the degree distribution Pr(k);
more interestingly, the degree sequence is a sufficient (see
e.g. Cox and Hinkley [17]) statistic for uncorrelated net-
works. We can straightforwardly calculate the first two
moments of the degree distribution in the subnet [5],
Pr*(k):

where <...> denotes the sample mean and p the sampling
probability. These equations are true whether a network is
uncorrelated or not.

As the sampling fraction increases from zero to one the
sampeld network will undergo a structural phase transi-
tion [18,19] in the limit N → ∞. One of the main conse-
quences is the emergence of the giant connected
component [18]. This is present (for N → ∞) when the
average number of next-nearest neighbours, z2 of a ran-
dom node is on average greater than the number of its
nearest neighbours z1; i.e.

z2 > z1  (5)

The number of nearest and next-nearest neighbours in a
network  are given by

z1 ≡ <k>  (6)

and

Z2 ≡ <k2> - <k>,  (7)

respectively. Substituting Eqns. (3) and (4) yields for con-
dition (5) in the subnet

Thus the sampling fraction p for which the subnet does
not have a GCC depends in an intuitive and simple man-
ner on the properties of the overall network . For the
yeast PIN considered here the GCC will cease to exist for p
d 0.041. For classical or Erdös-Rényi random graphs,
where the degree distribution is given by a Poisson distri-

bution with parameter λ (for large N) equation (8) means

that the sampling fraction must exceed p >  for a GCC

to exist.

Subnet structures
A random subnet comprising e.g. p = 60% of the nodes of
the true network differs quite substantially from the true
network (here p is the probability of sampling a node; the
fraction of nodes included in the subnet is binomially dis-
tributed with probability p). The graph induced by the
subset of nodes has a substantially smaller number of
edges than the sampling fraction, p (see Table 1). For
example, for p = 60% slightly more than a third of the
interactions will be observed. Trying to predict the size of
interactomes by linear extrapolation from present data
sets will thus underestimate the true interactome size [20].
For random sampling, however, it is in fact straightfor-
ward to predict the number of interactions: if a fraction p
of nodes has been sampled, then the fraction of edges that
has been sampled is simply the fraction of pairs of nodes,
i.e. a random subnet with sampling probability p will have
a proportion of p2 of the edges. For S. cerevisiae we have
thus 15,181 out of approximately 15,181/0.802 ≈ 23,800
interactions (which are detectable given current experi-
mental technology).

Degree distribution
In Figure 1A, as the sampling fraction decreases statistical
weight tends to flow from high degrees to low degrees (we
have removed nodes with k = 0 from the degree distribu-
tion). Moreover, at low degrees the degree distribution
appears to become more power law-like as the sampling
fraction decreases; this is a curious point given claims
about scale-free properties of so many biological networks
that are effectively subnets of the real network. Previous
analyses [4,5] show, however, that even the degree distri-
butions of subnets are generally qualitatively different
from those of the true network; in particular if the degree
distribution of the network takes on a power law form, the
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subnet (as the value of p decreases) will have a qualita-
tively different degree distribution and vice versa.

On average a node with degree k in the global network
will have degree pk [4,5] in a randomly sampled subnet
(with sampling fraction p) and the peaks that are visible in
the tail of the subnet degree distributions correspond to
the most highly connected nodes in the full network: the
maximum degree is 283 and corresponding peaks appear

at ≈226, ≈170, ≈113 and at ≈57, for sampling fractions of
80%, 60%, 40% and 20%, respectively, that were gener-
ated by random selection of nodes with probability p.
Because of the binomial sampling procedure used in gen-
erating networks, (where the degree distribution in the

subnet  is given by Eqn. (10) (see Methods), the

most highly connected nodes will remain the same – as
will their rank order and the relative proportion – in the
subnets as in the global network, provided, of course, that
they are included in the subnet; see Figure 2.

The effects of noise on the network data are shown in Fig-
ure 2 where we have added, subtracted and rewired,
respectively, a fraction of the interactions among nodes.
Qualitatively, we find that the shoulder of the degree dis-
tribution (i.e. the shape of the distribution at intermediate
values of the degree k) is only little affected. Particularly at
low, but also at high degree, the shape of the distribution
may also differ quite considerably. Thus noise should gen-
erally distort the degree distribution in a different way
from the way incomplete network data do.

