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Abstract

In this study, a miniature stirred tank bioreactor was designed for treatment of waste gas containing benzene,
toluene and xylene. Oxygen mass transfer characteristics for various twin and single-impeller systems were
investigated for 6 configurations in a vessel with 10 cm of inner diameter and working volume of 1.77L. Three
types of impellers, namely, Rushton turbine, Pitched 4blades and Pitched 2blades impellers with downward
pumping have been used. Deionized water was used as a liquid phase. With respect to other independent
variables such as agitation speed, aeration rate, type of sparger, number of impellers, the relative performance of
these impellers was assessed by comparing the values of (KLa) as a key parameter. Based on the experimental data,
empirical correlations as a function of the operational conditions have been proposed, to study the oxygen transfer
rates from air bubbles generated in the bioreactor. It was shown that twin Rushton turbine configuration
demonstrates superior performance (23% to 77% enhancement in KLa) compared with other impeller compositions
and that sparger type has negligible effect on oxygen mass transfer rate. Agitation speeds of 400 to 800 rpm were
the most efficient speeds for oxygen mass transfer in the stirred bioreactor.
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Introduction
Benzene, toluene and xylene (BTX) as hazardous volatile
organic materials from various emission sources such as oil
and gas refineries, petrochemical industries, shoe-making
manufactures, printing and paint manufacturing industries,
are considered as great threat to the public health and the
environment. Biotreatment with the advantages of high effi-
ciency, low-cost, and non-secondary pollution is suitable to
purify waste gas in low concentrations [1-4].
In many biochemical processes the oxygen supply to the

broths is not enough to meet the demand of the microor-
ganisms. Oxygen transfer is often the limiting factor in the
aerobic bioprocess due to the low solubility of oxygen in
the medium; so aeration is a critical factor in industrial ae-
robic fermentations [5-9].
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In stirred tank bioreactors the oxygen mass transfer is a
function of many variables, such as the physical properties
of the liquid (viscosity, surface tension, etc.), the geometry
of the vessel and stirrer, the type of sparger and the ope-
rational conditions. Unfortunately, the available information
in the literature about the effect of these variables on the
mass transfer is sometimes confusing [8,10].
Stirred tank bioreactors provide high values of mass and

heat transfer rates and excellent mixing. In these systems, a
high number of variables affect the mass transfer and mix-
ing, but the most important among them are stirrer speed,
type and number of stirrers and gas flow rate used [6,11].
The most important role is played by the impeller, which
accomplishes three major tasks, solids suspension, mixing
and dissolution of the required atmospheric oxygen into
the aqueous phase, and maximizing the interfacial area be-
tween the gaseous and aqueous phases [8,12]. The most
studied impellers have been the standard Rushton turbines,
different pitched blade turbines and various propellers as
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Figure 1 Schematic view of stirred tank bioreactor used in this study.

Table 1 Characteristics of the stirred tank bioreactor

Descriptions Unit Value

Body of vessel (material) - Glass (semi-circle bottom)

Internal diameter of vessel (Ti) cm 10

external diameter of vessel (Te) cm 11

Vessel height(H) cm 30

Vessel aspect ratio (H:Ti) - 3 : 1

Bottom impeller clearance cm 5 (Ti/2)

Distance between impellers, (h1) cm 10 (Ti)

Height of stirrer motor shaft cm 25

Working volume (VL) liter 1.77 (75%)

Number of baffles - 4

Baffles width (wb) cm 1 (T/10)

Impellers type - RT , P4B , P2B

Number of impellers - One and two

Sparger types - Orifice and nozzle
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well as combinations of two or three of them to optimize
the power consumption [13-15].
Fujasova [9] studied the mass transfer rate of seven types

of impellers in 29 triple configurations. They found that
Rushton turbine impeller in triple configuration and com-
bination of Rushton turbine with Pitched blade are the
most efficient impeller combinations for the mass transfer
performance in the triple-impeller vessel. Tomoa Moucha
et al. [16] reported that the conclusions about the influence
of impeller configuration on the mass transfer efficiency
are ambiguous. They reported that this is partially caused
by the improper methods used for volumetric oxygen
transfer coefficient (KLa) data evaluation and usually all
phenomena were not taken into account, which affects
the results.
Extensive investigations on KLa have been conducted by

