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REVIEW

Models in biology: ‘accurate descriptions of
our pathetic thinking’
Jeremy Gunawardena

Abstract

In this essay I will sketch some ideas for how to think
about models in biology. I will begin by trying to dispel
the myth that quantitative modeling is somehow
foreign to biology. I will then point out the distinction
between forward and reverse modeling and focus
thereafter on the former. Instead of going into
mathematical technicalities about different varieties of
models, I will focus on their logical structure, in terms of
assumptions and conclusions. A model is a logical
machine for deducing the latter from the former. If the
model is correct, then, if you believe its assumptions,
you must, as a matter of logic, also believe its
conclusions. This leads to consideration of the
assumptions underlying models. If these are based on
fundamental physical laws, then it may be reasonable
to treat the model as ‘predictive’, in the sense that it is
not subject to falsification and we can rely on its
conclusions. However, at the molecular level, models
are more often derived from phenomenology and
guesswork. In this case, the model is a test of its
assumptions and must be falsifiable. I will discuss three
models from this perspective, each of which yields
biological insights, and this will lead to some guidelines
for prospective model builders.
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The revenge of Erwin Chargaff
When I first came to biology from mathematics, I got
used to being told that there was no place for mathe-
matics in biology. Being a biological novice, I took these
strictures at face value. In retrospect, they proved helpful
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because the skepticism encouraged me to let go of my
mathematical past and to immerse myself in experiments.
It was only later, through having to stand up in front of
a class of eager students and say something profound (I
co-teach Harvard’s introductory graduate course in Sys-
tems Biology), that I realized how grievously I had been
misled. Biology has some of the finest examples of how
quantitative modeling and measurement have been used
to unravel the world around us [1,2]. The idea that such
methods would not be used would have seemed bizarre
to the biochemist Otto Warburg, the geneticist Thomas
Hunt Morgan, the evolutionary biologist R. A. Fisher,
the structural biologist Max Perutz, the stem-cell biolo-
gists Ernest McCulloch and James Till, the developmental
biologist Conrad Waddington, the physiologist Arthur
Guyton, the neuroscientists Alan Hodgkin and Andrew
Huxley, the immunologist Niels Jerne, the pharmacologist
James Black, the epidemiologist Ronald Ross, the ecolo-
gist Robert MacArthur and to others more or less well
known.
Why is it that biologists have such an odd perception of

their own discipline? I attribute this to two factors. The
first is an important theme in systems biology [3,4]: the
mean may not be representative of the distribution. Otto
Warburg is a good example. In the eyes of his contempo-
raries, Warburg was an accomplished theorist: ‘to develop
the mathematical analysis of the measurements required
very exceptional experimental and theoretical skill’ [5].
Once Warburg had opened the door, however, it became
easy for those who followed him to avoid acquiring the
same skills. Of Warburg’s three assistants who won Nobel
Prizes, one would not describe Hans Krebs or Hugo Theo-
rell as ‘theoretically skilled’, although Otto Meyerhoff was
certainly quantitative. On average, theoretical skills recede
into the long tail of the distribution, out of sight of the
conventional histories and textbooks. It is high time for
a revisionist account of the history of biology to restore
quantitative reasoning to its rightful place.
The second factor is the enormous success of molecu-

lar biology. This is ironic, for many of the instigators of
that revolution were physicists: Erwin Schrödinger, Max
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Delbrück, Francis Crick, Leo Szilard, Seymour Benzer and
Wally Gilbert. There was, in fact, a brief window, dur-
ing the life of physicist George Gamow’s RNA Tie Club,
when it was claimed, with poor judgment, that physics and
information theory could work out the genetic code [6,7].
Erwin Chargaff, who first uncovered the complementar-
ity of the A-T and G-C nucleotide pairs (Chargaff ’s rules),
was nominally a member of the club—his code name was
lysine—but I doubt that he was taken in by such theo-
retical pretensions. He famously described the molecular
biology of the time as ‘the practice of biochemistry with-
out a license’ [8]. When Marshall Nirenberg and Heinrich
Matthaei came out of nowhere to make the first crack in
the genetic code [9], thereby showing that licensing was
mandatory—one can just sense the smile on Chargaff ’s
face—the theorists of the day must have felt that the bar-
barians were at the gates of Rome. Molecular biology
never recovered from this historic defeat of theory and
there have been so many interesting genes to characterize
since, it has never really needed to.
It is the culmination of molecular biology in the genome

projects that has finally brought diminishing returns to
the one gene, ten PhDs way of life. We now think we know
most of the genes and the interesting question is no longer
characterizing this or that gene but, rather, understanding
how the various molecular components collectively give
rise to phenotype and physiology. We call this systems
biology. It is a very different enterprise. It has brought into
biology an intrusion of aliens and concepts from physics,
mathematics, engineering and computer science and a
renewed interest in the role of quantitative reasoning and
modeling, to which we now turn.

