
Before 1990, the existence of heritable microbes in 
insects was recognized only by specialists working in the 
field of symbiosis. In the mid-1990s, the advent of simple 
PCR assays led to the widespread appreciation of one 
particular symbiont, Wolbachia. A deeper investigation 
of the biodiversity of symbionts led to a third phase of 
knowledge: bacteria from many different clades have 
evolved to be heritable symbionts, typically transmitted 
maternally and thought not to be routinely horizontally 
(infectiously) transmitted. In an issue of BMC Biology 
published in 2008, we observed that a diverse assemblage 
of maternally inherited bacteria were present in a broad 
range of arthropods [1]. Whilst Wolbachia remained the 
dominant bacterium, we noted that three other inherited 
bacteria, Spiroplasma, Cardinium and Arsenophonus, 
were also common. Overall, 33% of arthropod species 
examined were observed to carry at least one of these 
four symbionts.

It is now clear that many more than one-third of 
species carry heritable symbionts. Any sampling regime 
produces ‘false negatives’, species that are infected but 
where infection is not detected. This occurs when 
infected individuals go unsampled, either because the 
symbiont is present in a minority of individuals in the 
population, or where the sample is from an uninfected 
population but individuals from other areas in the species 
range are infected. Further, surveys such as ours looked 
for particular bacteria, and ignored clades of bacteria that 
are restricted to particular host groups. Altogether, it is 
now clear that the majority of arthropod species carry 
inherited microbes, and that these microbes are diverse 
(Figure 1).

In this piece we review two aspects of the biology of 
heritable symbionts where our views have changed 

substantially in the last five years. First, we note that the 
effect of infection on a host is more complex than 
previously considered. Symbionts increase host fitness 
more commonly than previously believed, and they may 
also have multiple impacts on their host. Second, whilst it 
has long been established that symbionts transfer from 
one host species to another, it was previously considered 
that these horizontal transfer events were rare. We now 
understand that some symbionts transfer very frequently 
between species. Further, symbiont genes transfer into 
the host nucleus, host genes transfer into the symbiont, 
and symbionts may also acquire genes from other 
symbionts. Thus, there are complex webs of genetic 
information exchange.

Most symbionts are actually beneficial, but not 
essential, and many have multiple impacts on 
their host
In our paper in 2008, we started from the premise that 
the bacteria we were studying were parasites of arthropod 
reproductive systems that spread using sex ratio 
distortion or cytoplasmic incompatibility as drive mecha
nisms. However, we noted that, in most cases, the nature 
of the interactions between these inherited bacteria 
(including Wolbachia) and their hosts was not known, 
and thus remained to be determined.

It is now clear that the heritable microorganisms we 
studied are not simply reproductive parasites. Wolbachia 
in arthropods has emerged as a conditional mutualist 
conferring advantages under certain environmental 
conditions. For instance,

Wolbachia increases fecundity of Drosophila melano­
gaster reared on iron-restricted or -overloaded diets, and 
can thus confer a direct fitness benefit during periods of 
nutritional stress [2]. The most dramatic findings are that 
Wolbachia can protect their hosts against attack by 
natural enemies. Wolbachia infection interferes with the 
replication and transmission of a wide range of pathogens 
and parasites (including RNA viruses, bacteria, protozoa 
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and nematodes), and protects its host from parasite-
induced mortality [3]. These properties have led to 
Wolbachia being developed as an agent to limit 
transmission of human pathogens by arthropod vectors 
[4].

Wolbachia is not alone in being a defensive symbiont. 
Diverse symbionts in aphids provide protection against 
parasitic wasp and fungal attack, and include members of 
the Rickettsia and Spiroplasma genera [5,6]. Drosophila, 
an organism intensively studied with respect to deter
minants of resistance to parasites, was recently revealed 
to have defensive Spiroplasma [7]. Paederus rove beetles 
carry heritable Pseudomonas that produces a toxin that 
deters predators [8]. Apart from protective effects, sym
bionts mediate variation in heat tolerance, plant use and 
body color [5,9]. For instance, the symbiont Rickettsiella 
changes the body color of the aphid host from red to 
green, and is thus likely to influence relative susceptibility 
to predators [9].