Clustering coefficients
Figure 1B shows the spread of the average clustering coef-
ficient in the four subnet ensembles. The horizontal line
shows the empirical clustering coefficient of the full net-
work. In the supplementary material [see Additional file
1] we show that for large uncorrelated uniform networks
[21] the clustering coefficient does not change at all under
random sampling. The systematic decrease in the average

clustering coefficients with decreasing subnet size reflects
the presence of degree-degree correlations (previously
shown by Agrafioti et al. [22]) in the network data. We
also also observe an increase in spread and range with
decreasing subnet size. The empirical clustering coeffi-
cient (indicated by the horizontal line) is higher than the
median, but falls within the distribution of clustering
coefficient (C) values obtained for all subnet ensembles,
suggesting that correlations in the network are not very
strong. This is in contrast to Figure 1A, where the degree
distribution is more globally affected. This and the behav-
iour of C under sampling in the giant connected compo-
nent are discussed further in the supplementary material.

Betweenness
The dependence of betweenness or betweenness-central-
ity (BC; see Methods) on the sampling fraction is more
subtle than that of the degree or clustering coefficient as it
also depends on the global structure of the network. Thus,
for example, in different subnet samples the 10 proteins
with the highest BC values change much more than the 10
proteins with the highest degrees. However, a very good
correlation (Kendall's τ t 0.79 in the true network)
between degree and BC is seen for all values of p (data not
shown).

Motifs
In this study we pay particular attention to the six motifs
defined by four nodes in an undirected graph (illustrated
at the bottom of Figure 1C). The observed range of the Z-
scores (see Methods) for all motifs considered here
decreases with subnet size. For each subnet size we
observe considerable spread in the range of Z-scores for
the different motifs shown in Figure 1C. Motifs 1,3 and 4
can have both negative and positive Z-scores depending
on the sample (motif 4 has positive and negative statisti-
cally significant Z-scores even for 80% subnets in the 20
subnets studied here). For motif 6, the most highly con-
nected, we observe the biggest spread as well as a general
increase in the average Z-score with subnet size. In Figure
1D we observe that the median Z-score for motif 6 is the

Pr ( ) k

Table 1: Sampling fraction and sub-network size. In the present context, the true network has been taken to be the available PIN 
dataset (which contains itself interactions among 4773 out of an estimated 6000 S. cerevisiae proteins). The relationship between 

sampling fraction p and number of edges in the subnet is quadratic . The last line shows the extrapolation from the 

present network to the true network size assuming random sampling.

Sampling fraction Number of proteins Mean number of interactions

0.2 955 602
0.4 1907 2423
0.6 2864 5465
0.8 3819 9716
1.0 4773 15181

Full network ≈6000 ≈23700

M p M = 2
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Properties of the yeast protein interaction networks under random samplingFigure 1
Properties of the yeast protein interaction networks under random sampling. (A) The degree distribution for the 
full network and the average for the subnets (averaged over the ensemble) generated by sampling 80%, 60%, 40% and 20% of 
the nodes in the Saccharomyces cerevisiae protein interaction network. Nodes with degree k = 0 have been dropped from the 
analysis, reflecting the content of interaction databases. (B) The horizontal line shows the clustering coefficient of the full net-
work. From the boxplots it is apparent that with decreasing subnet size the clustering coefficient will tend to decrease, reflect-
ing the increasingly sparse network with a correlated structure. (C) Z-scores for the six 4-motifs in the true network and 20 
random subnets for sampling fractions p = 80%, 60%, 40% and 20%. (D) Median Z-scores for each motif in each of the subnet 
ensembles and the Z-score of the motif in the full network. In (C) and (D) a positive Z-score indicates that the motif is over-
represented in the true network compared with randomly rewired versions of the true network; a negative Z-score indicates 
under-representation.
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Degree distribution of noisy yeast protein interaction networksFigure 2
Degree distribution of noisy yeast protein interaction networks. Degree distributions for "noisy" networks with 10% 
(green), 20% (blue) and 40% (red) false-positives (A), false negatives (B) and rewired edges (C). In each case the degree distri-
bution of the true network is shown in black. Shown are averages obtained from 1000 independent instances. The 95% CIs of 
the degree distributions overlap the symbols used to indicate the mean, i.e. the variance of Pr(k) at degree k is relatively small.
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same in both the 20% and 40% subnets, and the 60% and
80% subnets, respectively. This is, however, entirely due
to chance and to the high variance of motif Z-scores in
random subnets as is shown by further analyses (see sup-
plementary material [See Additional file 1]). The impor-
tance of network data integrity and completeness is
further exemplified by comparing the results in figure 1C
with those in the original papers by Milo et al. [11,12];
here effects of the choice of data set also come into play
[8].