Forward and reversemodeling
We can distinguish two kinds of modeling strategy in
the current literature. We can call them forward and
reverse modeling. Reverse modeling starts from experi-
mental data and seeks potential causalities suggested by
the correlations in the data, captured in the structure
of a mathematical model. Forward modeling starts from
known, or suspected, causalities, expressed in the form of
a model, from which predictions are made about what to
expect.
Reverse modeling has been widely used to analyze the

post-genome, -omic data glut and is sometimes mistak-
enly equated with systems biology [10]. It has occasionally
suggested new conceptual ideas but has more often been
used to suggest new molecular components or interac-
tions, which have then been confirmed by conventional
molecular biological approaches. The models themselves
have been of less significance for understanding system
behavior than as a mathematical context in which statis-
tical inference becomes feasible. In contrast, most of our
understanding of system behavior, as in concepts such

as homeostasis, feedback, canalization and noise, have
emerged from forward modeling.
I will focus below on the kinds of models used in for-

ward modeling. This is not to imply that reverse modeling
is unimportant or uninteresting. There are many situa-
tions, especially when dealing with physiological or clin-
ical data, where the underlying causalities are unknown
or hideously complicated and a reverse-modeling strat-
egy makes good sense. But the issues in distilling causality
from correlation deserve their own treatment, which lies
outside the scope of the present essay [11].

The logical structure of models
Mathematical models come in a variety of flavors, depend-
ing on whether the state of a system is measured in
discrete units (‘off ’ and ‘on’), in continuous concentra-
tions or as probability distributions and whether time
and space are themselves treated discretely or contin-
uously. The resulting menagerie of ordinary differential
equations, partial differential equations, delay differential
equations, stochastic processes, finite-state automata, cel-
lular automata, Petri nets, hybrid models, ... each have
their specific technical foibles and a vast associated tech-
nical literature. It is easy to get drowned by these techni-
calities, while losing sight of the bigger picture of what the
model is telling us. Underneath all that technical variety,
each model has the same logical structure.
Any mathematical model, no matter how complicated,

consists of a set of assumptions, from which are deduced
a set of conclusions. The technical machinery specific to
each flavor of model is concerned with deducing the latter
from the former. This deduction comes with a guarantee,
which, unlike other guarantees, can never be invalidated.
Provided the model is correct, if you accept its assump-
tions, you must as a matter of logic also accept its con-
clusions. If ‘Socrates is a man’ and ‘All men are mortal’
then you cannot deny that ‘Socrates is mortal’. The deduc-
tive process that leads from assumptions to conclusions
involves much the same Aristotelian syllogisms disguised
in the particular technical language appropriate to the
particular flavor of model being used or, more often, yet
further disguised in computer-speak. This guarantee of
logical rigor is a mathematical model’s unique benefit.
Note, however, the fine print: ‘provided the model is

correct’. If the deductive reasoning is faulty, one can draw
any conclusion from any assumption. There is no guar-
antee that a model is correct (only a guarantee that if it
is correct then the conclusions logically follow from the
assumptions). We have to hope that the model’s makers
have done it right and that the editors and the review-
ers have done their jobs. The best way to check this is
to redo the calculations by a different method. This is
rarely easy but it is what mathematicians do within math-
ematics itself. Reproducibility improves credibility. We
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may not have a guarantee that a model is correct but
we can become more (or less) confident that it is. The
practice of mathematics is not so very different from the
experimental world after all.
The correctness of a model is an important issue that is

poorly addressed by the current review process. However,
it can be addressed as just described. From now on, I will
assume the correctness of any model being discussed and
will take its guarantee of logical validity at face value.
The guarantee tells us that the conclusions are already

wrapped up in the assumptions, of which they are a log-
ical consequence. This is not to say that the conclusions
are obvious. This may be far from the case and the deduc-
tive process can be extremely challenging. However, that
is a matter of mathematical technique. It should not dis-
tract from what is important for the biology, which is the
set of assumptions, or the price being paid for the conclu-
sions being drawn. Instead of asking whether we believe
a model’s conclusions, we should be asking whether we
believe the model’s assumptions. What basis do we have
for doing so?

Onmaking assumptions
Biology rests on physics. At the length scales and
timescales relevant to biology, physicists have worked out
the fundamental laws governing the behavior of matter.
If our assumptions can be grounded in physics, then it
seems that our models should be predictive, in the sense
that they are not subject to falsification—that issue has
already been taken care of with the fundamental laws—
so that we can be confident of the conclusions drawn.
Physicists would make an even stronger claim on the
basis that, at the fundamental level, there is nothing other
than physics. As Richard Feynman put it, ‘all things are
made of atoms and ... everything that living things do can
be understood in terms of the jigglings and wigglings of
atoms’ [12, Chapter 3-3]. This suggests that provided we
have included all the relevant assumptions in our mod-
els then whatever is to be known should emerge from our
calculations. Models based on fundamental physical laws
appear in this way to be objective descriptions of reality,
whichwe can interrogate to understand reality. This vision
of the world and our place in it has been powerful and
compelling.
Can we ground biological models on fundamental phys-