It is also now clear that individual symbionts have 
multiple properties. For instance, the Wolbachia strain in 
D. melanogaster was characterized initially as one 

producing only weak reproductive manipulation but is 
now also known to confer nutritional and protective 
benefits. Similarly, Himler et al. [10] found that Rickettsia 
infection in whiteflies both increased host survival and 
reproductive success, and biased the sex ratio towards 
production of daughters, a classical feature of repro
ductive parasites. The further observation that some 
symbiont effects are revealed only in novel hosts suggests 
multiple potencies may be common [11]. Multiple effects 
on the host are also very important in the application of 
heritable microbes in disease control. The reproductive 
parasitism of Wolbachia allows it to invade and be 
maintained at high frequency in a population, such that 
the effect it has on the competence of individuals to act 
as disease-carrying vectors is then observed at a 
population scale [4].

The complex web by which heritable symbionts 
move between hosts and genes move between 
symbionts and from symbiont to host
Phylogenetic evidence indicates that most symbioses 
originate following horizontal transfer of an existing 

Figure 1. Evolutionary relationships of heritable bacteria found in arthropods (not exhaustive). Yellow, globally common heritable bacteria; 
green, rare heritable bacteria.
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symbiont from one host species to another [12,13]. It was 
always presumed that horizontal transfer events were 
rare, occurring on evolutionary rather than ecological 
timescales. However, heritable symbionts have been 
shown to combine inheritance with infectious transmis
sion within, and sometimes between, species in a number 
of cases (Table 1). Ecological connections, such as feeding 
on a shared plant host, are major drivers for these rapid 
movements of symbionts across insect communities. 
Symbiont transfer between individuals of different host 
species will be an important determinant of the global 
incidence of infection. Further, the rate of horizontal 
transfer in some of these systems is such that a single 
host/single symbiont framework may be insufficient for 
understanding the population and evolutionary dynamics 
in some symbiotic systems.

Movement of symbionts and the traits they encode are 
now known to be very common through both inheritance 
and horizontal transfer. It is also beginning to emerge 
that other genetic connections are possible. Transfer of 
symbiont genetic information to the host’s nuclear 
genome is known to occur frequently, although the 
functional significance of transferred material is less clear 
[14]. Symbionts can also exchange genetic information 
with other symbionts. Bacteria are, of course, promis
cuous with respect to DNA, and different symbionts 
commonly reside within the same host cell, providing the 
opportunity for gene transfer. There is strong evidence 
Wolbachia exchange phage when two strains co-infect a 
host [15]. What is yet to be established is the extent of 
gene exchange between different heritable symbionts, 
and whether this leads to the transfer of traits such as 
natural enemy resistance. Comparisons of the genomes 
of Cardinium and Wolbachia strains inducing cytoplas
mic incompatibility suggested many common mecha
nisms inherent in intracellular symbiosis between these 
very divergent bacteria, but no evidence that this was 
associated with gene exchange [16]. Nevertheless, phage 
can shuttle genes from one heritable bacterium species to 
another. Arsenophonus and Hamiltonella share a common 
phage, implying either direct transfer of the phage, or 
indirect transfer of genes within the phage through re
combination of different phage elements [17]. Given that 
phage presence can determine the capacity of Hamil­
tonella to protect its aphid host against parasitoid wasp 

attack [18], phage transfers like this may move important 
traits between symbiont taxa.

Concluding remarks
Our understanding of the nature of host-inherited 
symbiont interactions has advanced since the advent of 
PCR led to the widespread discovery of Wolbachia and 
its domination of the literature. The case studies above 
demonstrate the importance of a diversity of symbionts 
as a source of evolutionary innovation in insects: sym
bionts alter host phenotype, and because they are 
heritable form part of host adaptation. Perhaps the most 
remarkable observation of recent time is the speed of 
symbiont-associated adaptation. Within 30 years, a 
Spiroplasma strain has invaded many North American 
populations of D. neotestacea, driven by the protection it 
provides against a parasitic nematode [7]. In whiteflies, 
an inherited Rickettsia strain that enhances offspring 
number and survival has spread from less than 1% of 
individuals infected to 97% in only 6 years [10]. Rapid 
spread of beneficial symbiont-encoded traits may be 
commonplace in insects. In this context, horizontal 
transfer through ecological interactions can serve as an 
immediate and powerful mechanism of rapid adaptation. 
The mutational source of adaptation - a symbiont in 
other members of the ecological community rather than 
a mutation of existing genetic material - is likely to 
change our understanding of arthropod evolution.