Non-random ascertainment schemes
The degree distributions differ quite considerably between
the different sampling schemes (see Figure 3A). It is par-
ticularly interesting to note that the high-confidence data
network has the degree distribution which is most similar
to the degree distribution of the complete data-set. BC is
shown in part B of the same figure which confirms the
results outlined above: there is a systematic increase with
decreasing sampling fraction p or subnet size. There are
some nodes which appear to be on the shortest paths
between all (or almost all) pairs of nodes. These do not,
however, correspond to the most highly connected nodes,
but rather occur for low degrees (k = 2).

For the subnets constructed on the basis of protein expres-
sion data, we determined the 4-motif Z-scores. In Figure
3C it can be seen that all the motifs have similar Z-scores
in the different data sets except for the fully connected 4-
motif. The Z-scores of this motif do not exhibit a simple
ordering, e.g. the subnet comprising the 80% of nodes
with the highest expression levels exhibits higher Z-scores
than the subnet consisting of all nodes where expression
level data is available. Finally, this network has a Z-score
for motif 6 that is twice as high as that obtained for the full
network. We also detect some systematic differences for
motifs 1, 3 and 4. These had Z-scores ≈ 0 in the true net-
work and all randomly generated subnets (Figure 3C), but
have negative Z-scores in the networks which are based on
expression level. This suggests that experimental bias in
designing interactome mapping studies will lead to sys-
tematic differences in motif spectra for different sampling
schemes.

Incomplete data and functional and evolutionary 
inferences
So far, we have considered only structural properties of
networks. The interest in molecular networks lies, how-
ever, in the hope that they can explain the mechanisms
underlying complex biological processes. Their impact on
the evolutionary properties of molecules has also been
studied and here we seek to understand how informative
inferences from subnets are about the properties of larger
networks.

Figure 4A shows the correlation and partial correlation
(correcting for expression level variation) coefficients
between evolutionary rate and degree for the 20%, 40%,
60% and 80% subnetworks; correlations and partial cor-
relations are measured using Kendall's rank correlation
coefficient, τ. The evolutionary rate is obtained from com-
parisons with six other yeast species [22], based on recon-
structed phylogenies. There is a weak anti-correlation
between evolutionary rate and degree and this anti-corre-
lation is further weakened when expression level is taken
into account in the partial correlation coefficients (blue
boxplots in Figure 4). This anti-correlation strengthens
somewhat in the larger subnets. There is a stronger anti-
correlation (see Figure 4B) between evolutionary rate and
expression level. These results suggest that the qualitative
results of the work of, for example, Agrafioti et al. [22] – at
least those referring to single nodes – remain valid in the
ensembles of random subnets. Quite generally, under ran-
dom sampling of nodes, single-node properties or any
qualities that depend on a protein's degree should also be
observable in the subnet. For example, under random
sampling the most common proteins will remain the
same, provided, of course, that they are included in the
subnet (Table 2). Because of random sampling, a node
which has rank m in the list of nodes ordered by degree in
the full network will have rank l < m in a subnet with
probability

conditional on it being included in the subnet. Eqn. (9)
reflects the obvious point that the average rank of a node
decreases with decreasing sampling fraction p. But because
of Eqn. (9), single node properties in the true network –
e.g. frequency of protein domains [23] or correlation
between degree and expression level [22] – will be statis-
tically conserved in the subnets. We note that these results
are qualitatively unaffected by the reported "stickiness" of
some of the proteins in table 2 (Sticky proteins will, of
course also be sticky in smaller yeast two-hybrid studies).
In the table we also provide the number of interactions
observed in the high-confidence Database of Interacting
Proteins (DIP) [24] data set. We find that the number of
interactions reported for these proteins decreases dramat-
ically (more quickly than would be expected given the rel-
ative size of these datasets) but that overall we find a
reasonable level correlation between the degrees of pro-
teins which are included in both data sets (Kendall's τ ≈
0.53; p < 10-10). Discovering potential relationships
between, for example, motifs and evolutionary and func-
tional properties, as previously suggested [25], is subject
to the more disruptive effects of network sampling on
such structures (several studies have found other reasons
why the functional interpretation of motifs may be diffi-
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Properties of the yeast protein interaction networks under non-random samplingFigure 3
Properties of the yeast protein interaction networks under non-random sampling. (A) Degree distributions for 
proteins with different expression levels and a subnet generated from interactions which have previously been assigned as 
more reliable. (B) Betweenness-centrality for the same subnets. (C) Z-score of each of six different 4-motifs for the full net-
work and each subnet sampled according to expression level, as well as the network consisting of high-confidence interaction 
data.
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cult in many instances, see, for example, [26,27]). Given
the results shown for motifs (discussed above in relation
to Figures 1C,D and 2C), such analyses may need to be
carefully re-evaluated in light of the sampling nature of
present network data.