ical laws? The Schrödinger equation even for a single
protein is too hideously complicated to solve directly.
There is, however, one context in which it can be approx-
imated. Not surprisingly, this is at the atomic scale of
which Feynman spoke, where molecular dynamics mod-
els can capture the jigglings and wigglings of the atoms
of a protein in solution or in a lipid membrane in
terms of physical forces [13]. With improved comput-
ing resources, including purpose-built supercomputers,

such molecular dynamics models have provided novel
insights into the functioning of proteins andmulti-protein
complexes [14,15]. The award of the 2013 Nobel Prize
in Chemistry to Martin Karplus, Michael Levitt and
Arieh Warshel recognizes the broad impact of these
advances.
As we move up the biological scale, from atoms to

molecules, we enter a different realm, of chemistry, or bio-
chemistry, rather than physics. But chemistry is grounded
in physics, is it not? Well, so they say but let us see what
actually happens when we encounter a chemical reaction

A + B → C

and want to study it quantitatively. To determine the rate
of such a reaction, the universal practice in biology is to
appeal to the law of mass action, which says that the rate
is proportional to the product of the concentrations of the
reactants, from which we deduce that

d[C]
dt

= k[A] [B] ,

where [−] denotes concentration and k is the constant
of proportionality. Notice the immense convenience that
mass action offers, for we can jump from reaction tomath-
ematics without stopping to think about the chemistry.
There is only one problem. This law of mass action is not
chemistry. A chemist might point out, for instance, that
the reaction of hydrogen and bromine in the gas phase to
form hydrobromic acid,

H2 + Br2 → 2HBr,

has a rate of reaction given by

d[HBr]
dt

= k1[H2] [Br2]3/2

[Br2]+k2[HBr]
,

which is rather far from what mass action claims, and
that, in general, you cannot deduce the rate of a reaction
from its stoichiometry [16]. (For more about the tangled
tale of mass action, see [17], from which this example is
thieved.) Mass action is not physics or even chemistry, it is
phenomenology: a mathematical formulation, which may
account for observed behavior but which is not based on
fundamental laws.
Actually, mass action is rather good phenomenology.

It has worked well to account for how enzymes behave,
starting with Michaelis and Menten and carrying on right
through to the modern era [18]. It is certainly more prin-
cipled than what is typically done when trying to convert
biological understanding into mathematical assumptions.
If A is known to activate B—perhaps A is a transcription
factor and B a protein that is induced by A—then it is
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not unusual to find activation summarized in some Hill
function of the form

d[B]
dt

= M[A]h

Kh+[A]h
, (1)

for which, as Hill himself well understood and has been
repeatedly pointed out [19], there is almost no realistic
biochemical justification. It is, at best, a guess.
The point here is not that we should not guess; we often

have no choice but to do so. The point is to acknowledge
the consequences of phenomenology and guessing for the
kinds of models we make. They are no longer objective
descriptions of reality. They can no longer be considered
predictive, in the sense of physics or even of molecular
dynamics. What then are they?
One person who understood the answer was the phar-

macologist James Black [20]. Pharmacology has been
a quantitative discipline almost since its inception and
mathematical models have formed the basis for much of
our understanding of how drugs interact with receptors
[21]. (Indeed, models were the basis for understanding
that there might be such entities as receptors in the first
place [2]). Black used mathematical models on the road
that led to the first beta-adrenergic receptor antagonists,
or beta blockers, and in his lecture for the 1988 Nobel
Prize in Physiology or Medicine he crystallized his under-
standing of them in a way that nobody has ever bettered:
‘Models in analytical pharmacology are not meant to be
descriptions, pathetic descriptions, of nature; they are
designed to be accurate descriptions of our pathetic think-
ing about nature’ [22]. Just substitute ‘systems biology’
for ‘analytical pharmacology’ and you have it. Black went
on to say about models that: ‘They are meant to expose
assumptions, define expectations and help us to devise
new tests’.
An important difference arises betweenmodels like this,

which are based on phenomenology and guesswork, and
models based on fundamental physics. If the model is not
going to be predictive and if we are not certain of its
assumptions, then there is no justification for the model
other than as a test of its (pathetic) assumptions. The
model must be falsifiable. To achieve this, it is tempting
to focus on the model, piling the assumptions up higher
and deeper in the hope that they might eventually yield
an unexpected conclusion. More often than not, the con-
clusions reached in this way are banal and unsurprising.
It is better to focus on the biology by asking a specific
question, so that at least one knows whether or not the
assumptions are sufficient for an answer. Indeed, it is bet-
ter to have a question in mind first because that can guide
both the choice of assumptions and the flavor of themodel
that is used. Sensing which assumptions might be critical
and which irrelevant to the question at hand is the art of

modeling and, for this, there is no substitute for a deep
understanding of the biology. Good model building is a
subjective exercise, dependent on local information and
expertise, and contingent upon current knowledge. As to
what biological insights all this might bring, that is best
revealed by example.

Threemodels
The examples that follow extend from cell biology to
immunology to developmental biology. They are personal
favorites and illuminate different issues.