Author details
1Institut des Sciences de l’Evolution, Centre National de la Recherche 
Scientifique (CNRS), Université Montpellier 2, 34095 Montpellier Cedex 05, 
France. 2Institute of Integrative Biology, University of Liverpool, Liverpool L69 
7ZB, UK.

This article is part of the BMC Biology tenth anniversary series. Other 
articles in this series can be found at http://www.biomedcentral.com/
bmcbiol/series/tenthanniversary.

Published: 15 April 2013

References
1.	 Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstadter J, Hurst GD: 

The diversity of reproductive parasites among arthropods: Wolbachia do 
not walk alone. BMC Biol 2008, 6:27.

2.	 Brownlie JC, Cass BN, Riegler M, Witsenburg JJ, Iturbe-Ormaetxe I, McGraw 
EA, O’Neill SL: Evidence for metabolic provisioning by a common 
invertebrate endosymbiont, Wolbachia pipientis, during periods of 

Table 1. Case studies where heritable bacteria commonly transfer horizontally on an ecological timescale

Bacterium	 Movement occurs between	 Ecological context	 References

Arsenophonus nasoniae	 Parasitic wasp species 	 Sharing of host pupa 	 [19]

A. phytopathogenicus	 Species of phytophagous Hemiptera 	 Through plant phloem	 [20]

Rickettsia	 Bemisia whiteflies 	 Through plant phloem	 [21]

Wolbachia	 Parasitic wasp species 	 Sharing of host egg 	 [22]

Hamiltonella defensa	 Aphids 	 Via exterior of the ovipositor of parasitic wasps	 [23]

Duron and Hurst BMC Biology 2013, 11:45 
http://www.biomedcentral.com/1741-7007/11/45

Page 3 of 4



nutritional stress. PLoS Pathog 2009, 5:e1000368.
3.	 Brownlie JC, Johnson KN: Symbiont-mediated protection in insect hosts. 

Trends Microbiol 2009, 17:348-354.
4.	 Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, 

Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y, Cook H, Axford J, Callahan 
AG, Kenny N, Omodei C, McGraw EA, Ryan PA, Ritchie SA, Turelli M, O’Neill SL: 
Successful establishment of Wolbachia in Aedes populations to suppress 
dengue transmission. Nature 2011, 476:454-457.

5.	 Oliver KM, Degnan PH, Burke GR, Moran NA: Facultative symbionts in aphids 
and the horizontal transfer of ecologically important traits. Annu Rev 
Entomol 2010, 55:247-266.

6.	 Lukasik P, van Asch M, Guo H, Ferrari J, Godfray, HCJ, van der Putten W: 
Unrelated facultative endosymbionts protect aphids against a fungal 
pathogen. Ecol Lett 2012, 16:214-218.

7.	 Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ: Adaptation via 
symbiosis: recent spread of a Drosophila defensive symbiont. Science 2010, 
329:212-215.

8.	 Kellner R: Suppression of pederin biosynthesis through antibiotic 
elimination of endosymbionts in Paederus sabaeus. J Insect Physiol 2001, 
47:475-483.

9.	 Tsuchida T, Koga R, Horikawa M, Tsunoda T, Maoka T, Matsumoto S, Simon JC, 
Fukatsu T: Symbiotic bacterium modifies aphid body color. Science 2010, 
330:1102-1104.

10.	 Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE, 
Chiel E, Duckworth VE, Dennehy TJ, Zchori-Fein E, Hunter MS: Rapid spread 
of a bacterial symbiont in an invasive whitefly is driven by fitness benefits 
and female bias. Science 2011, 332:254-256.