previous researchers, especially for reactors using conven-
tional impellers. Several studies are also available in the li-
terature that have investigated different aspects of oxygen
transport in different works [17,18].
To optimize the impeller design for effective gas disper-

sion, it is essential to understand the mechanism of better
oxygen mass transfer performance, so the present work on
the bioreactor design was directed towards the study of
oxygen transfer and its availability in the bioreactor. In this
study, design and construction of a laboratory scale stirred
tank bioreactor was followed by measurements of KLa in
the aerated bioreactor in order to identify the optimal ope-
rational conditions of the oxygen mass transfer from gas
into the aqueous phase. The independent variables were:
type of impellers, number of impellers, aeration rate, agita-
tion speed and types of sparger.

Materials and methods
Bioreactor configuration
Experiments were performed in a cylindrical vessel. The
semi-circle bottom of the cylindrical vessel was made of
transparent glass with an internal diameter of Ti=10 cm
and fitted with four vertical wall baffles symmetrically. The
experiments were performed in semi-batch conditions at



Figure 2 Schematic view of the three types of impellers, a: Standard Rushton turbine with vertical Blades (RT), b: Pitched 4blade (P4B),
c: Pitched 2blade (P2B).
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room temperature and atmospheric pressure. The liquid
phase was deionized water (28± 0.5°C). Filtered air was fed
to the system through the sparger located 5cm (Ti/2) below
the lower impeller. The experimental conditions have been
selected in order to generate normal flow patterns inside
the tank. Figure 1 and Table 1 give the schematic and
dimensions of stirred tank bioreactor designed, constructed
and utilized in this study. The schematic view and details of
the three types of impellers are shown in Figure 2 and
Table 2, respectively. Since mass transfer depends on the
bubble size, three perforated tubes were also used as spar-
ging devices (Table 3).
Impellers
Three types of impellers, namely Rushton turbine (RT),
Pitched 4blade (P4B) and Pitched 2blade (P2B) impellers
(blade angles 45°) with downward pumping (Figure 2) were
tested with 1.77 L total working volume of deionized water
in order to evaluate their effect on the oxygen mass transfer
rate from gas to liquid phase in the bioreactor. Aeration
rates of 1, 2, 3, 4 and 5 L/min were tested in eleven agita-
tion speeds (0, 100, 200, 300, 400, 500, 600, 700, 800, 900
and 1000 rpm). Higher gas flow rates overwhelmed the bio-
reactor vessel.
Table 2 Details of impellers used

Rushton
Turbine (RT)

Pitched 4-
blades (P4B)

Pitched 2-
blades (P2B)

Impeller diameter, cm (Di) 5 (Ti/2) 5 (Ti/2) 5 (Ti/2)

Impeller blade width, cm
(wi)

1 0.6 0.6

Impeller blade length, cm
(li)

1.5 1.75 1.75

Number of blades 6 4 2

Ratio of impeller diameter
to tank diameter (Di/Ti)

1: 2 1: 2 1: 2

Flow direction Radial Axial Axial

Inclination (degree °) 0 45 45
Oxygen mass transfer coefficient
Gas-liquid contact is a matter of decisive importance for
describing systems involving biological processes. Mass
transfer between phases may often become the limiting
step of the overall process rate. In such cases, the volumet-
ric oxygen transfer coefficient, KLa, must be known in
order to carry out the design and scale up of bioreactors
[10]. The mass balance for the dissolved oxygen in the
well-mixed liquid phase, in the absence of biomass or with
non-respiring cells when biochemical reactions do not
take place, can be established as follows [6]:

dC
dt

¼ KLa: C
� � Cð Þ ð1Þ

Where C is the oxygen concentration, dC/dt is the accu-
mulation oxygen rate in the liquid phase, C* is the equilib-
rium dissolved oxygen concentration. Some measuring
methods are based on Eq. (1) and different techniques for
measuring the dissolved oxygen concentration can be used.
The volumetric coefficient of oxygen transfer from gas to

aqueous phase was determined by the dynamic gassing-out
method [7,19]. This technique is interesting for studying
the influence of operational conditions on the volumetric
mass transfer coefficient and is widely employed in the li-
terature [5,6,8,20-22].
The dissolved oxygen concentration was monitored with

an oxygen electrode, Lutron oxygen meter moddle YK-
2001 DO, fitted with a teflon membrane and with and elec-
trolytic solution of Na3PO4 in the cell.