Learning how to think about non-identical compartments
The eukaryotic cell has an internal structure of
membrane-bounded compartments—nucleus, endoplas-
mic reticulum, Golgi and endosomes—which dynamically
interact through vesicle trafficking. Vesicles bud from
and fuse to compartments, thereby exchanging lipids
and proteins. The elucidation of trafficking mechanisms
was celebrated in the 2013 Nobel Prize in Physiology or
Medicine awarded to Jim Rothman, Randy Schekman
and Thomas Sudhof. A puzzling question that remains
unanswered is how distinct compartments remain dis-
tinct, with varied lipid and protein profiles, despite
continuously exchanging material. How are non-identical
compartments created and maintained?
Reinhart Heinrich and TomRapoport address this ques-

tion through a mathematical model [23], which formalizes
the sketch in Figure 1. Coat proteins A and B, correspond-
ing to Coat Protein I (COPI) and COPII, encourage vesicle
budding from compartments 1 and 2. Soluble N-ethyl-
maleimide-sensitive factor attachment protein receptors
(SNAREs) X, U, Y and V are present in the compartment
membranes and mediate vesicle fusion by pairing X with
U and Y with V, corresponding to v- and t-SNAREs. A
critical assumption is that SNAREs are packaged into vesi-
cles to an extent that depends on their affinities for coats,
for which there is some experimental evidence. If the cog-
nate SNAREs X and U bind better to coat A than to coat
B, while SNAREs Y and V bind better to coat B than to
coat A, then the model exhibits a threshold in the relative
affinities at which non-identical compartments naturally
emerge. Above this threshold, even if the model is started
with identical distributions of SNAREs in the two com-
partments, it evolves over time to a steady state in which
the SNARE distributions are different. This is illustrated
in Figure 1, with a preponderance of SNAREs X and U in
compartment 1 and a preponderance of SNAREs Y and V
in compartment 2.
The actual details of coats and SNAREs are a good deal

more complicated than in this model. It is a parsimo-
nious model, containing just enough biological detail to
reveal the phenomenon, thereby allowing its essence—
the differential affinity of SNAREs for coats—to be clearly
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Figure 1. Creation of non-identical compartments. Schematic of the Heinrich–Rapoport model, from [23, Figure one], with the distribution of
SNAREs corresponding approximately to the steady state with non-identical compartments. ©2005 Heinrich and Rapoport. Originally published in
Journal of Cell Biology, 168:271-280, doi:10.1083/jcb.200409087. SNARE, soluble N-ethyl-maleimide-sensitive factor attachment protein receptor.

understood. We see that a model can be useful not just
to account for data—there is no data here—but to help us
think. However, the biological details are only part of the
story; the mathematical details must also be addressed.
Even a parsimonious model typically has several free
parameters, such as, in this case, binding affinities or total
amounts of SNAREs or coats. To sidestep the parameter
problem, discussed further in the next example, param-
eters of a similar type are set equal to each other. Here,
judgment plays a role in assessing that differences in these
parameters might play a secondary role. The merit of this
assumption could have been tested by sensitivity analysis
[24], which can offer reassurance that the model behavior
is not some lucky accident of the particular values chosen
for the parameters.
Themodel immediately suggests experiments that could

falsify it, of which the most compelling would be in vitro
reconstitution of compartments with a minimal set of
coats and SNAREs. I was curious about whether this had
been attempted and asked Tom Rapoport about it. Tom
is a cell biologist [25] whereas the late Reinhart Heinrich
was a physicist [26]. Their long-standing collaboration
(they were pioneers in the development of metabolic con-
trol analysis in the 1970s) was stimulated by Tom’s father,
Samuel Rapoport, himself a biochemist with mathemat-
ical convictions [27]. Tom explained that the model had
arisen from his sense that theremight be a simple explana-
tion for distinct compartments, despite the complexity of
trafficking mechanisms, but that his own laboratory was
not in a position to undertake the follow-up experiments.
Although he had discussed the ideas with others who were

better placed to do so, the field still seemed to be focused
on the molecular details.
The model makes us think further, as all good models

should. The morphology of a multicellular organism is a
hereditary feature that is encoded in DNA, in genetic reg-
ulatory programs that operate during development. But
what encodes the morphology of the eukaryotic cell itself?
This is also inherited: internal membranes are dissolved
or fragmented during cell division, only to reform in their
characteristic patterns in the daughter cells after cytoki-
nesis. Trafficking proteins are genetically encoded but
how is the information to reform compartments passed
frommother to daughter? The Heinrich–Rapoport model
suggests that this characteristic morphology may emerge
dynamically, merely as a result of the right proteins being
present along with the right lipids. This would be a form
of epigenetic inheritance [28], in contrast to the usual
genetic encoding in DNA. Of course, DNA never func-
tions on its own, only in concert with a cell. TheHeinrich–
Rapoport model reminds us that the cell is the basic unit
of life. Somebody really ought to test the model.