Discussion
We have explored effects of sampling on statistical meas-
ures of protein interaction structure for different sampling
schemes. Our comparison with the effects of noisy inter-
action data (see figure 2) suggests that sampling and noise
affect network statistics in different ways and we have
therefore concentrated on the sampling effects as noise
has received considerable attention previously (see, for
example, [28,13,29]). Previous studies of network sam-
pling properties focused on the degree distribution
[4,30,6]. In our analysis we confirmed the results of these
earlier studies, but one aspect of this study deserves closer
scrutiny: with decreasing sampling fraction the degree dis-
tribution of the randomly sampled subnets becomes
straighter and the slope of the best-fit line becomes
steeper. More interestingly, we find that for a data set
which had previously [28] been classified as consisting of
more reliable interactions, the degree distribution appears
to be reasonably similar to the degree distribution of the
overall network (this can be also quantified statistically
[5]), especially when compared with the randomly gener-
ated subnetwork ensemble.

Not surprisingly, we find that the effects of sampling on
other statistical measures such as clustering coefficient,
betweenness and motifs are more intricate (average path-
lengths and diameter [1] have similarly diverse sampling
properties). As statistical measures become less local, the
effects of sampling become increasingly subtle. For exam-
ple, BC is a non-local property and the effects of sampling
act locally as well as globally as the system undergoes a
structural phase transition with the giant connected com-
ponent [19,31] breaking up as p decrease. Thus the frac-
tion of pairs of nodes which are connected (belong to the
same component) decreases and an increasing fraction of
nodes has a BC value of 0. On the other hand, the fraction
of shortest paths passing through the connected nodes
increases systematically.

Motifs are local objects [11,12,32] but Z-scores are con-
structed using a global network-rewiring approach
[33,34]. Therefore their sampling properties are more
intricate than those of subgraphs that are defined differ-
ently [35]. This dual nature of motifs – they are local
objects but their significance is assessed against a globally
randomized network ensemble – explains the qualitative
differences in their behaviour under different sampling
regimes.

In addition to the sampling properties, one result which
becomes obvious from the present analysis is that subnets
of the same size can differ quite considerably; and, in par-
ticular, the more complex measures of network structure
such as motif spectra can exhibit variances that over-
whelm the mean or median statistics. This becomes par-
ticularly apparent in Figure 1C. It is partially for this
reason that we have not emphasised the non-random
sampling schemes more: a single instance of a network
statistic represents only an instance of a sample drawn
from an ensemble; for networks sampling of nodes leads
to very broad distributions of sample statistics as would
be expected for such highly correlated and structured data
sets [1]. Sampling and noise affect these network statistics
differently, with incomplete data introducing variability
as well as systematic bias, and noise affecting almost
exclusively the variance in, for example, the Z-scores of
motifs.

For random subnets we also compared evolutionary
results previously obtained for the "complete network"
for the randomly generated networks. In Agrafioti et al.
[22] only the effects of local structure (i.e. degree) were
used and in light of the previous discussion it is therefore
not surprising that the central results are generally con-
firmed in the subnets: in particular protein expression
level correlates better than degree with protein evolution-
ary/substitution rate. For the non-random sampling
schemes the data are biased in favour of protein abun-
dance and results are also confirmed, but potentially
biased somewhat against degree. In general, single-node
properties of proteins are statistically conserved in the
subnet, e.g. the protein with the highest degree will, pro-
vided it is being included in the sample, tend to have the
highest degree also in the subnet. As far as biological and
functional inferences are concerned, the effects of network
sampling properties appear to be not very different from
statistical missing data problems. Thus the biological
studies, which investigate, for example, the interplay
between protein domain structure and protein interac-
tions [23] are probably not affected. Investigating such
properties across a network [36], however, may be subject
to bias because of the intricacies displayed by the network
sampling behaviour discussed here.