Gas dissipating device (sparger)
Three types of gas spargers with different dimensions were
tested in the stirred bioreactor. Details of used spargers are
Table 3 Details of spargers used

Sparger 1 Sparger 2 Sparger 3

Type Nuzzle Orifice Orifice

Number of holes 1 4 9

Hole's diameter, mm 6 3 2

Total open area, mm2 28.3 28.3 28.3
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P2B, Single impeller
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P4B, Twin impellers
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P2B, Twin impellers
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Figure 3 KLa as a function of impeller speeds (rpm) with flowrates of 1 to 5 L/min using three types of impellers (RT, P4B and P2B) in 6
different single and twin configurations.
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Figure 4 Performance comparisons of three types of impellers (RT, P4B and P2B) in 6 different single and twin configurations from
viewpoint of oxygen mass transfer in different flowrates (1 to 5 L/min).
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presented in Table 3. This part of study aimed to answer
the question if the sparger designs have any influence on
mass transfer rate of oxygen.
Correlations for oxygen mass transfer coefficients
Predictions of the rate of absorption of a gaseous material
in a stirred tank are usually based on correlations of overall
volumetric mass transfer coefficient (KLa) with mechanical
agitation power per unit volume (P/VL) and gas sparging
rate expressed as the superficial velocity (Vg) [19]. The
power input per unit volume (P/VL) and superficial gas ve-
locity Vg are major factors in these KLa correlations.
There are a lot of proposed equations for the volumetric

mass transfer coefficient as a function of different variables
in previous studies [8,23]. The following equation is fre-
quently found in the literature [19,24,25]:

KLa ¼ α
Pg
VL

� �β

Vg
� �c ð2Þ

Where:

Pg
the mechanical agitation power in gas liquid disper-

sion (W)
VL

liquid volume (m3)
Vg
gas superficial velocity (m/s)

α
constant

β and c
exponents

The Pg was measured by electrical measurement
method, using a circuit control that monitored the elec-
trical current (A) and voltage (V) of the DC stirrer motor
mounted on the bioreactor. VL as the working volume of
the bioreactor in this study was 0.177 m3 and Vg was cal-
culated via dividing the gas flow rate (m3/s) by internal
tank area (m2).
Table 4 Mass transfer in the absence of agitation

Q (L/min) KLa (1/s)

1 1.4 ×10-3

2 3.4 ×10-3

3 5.7 ×10-3

4 7.7 ×10-3

5 9.3 ×10-3
Correlations
Some empirical correlations for the oxygen transfer rate in
a the bioreactor with three types of single and twin-
impellers are developed and KLa values obtained from the
experimental data were plotted against the operating va-
riables and mathematical correlations which describe the
influence of the studied parameters on the KLa have been
established in order to predict biodegradation performances
from view points of oxygen mass transfer, when using mo-
dels that account for the effect of dissolved oxygen. These
correlations ware developed using Datafit 9 software.
Results
To evaluate the optimal conditions of the bioreactor, the ef-
fect of oxygen mass transfer rate in several operational con-
ditions including different types of impellers and spargers
in various agitation and aeration rates were tested.
Figures 3 & 4 illustrate the results obtained showing that

the impeller which produces higher KLa values is the type
RT for all the aeration rates and agitation speeds studied.
The effect of the number of blades on the enhancement

of the KLa has been studied using two impellers, with 2 and
4 pitched blades geometrically identical (Figure 2).
Table 4 gathers the values of KLa in the absence of agita-

tion, in order to compare the effect of the impeller on the
mass transfer rate.
The results in Figure 5 illustrate the effect of sparger type

on KLa in different flowrates in the bioreactor.
Figure 6 plots the experimental KLa for three types of the