Discrimination by the T-cell receptor and the parameter
problem
Cytotoxic T cells of the adaptive immune system discrim-
inate between self and non-self through the interaction
between the T-cell receptor (TCR) and major histocom-
patibility complex (MHC) proteins on the surface of a
target cell. MHCs present short peptide antigens (eight
amino acids), derived from proteins in the target cell,
on their external surface. The discrimination mechanism
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must be highly sensitive, to detect a small number of
strong agonist, non-self peptide-MHCs (pMHCs) against
a much larger background of weak agonist, self pMHCs
on the same target cell. It must also be highly specific,
since the difference between strong- and weak-agonist
pMHCs may rest on only a single amino acid. Discrim-
ination also appears to be very fast, with downstream
signaling proteins being activated within 15 seconds of
TCR interaction with a strong agonist pMHC. A molec-
ular device that discriminates with such speed, sensitivity
and specificity would be a challenge to modern engineer-
ing. It is an impressive demonstration of evolutionary tin-
kering, which Grégoire Altan-Bonnet and Ron Germain
sought to explain by combining mathematical modeling
with experiments [29].
The lifetime of pMHC-TCR binding had been found

to be one of the few biophysical quantities to correlate
with T-cell activation. Specificity through binding had
previously been analyzed by John Hopfield in a classic
study [30]. He showed that a system at thermodynamic
equilibrium could not achieve discrimination beyond a
certain minimum level but that with sufficient dissipation
of energy, arbitrarily high levels of discrimination were
possible. He suggested a ‘kinetic proofreading’ scheme
to accomplish this, which Tim McKeithan subsequently
extended to explain TCR specificity [31]. pMHC binding
to the TCR activates lymphocyte-specific protein tyrosine
kinase (LCK), which undertakes multiple phosphoryla-
tions of TCR accessory proteins and these phosphoryla-
tions are presumed to be the dissipative steps. However,
the difficulty with a purely kinetic proofreading scheme is
that specificity is purchased at the expense of both sen-
sitivity and speed [32]. Previous work from the Germain
laboratory had implicated SH2 domain-containing tyro-
sine phosphatase-1 (SHP-1) in downregulating LCK for
weak agonists and the mitogen-activated protein kinase
(MAPK), extracellular signal-regulated kinase (ERK), in
inhibiting SHP-1 for strong agonists [33]. This led Altan-
Bonnet and Germain to put forward the scheme in
Figure 2, in which a core kinetic proofreading scheme
stimulates negative feedback through SHP-1 together with
a slower positive feedback through ERK. The behavior of
interlinked feedback loops has been a recurring theme in
the literature [34,35].
A parsimonious model of such a system might have

been formulated with abstract negative and positive feed-
back differentially influencing a simple kinetic proofread-
ing scheme. In fact, exactly this was done some years
later [36]. The advantage of such parsimony is that it
is easier to analyze how the interaction between nega-
tive and positive feedback regulates model behavior. The
biological wood starts to emerge from the molecular
trees, much as it did for Heinrich and Rapoport in the
previous example. But the goal here also involves the

interpretation of quantitative experimental data. Altan-
Bonnet and Germain opted instead for a detailed model
based on the known biochemistry. Their model has
around 300 dynamical variables. Only the core mod-
ule is described in the main paper, with the remaining
nine modules consigned to the Supplementary Graveyard.
Herbert Sauro’s JDesigner software, part of the Systems
Biology Workbench [37], is required to view the model in
its entirety.
The tension between parsimony and detail runs through

systems biology like a fault line. To some, and particularly
to experimentalists, detail is verisimilitude. The more a
model looks like reality, the more it might tell us about
reality. The devil is in the details. But we never bother
ourselves with all the details. All those phosphorylation
sites? Really? All 12 subunits of RNA Pol II? Really?We are
always simplifying—ignoring what we think is irrelevant—
or abstracting—replacing something complicated by some
higher-level entity that is easier to grasp. This is as true for
the experimentalist’s informal model—the cartoon that
is sketched on the whiteboard—as it is for the mathe-
matician’s formal model. It is impossible to think about
molecular systems without such strategies: it is just that
experimentalists and mathematicians do it differently and
with different motivations. There is much to learn on both
sides, for mathematicians about the hidden assumptions
that guide experimental thinking, often so deeply buried
as to require psychoanalysis to elicit, and for experimen-
talists about the power of abstraction and its ability to
offer a new language in which to think. We are in the
infancy of learning how to learn from each other.
The principal disadvantage of a biologically detailed

model is the attendant parameter problem. Parameter
values are usually estimated by fitting the model to exper-
imental data. Fitting only constrains some parameters; a
good rule of thumb is that 20% of the parameters are well
constrained by fitting, while 80% are not [38]. As John von
Neumann said, expressing a mathematician’s disdain for
such sloppiness, ‘With four parameters I can fit an ele-
phant and with five I can make him wiggle his trunk’ [39].
What von Neumann meant is that a model with too many
parameters is hard to falsify. It can fit almost any data and
what explanatory power it might havemay only be an acci-
dent of the particular parameter values that emerge from
the fitting procedure. Judging from some of the literature,
we seem to forget that a model does not predict the data
to which it is fitted: the model is chosen to fit them. In
disciplines where fitting is a professional necessity, such
as X-ray crystallography, it is standard practice to fit to a
training data set and to falsify the model, once it is fitted,
on whether or not it predicts what is important [40]. In
other words, do not fit what you want to explain!
Remarkably, Altan-Bonnet and Germain sidestepped