11.	 Hornett EA, Duplouy AM, Davies N, Roderick GK, Wedell N, Hurst GD, Charlat 
S: You can’t keep a good parasite down: evolution of a male-killer 
suppressor uncovers cytoplasmic incompatibility. Evolution 2008, 
62:1258-1263.

12.	 Moran NA, McCutcheon JP, Nakabachi A: Genomics and evolution of 
heritable bacterial symbionts. Annu Rev Genet 2008, 42:165-190.

13.	 Engelstadter J, Hurst GDD: The ecology and evolution of microbes that 
manipulate host reproduction. Annu Rev Ecol Evol Systematics 2009, 
40:127-149.

14.	 Dunning Hotopp JC, Clark ME, Oliveira DC, Foster JM, Fischer P, Muñoz Torres 

MC, Giebel JD, Kumar N, Ishmael N, Wang S, Ingram J, Nene RV, Shepard J, 
Tomkins J, Richards S, Spiro DJ, Ghedin E, Slatko BE, Tettelin H, Werren JH: 
Widespread lateral gene transfer from intracellular bacteria to 
multicellular eukaryotes. Science 2007, 317:1753-1756.

15.	 Kent BN, Salichos L, Gibbons JG, Rokas A, Newton IL, Clark ME, Bordenstein 
SR: Complete bacteriophage transfer in a bacterial endosymbiont 
(Wolbachia) determined by targeted genome capture. Genome Biol Evol 
2011, 3:209-218.

16.	 Penz T, Schmitz-Esser S, Kelly SE, Cass BN, Muller A, Woyke T, Malfatti SA, 
Hunter MS, Horn M: Comparative genomics suggests an independent 
origin of cytoplasmic incompatibility in Cardinium hertigii. PLoS Genet 2012, 
8:e1003012.

17.	 Wilkes T, Darby AC, Choi J-H, Colbourne JK, Werren JH, Hurst GDD: 
An examination of the draft genome sequence of Arsenophonus nasoniae, 
son-killer bacterium of Nasonia vitripennis, for genes associated with 
virulence and symbiosis. Insect Mol Biol 2010, 19:59-73.

18.	 Oliver KM, Degnan PH, Hunter MS, Moran NA: Bacteriophages encode 
factors required for protection in a symbiotic mutualism. Science 2009, 
325:992-994.

19.	 Duron O, Wilkes TE, Hurst GD: Interspecific transmission of a male-killing 
bacterium on an ecological timescale. Ecol Lett 2010, 13:1139-1148.

20.	 Bressan A, Terlizzi F, Credi R: Independent origins of vectored plant 
pathogenic bacteria from arthropod-associated Arsenophonus 
endosymbionts. Microb Ecol 2012, 63:628-638.

21.	 Caspi-Fluger A, Inbar M, Mozes-Daube N, Katzir N, Portnoy V, Belausov E, 
Hunter MS, Zchori-Fein E: Horizontal transmission of the insect symbiont 
Rickettsia is plant-mediated. Proc R Soc B 2012, 279:1791-1796.

22.	 Huigens ME, Luck RF, Klaassen RH, Maas MF, Timmermans MJ, Stouthamer R: 
Infectious parthenogenesis. Nature 2000, 405:178-179.

23.	 Gehrer L, Vorburger C: Parasitoids as vectors of facultative bacterial 
endosymbionts in aphids. Biol Lett 2012, 8:613-615.

doi:10.1186/1741-7007-11-45
Cite this article as: Duron O, Hurst GDD: Arthropods and inherited bacteria: 
from counting the symbionts to understanding how symbionts count. BMC 
Biology 2013, 11:45.

Duron and Hurst BMC Biology 2013, 11:45 
http://www.biomedcentral.com/1741-7007/11/45

Page 4 of 4


	Most symbionts are actually beneficial, but not essential, and many have multiple impacts on their host
	The complex web by which heritable symbionts move between hosts and genes move between symbionts and from symbiont to host
	Concluding remarks