Conclusion
In summary, our analysis shows that it is important to
include the sampling nature of biological networks explic-
itly and from the outset. Failure to do so may have given
rise to biases in previous network analyses. In particular
this is the case for statistics which involve more than one
node such as motif spectra [12] or pairwise similarities of
nodes [37]. In other branches of the quantitative bio-
sciences, notably population genetics [38], the effects of
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Correlation between evolutionary rate and degree and expression levelFigure 4
Correlation between evolutionary rate and degree and expression level. (A) The boxplots of Kendall's rank correla-
tion coefficient (red) show a weak anti-correlation between evolutionary rate and degree, which increases with subnet size. 
The corresponding partial correlation coefficients (blue) indicate a weaker anti-correlation when protein expression level is 
controlled for. (B) Correlation coefficients (red) between evolutionary rate and protein expression level and partial correlation 
coefficients (blue) which account for differences in protein degree. The anti-correlations found here are stronger than those 
shown in part A of this figure. The horizontal dot-dashed lines represent the correlation coefficients of the full network.
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sampling and their importance are well understood. The
same is not true for the fledgling field of systems biology.

Noise and incompleteness affect network data in subtly
different ways. As we have shown here, a subnet is much
less than a part of the whole network and failure to
account for this will bias inferences.

Methods
Yeast protein interaction data
Protein-protein interactions of Saccharomyces cerevisiae are
obtained from the DIP database which lists 4773 proteins
('nodes' in network parlance) and the 15,461 interactions
observed between these proteins. It is a manually curated
catalogue of protein complexes and the interactions are
obtained, inter alia, from yeast two-hybrid experiments
and literature extraction. It is estimated that S. cerevisiae
has around 6000 genes, so that which we call the full net-
work is really a subnetwork itself. We have removed self-
interactions leaving 15,181 interacting protein pairs; self-
interactions are removed so that we can describe the PIN
in terms of a simple graph [18]. It should be noted that in
PINs the rates for false-positive and false-negative results
are estimated [13,39] to be around 40%, with many inter-
actions endorsed by only one experimental observation.
This dataset then constitutes our assumed "real" or com-
plete network.

Generating subnets
We randomly sampled (without replacement) the real
network to produce 1000 subnets comprising 20%, 40%,
60% and 80% of the total number of nodes, respectively
(Table 1). The random sampling scheme is the most par-
simonious model for the choice of nodes which make up
the subnets. In reality, however, experimentalists design-

ing e.g. yeast two-hybrid experiments will be guided by
prior knowledge and/or a particular biological question in
mind. While it is difficult to model the precise ascertain-
ment process we have some additional information which
allows us to study the effects of two other ascertainment
schemes: first we consider the networks generated by tak-
ing all proteins which were included in the expression
analysis of Cho et al. [40] as well as the 20%, 40%, 60%
and 80% of proteins with the highest expression levels.
The second ascertainment scheme we consider is the sub-
net of protein interactions which have been deemed to be
reliable in the analysis of Gavin et al. [28] (referred to in
the main text as high-quality/high-confidence data).

Generating noisy networks
The present S. cerevisiae PIN is, of course, not free from
false-positive interactions; equally, false-negatives will
have lead to missing interactions. Here we have used the
PIN data as if it were the true network to study the effects
of incomplete network data under different sampling
schemes discussed above. In order to study the effects of
noise, we follow the approach of Yook et al. [29] and add
10%, 20% and 40% of false interactions to study the
effects of false-positives; we delete 10%, 20% and 40% of
interactions to model the effect of false-negative; and we
rewire (which corresponds to adding and deleting equal
proportions of interactions) 10%, 20% and 40% of inter-
actions to study the joint effects of false-positive and false-
negative interactions. In this way we can qualitatively
compare the effects of noise in the data with those of
incomplete network data on network statistics.