these problems by not fitting their model at all. They
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Figure 2. Discrimination by the T-cell receptor. Schematic of the Altan-Bonnet–Germain model from [29, Figure two A], showing a kinetic
proofreading scheme through a sequence of tyrosine phosphorylations, which is triggered by the binding of the TCR to pMHC, linked with a
negative feedback loop through the tyrosine phosphatase SHP-1 and a positive feedback loop through MAPK. MAPK, mitogen-activated protein
kinase; pMHC, peptide-major histocompatibility complex; P, singly phosphorylated; PP, multiply phosphorylated; SHP-1, SH2 domain-containing
tyrosine phosphatase-1; TCR, T-cell receptor.

adopted the same tactic as Heinrich and Rapoport and
set many similar parameters to the same value, leaving
a relatively small number of free parameters. Biological
detail was balanced by parametric parsimony. The free
parameters were then heroically estimated in independent
experiments. I am told that every model parameter was
constrained, although this is not at all clear from the paper.
What was also not mentioned, as Ron Germain

reported, is that ‘the model never worked until we actu-
ally measured ERK activation at the single cell level and
discovered its digital nature’. We see that the published
model emerged through a cycle of falsification, although
here it is the model that falsifies the interpretation of
population-averaged data, reminding us yet again that the
mean may not be representative of the distribution.
With the measured parameter values, the model

exhibits a sharp threshold at a pMHC-TCR lifetime of
about 3 seconds, above which a few pMHCs (10 to 100)
are sufficient to trigger full downstream activation of ERK
in 3 minutes. Lifetimes below the threshold exhibit a
hierarchy of responses, with those close to the threshold
triggering activation only with much larger amounts of
pMHCs (100,000), while those further below the thresh-
old are squelched by the negative feedback without ERK
activation. This accounts well for the specificity, sensitiv-
ity and speed of T-cell discrimination but the authors went
further. They interrogated the fitted model to make pre-
dictions about issues such as antagonism and tunability
and they confirmed these with new experiments [29]. The

model was repeatedly forced to put its falsifiability on the
line. In doing so, the boundary of its explanatory power
was reached: it could not account for the delay in ERK
activation with very weak ligands and the authors explic-
itly pointed this out. This should be the accepted practice;
it is the equivalent of a negative control in an experiment.
A model that explains everything, explains nothing. Even
von Neumann might have approved.
To be so successful, a detailedmodel relies on a powerful

experimental platform. The OT-1 T cells were obtained
from a transgenic mouse line that only expresses a TCR
that is sensitive to the strong-agonist peptide SIINFEKL
(amino acids 257 to 264 of chicken ovalbumin). The RMA-
S target cells were derived from a lymphoma that was
mutagenized to be deficient in antigen processing, so that
the cells present only exogenously supplied peptides on
MHCs. T-cell activation was measured by flow cytome-
try with a phospho-specific antibody to activated ERK.
In this way, calibrated amounts of chosen peptides can
be presented on MHCs to a single type of TCR, much
of the molecular and cellular heterogeneity can be con-
trolled and quantitative data obtained at the single-cell
level. Such exceptional experimental capabilities are not
always available in other biological contexts.

Frommicro to macro: the somitogenesis clock
Animals exhibit repetitive anatomical structures, like
the spinal column and its attendant array of ribs and
muscles in vertebrates and the multiple body segments
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carrying wings, halteres and legs in arthropods like
Drosophila. During vertebrate development, repetitive
structures form sequentially over time. In the mid 1970s,
the developmental biologist Jonathan Cooke and the
mathematician Chris Zeeman suggested that the succes-
sive formation of somites (bilateral blocks of mesodermal
tissue on either side of the neural tube—see Figure 3)
might be driven by a cell-autonomous clock, which pro-
gressively initiates somite formation in an anterior to
posterior sequence as if in a wavefront [41]. They were
led to this clock-and-wavefront model in an attempt
to explain the remarkable consistency of somite num-
ber within a species, despite substantial variation in
embryo sizes at the onset of somitogenesis [42]. In the
absence of molecular details, which were beyond reach
at the time, their idea fell on stony ground. It disap-
peared from the literature until Olivier Pourquié’s group
found the clock in the chicken. His laboratory showed,
using fluorescent in situ hybridization to mRNA in tis-
sue, that the gene c-hairy1 exhibits oscillatory mRNA
expression with a period of 90 minutes, exactly the
time required to form one somite [43]. The somitogen-
esis clock was found to be conserved across vertebrates,
with basic helix-loop-helix transcription factors of the
Hairy/Enhancer of Split (HES) family, acting downstream

of Notch signaling, exhibiting oscillations in expres-
sion with periods ranging from 30 minutes in zebrafish
(at 28°C) to 120 minutes in mouse [44]. Such oscil-
latory genes in somite formation were termed cyclic
genes.
As to the mechanism of the oscillation, negative feed-

back of a protein on its own gene was known to
be a feature of other oscillators [45] and some cyclic
genes, like hes7 in the mouse, were found to exhibit
this property. Negative feedback is usually associ-
ated with homeostasis—with restoring a system after
perturbation—but, as engineers know all too well, it can
bring with it the seeds of instability and oscillation [46].
However, Palmeirim et al. had blocked protein synthe-
sis in chick embryos with cycloheximide and found that
c-hairy1 mRNA continued to oscillate, suggesting that
c-hairy1 was not itself part of a negative-feedback oscil-
lator but was, perhaps, driven by some other oscillatory
mechanism. It remained unclear how the clock worked.
The developmental biologist Julian Lewis tried to

resolve this question in the zebrafish with the help of
a mathematical model [47]. Zebrafish have a very short
somite-formation period of 30 minutes, suggesting that
evolutionary tinkering may have led to a less elaborate
oscillator than in other animals. The HES family genes

Figure 3. The somitogenesis clock. Top: A zebrafish embryo at the ten-somite stage, stained by in situ hybridization for mRNA of the Notch ligand
DeltaC, taken from [47, Figure one]. Bottom left: Potential auto-regulatory mechanisms in the zebrafish, taken from [47, Figure three A,B]. In the
upper mechanism, the Her1 protein dimerizes before repressing its own transcription. In the lower mechanism, Her1 and Her7 form a heterodimer,
which represses transcription of both genes, which occur close to each other but are transcribed in opposite directions. Explicit transcription and
translation delays are shown, which are incorporated in the corresponding models. Bottom right: Mouse embryos stained by in situ hybridization for
Uncx4.1 mRNA, a homeobox gene that marks somites, taken from [52, Figure four].
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her1 and her7 were known to exhibit oscillations and there
was some evidence for negative auto-regulation.
Lewis opted for the most parsimonious of models to

formalize negative auto-regulation of her1 and her7 on
themselves, as informally depicted in Figure 3. However,
he made one critical addition by explicitly incorporat-
ing the time delays in transcription and translation. Time
delay in a negative feedback loop is one feature that pro-
motes oscillation, the other being the strength of the
negative feedback. Indeed, there seems to be a trade-off
between these features: the more delay, the less strong
the feedback has to be for oscillation to occur [48]. Lewis
acknowledged the mathematical biologist Nick Monk for
alerting him to the importance of delays and Lewis’s arti-
cle in Current Biology appeared beside one from Monk
exploring time delays in a variety of molecular oscillators
[49]. The idea must have been in the air because Jensen
et al. independently made the same suggestion in a letter
[50].
The model parameters, including the time delays, were

all estimated on the basis of reasonable choices for her1
and her7, taking into account, for instance, the intronic
structure of the genes to estimate transcriptional time
delays. Nothing was fitted. With the estimated values, the
models showed sustained periodic oscillations. A pure
Her7 oscillator with homodimerization of Her7 prior
to DNA binding (which determines the strength of the
repression) had a period of 30 minutes. As with the
Heinrich–Rapoport model, there is no data but much
biology. What is achieved is the demonstration that a
simple auto-regulatory loop can plausibly yield sustained
oscillations of the right period. A significant finding was
that the oscillations were remarkably robust to the rate of
protein synthesis, which could be lowered by 90% without
stopping the oscillations or, indeed, changing the period
very much. This suggests a different interpretation of
Palmeirim et al.’s cycloheximide block in the chick. As
Lewis pointed out, ‘in studying these biological feedback
phenomena, intuition without the support of a little math-
ematics can be a treacherous guide’, a theme to which he
returned in a later review [51].
A particularly startling test of the delay model was car-

ried out in the mouse by Ryoichiro Kageyama’s laboratory
in collaboration with Lewis [52]. The period for somite
formation in the mouse is 120 minutes and evidence had
implicated the mouse hes7 gene as part of the clock mech-
anism. Assuming a Hes7 half-life of 20 minutes (against
a measured half-life of 22.3 minutes), Lewis’s delay model
yielded sustained oscillations with a period just over 120
minutes. The model also showed that if Hes7 was stabi-
lized slightly to have a half-life only 10 minutes longer,
then the clock broke: the oscillations were no longer sus-
tained but damped out after the first three or four peaks
of expression [52, Figure six B]. Hirata et al. had the clever

idea of mutating each of the seven lysine residues in Hes7
to arginine, on the basis that the ubiquitin-proteasomal
degradation systemwould use one ormore of these lysines
for ubiquitination. The K14Rmutant was found to repress
hes7 transcription to the same extent as the wild type but
to have an increased half-life of 30 minutes. A knock-in
mouse expressing Hes7K14R/K14R showed, exactly as pre-
dicted, the first three to four somites clearly delineated,
followed by a disorganized blur (Figure 3).
Further work from the Kageyama laboratory, as well as