Degree distribution
The degree distribution, Pr(k), is the probability that a
node has k interaction partners. In uncorrelated networks

Table 2: Proteins with maximal degree-rank. The rank of a protein in the list of proteins ordered by degree, gene name, and number 
of connections of the top-ten most connected proteins in the full network are listed, followed by their corresponding mean rankings 
from the ensemble of 1000 20%, 40%, 60% and 80% subnetworks. Value in brackets are the number of subnets (out of 1000) in which 
the protein was present. The final column shows the degree in the high-confidence DIP data set; the correspondence between the 
degrees of a protein in both datasets appears to be poor. Overall, however, there is significant correlation between a protein's degree 
in the two data sets (τ ≈ 0.53).

Rank Network Gene Degree 
Network

Avg. rank 20% 
subnet

Avg. rank 40% 
subnet

Avg. rank 60% 
subnet

Avg. rank 80% 
subnet

Degree in high 
confidence data

1 JSN1 283 1 (206) 1 (394) 1 (599) 1 (811) –
2 CDC28 213 1.3 (193) 1.5 (416) 1.7 (585) 1.9 (797) 4
3 SRP1 197 1.3 (188) 1.7 (395) 2.1 (595) 2.5 (796) 11
4 NUP116 147 1.7 (182) 2.4 (383) 2.8 (591) 3.4 (809) 2
5 ATP14 125 2.1 (176) 2.9 (386) 3.7 (603) 4.4 (796) –
6 SUA7 115 2.2 (193) 3.4 (414) 4.5 (616) 5.6 (806) 8
7 TEM1N 115 2.4 (183) 3.5 (402) 4.6 (597) 5.7 (791) –
8 SRB4 109 2.6 (192) 3.8 (390) 5.2 (580) 6.7 (799) 4
9 BZZ1 107 2.6 (195) 3 (401) 5.3 (593) 6.9 (815) 1
10 VMA6 95 3.7 (193) 4.6 (414) 6.6 (582) 8.6 (788) 2
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[41,16], other properties depend only on the degree distri-
bution and the degree sequence is a sufficient statistic. The
expected degree distribution in the subnet is given by

or by

if nodes of degree 0 in the subnet are ignored.

Clustering coefficient
The clustering coefficient C is a measure of the average
local neighbourhood in a network [42]. It is defined as the
probability that two nodes j and k which are connected to
node i are themselves connected to each other, and its
value is restricted to the unit interval, 0 ≤ C ≤ 1. It is aver-
aged over all nodes in the network:

where ki is the degree of node i. It is a measure which
describes the average local structure in a network [1].
When C is calculated only for the giant connected compo-
nent the behaviour will differ slightly (Supplementary
material [See Additional file 1]).

Betweenness
The betweenness of a node is the number of shortest paths
in a network which includes this node [43]. Betweenness-
centrality (BC) is the fraction of shortest paths which runs
through a node. Here we focus on BC and its change
under sampling. BC is highly correlated with degree in an
obvious way with hubs having higher centrality than
lower-degree nodes.

Motifs
Motifs are recurring patterns of connected subgraphs. It
has been speculated that motifs may represent modules
that are used repeatedly in similar biological processes,
just as transistors are reused in larger electronic circuits
[11,12].

Motifs and their statistical significance were determined
using the mfinder package [11,12] which randomizes the
edges in the true network (in this case the S. cerevisiae full-
or sub-network) among the nodes (keeping the number
of nodes and the degree of each node the same as that in
the true network). The frequencies of the various 4-motifs
are then determined for the randomized network. This is
repeated a sufficiently large number of times to give a fre-
quency distribution for each 4-motif pattern in the ensem-

ble of randomized networks, from which a Z-score for
each motif can be determined [33,34]; this is defined [44]
by

here n is the number of times the motif is found in the true

network  is the average number of times it is found in

the B replicate networks, and σB is the standard deviation

across the replicate networks. The fact that the Z-score is
approximately normally distributed allows us to define p-

values. Thus a Z-score of 4 already corresponds to p ≈ 3.2
× 10-5 and would suggest significant overrepresentation of
the motif compared with the ensemble of randomized
networks. It is therefore misleading to consider only the
very highest Z-score as indicative of overrepresentation.
Some authors [45] have argued that mere counting is suf-
ficient to estimate the relative importance of a motif in a
network. From a statistical perspective, such a notion can-
not be upheld. We note, however, that the Z-score of a
motif depends on an assumed probability model for net-
work re-wiring, which may bias the Z-score.
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