by others, has explored the role of introns in determin-
ing the transcriptional delays in the somitogenesis clock,
leading to experiments in transgenic mice that again beau-
tifully confirm the predictions of the Lewis model [53-55].
These results strongly suggest the critical role of delays
in breaking the clock but it remains of interest to know
the developmental consequences of a working clock with
a different period to the wild type [56].
On the face of it, Julian Lewis’s simple model has been a

predictive triumph. I cannot think of any other model that
can so accurately predict what happens in re-engineered
mice. On closer examination, however, there is something
distinctly spooky about it. If mouse pre-somitic mesoder-
mal cells are dissociated in culture, individual cells show
repetitive peaks of expression of cyclic genes but with
great variability in amplitude and period [57]. In isolation,
the clock is noisy and unsynchronized, nothing like the
beautiful regularity that is observed in the intact tissue.
The simple Lewis model can be made muchmore detailed
to allow for such things as stochasticity in gene expres-
sion, additional feedback and cell-to-cell communication
by signaling pathways, which can serve to synchronize and
entrain individual oscillators [47,58-60]. A more abstract
approach can also be taken, in which emergent regular-
ity is seen to arise when noisy oscillators interact through
time-delayed couplings [61,62]. As Andy Oates said to me,
such an abstraction ‘becomes simpler (or at least more
satisfying) than an increasingly large genetic regulatory
network, which starts to grow trunks at alarming angles’.
These kinds of ‘tiered models’ have yielded much insight
into the complex mechanisms at work in the tissue [63].
The thing is, none of this molecular complexity is present
in the Lewis model. Yet, it describes what happens in the
mouse with remarkable accuracy. The microscopic com-
plexity seems to have conspired to produce something
beautifully simple at the macroscopic level. In physics,
the macroscopic gas law, PV = RT , is beautifully simple
and statistical mechanics shows how it emerges from the
chaos of molecular interactions [64]. How does the Lewis
model emerge in the tissue from the molecular complex-
ity within? It is as if we are seeing a tantalizing glimpse of
some future science whose concepts and methods remain
barely visible to us in the present. Every time I think about
it, the hairs on the back of my neck stand up.
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Conclusion
A mathematical model is a logical machine for convert-
ing assumptions into conclusions. If the model is correct
and we believe its assumptions then we must, as a mat-
ter of logic, believe its conclusions. This logical guarantee
allows a modeler, in principle, to navigate with confi-
dence far from the assumptions, perhaps much further
than intuition might allow, no matter how insightful, and
reach surprising conclusions. But, and this is the essential
point, the certainty is always relative to the assumptions.
Do we believe our assumptions? We believe fundamen-
tal physics on which biology rests. We can deduce many
things from physics but not, alas, the existence of physi-
cists. This leaves us, at least in the molecular realm, in the
hands of phenomenology and informed guesswork. There
is nothing wrong with that but we should not fool our-
selves that our models are objective and predictive, in the
sense of fundamental physics. They are, in James Black’s
resonant phrase, ‘accurate descriptions of our pathetic
thinking’.
Mathematical models are a tool, which some biolo-

gists have used to great effect. My distinguished Harvard
colleague, Edward Wilson, has tried to reassure the math-
ematically phobic that they can still do good science with-
out mathematics [65]. Absolutely, but why not use it when
you can? Biology is complicated enough that we surely
need every tool at our disposal. For those so minded,
the perspective developed here suggests the following
guidelines:

1. Ask a question. Building models for the sake of doing
so might keep mathematicians happy but it is a poor
way to do biology. Asking a question guides the
choice of assumptions and the flavor of model and
provides a criterion by which success can be judged.

2. Keep it simple. Including all the biochemical details
may reassure biologists but it is a poor way to model.
Keep the complexity of the assumptions in line with
the experimental context and try to find the right
abstractions.

3. If the model cannot be falsified, it is not telling you
anything. Fitting is the bane of modeling. It deludes
us into believing that we have predicted what we
have fitted when all we have done is to select the
model so that it fits. So, do not fit what you want to
explain; stick the model’s neck out after it is fitted
and try to falsify it.

In later life, Charles Darwin looked back on his early
repugnance for mathematics, the fault of a teacher who
was ‘a very dull man’, and said, ‘I have deeply regretted
that I did not proceed far enough at least to understand
something of the great leading principles of mathemat-
ics; for men thus endowed seem to have an extra sense’

[66]. One of those people with an extra sense was an
Augustinian friar, toiling in the provincial obscurity of
Austro-Hungarian Brünn, teaching physics in the local
school while laying the foundations for rescuing Darwin’s
theory from oblivion [67], a task later accomplished, in the
hands of J. B. S. Haldane, R. A. Fisher and Sewall Wright,
largely by mathematics. Darwin andMendel represent the
qualitative and quantitative traditions in biology. It is a
historical tragedy that they never came together in their
lifetimes. If we are going to make sense of systems biology,
we shall have to do a lot better.
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