impellers, the RT, P4B and P2B with twin and single config-
urations, versus power input including kLa calculated using
Eq. (2) for different gas flow rates (1 to 5 L/min) and agita-
tion speeds (100 to 1000 rpm).
Discussion
In Figure 3, it can be seen that for RT impeller type the KLa
increment trends in different aeration rates(1-5 L/min)
begins from a plateau condition in agitation speeds of 0-
100 rpm and continues with a noticeable enhancement that
can be seen from 200 to 800 rpm; then this trend
approaches a plateau in 900 and 1000 rpm. It seems that
the most efficient mixing is obtained in agitation speeds
more than 300 rpm and lower than 800 rpm. On the other
hand for P4B impellers the KLa increment trends in differ-
ent aeration rates(1-5 L/min), begins from a plateau condi-
tion in agitation speeds of 0-200 rpm and continues with
inefficient enhancement that starts from 300 rpm and does
not reach to plateau in high agitation speeds. The KLa in-
crement trend, using P2B impeller has shown similar pat-
tern compared to P4B impeller with this difference that
KLa increment starts at agitation speed of 400 rpm.
The impeller type RT represented an average enhance-

ment on the KLa values of 50% to 69 % and 60 to 77%
with respect to impellers P4B and P2B, respectively (in
twin impeller configurations). This impeller is more effi-
cient in breaking the air bubbles because it has a higher
transversal section area and, consequently, it increases



Q=  1  L/min

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0 100 200 300 400 500 600 700 800 900 1000
Stirrer speed, N (rpm)

K
L
a 

(1
/s

)

Q=  3  L/min

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0 100 200 300 400 500 600 700 800 900 1000

Stirrer speed, N (rpm)

K
L
a 

(1
/s

)

Q=  2  L/min

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0 100 200 300 400 500 600 700 800 900 1000

Stirrer speed, N (rpm)

K
L
a 

(1
/s

)
Q=  4  L/min

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0 100 200 300 400 500 600 700 800 900 1000

Stirrer speed, N (rpm)

K
L
a 

(1
/s

)

Q=  5  L/min

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0 100 200 300 400 500 600 700 800 900 1000

Stirrer speed, N (rpm)

K
L
a 

(1
/s

)

(  : sparger 1, sparger 2 and  sparger 3) 

Figure 5 Effect of three types of spargers (1, 2 and 3) on the KLa values in various agitation speeds (N) and different flowrates (Q).
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Table 5 Calculated constants and exponents of Eq. 2 for
6 impeller configurations

Configuration Mass transfer coefficient correlation, exponents
of Eq. 2

α β c R2

RT, single impeller 0.28 0.67 0.58 0.93

RT, twin impeller 0.33 0.68 0.58 0.81

P4B, single impeller 1.22 0.55 0.77 0.93

P4B, twin impeller 0.82 0.60 0.72 0.93

P2B, single impeller 1.16 0.46 0.75 0.90

P2B, twin impeller 1.64 0.55 0.81 0.94
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the superficial area of the bubbles, enhancing the oxygen
transfer rate. However at lower agitation speeds this dif-
ference is not so effective, and at 0 to 200 rpm, the KLa
values do not present significant differences using differ-
ent types of impellers studied.
There is only a significant enhancement on KLa values

for the medium agitation rate (400 to 800) that could be
resulted from the higher breakage and residence time of
the air bubbles in the bioreactor media. The size of the
drops in a mixing vessel is largely dependent on the micro
and macro-scale turbulent motions and flow patterns in the
vessel because of the mutual relation between the local
energy dissipation rates, the residence time of the drops at
a certain location in the vessel, and the local breakup or co-
alescence rates of the drops [5].
As shown in Figure 4, the higher number of blades in

impellers has noticeable effect on mixing conditions and
volumetric mass transfer of oxygen. The range of KLa en-
hancement showed to be 15% to 27% and 20% to 28% in
single and twin configurations, respectively. It seems that
there is an increment in the circulation and the contribu-
tion of the surface aeration, and the higher number of
blades will also increase the break up of bubbles and so
the KLa would increase. Also twin impeller configurations
have shown higher volumetric oxygen mass transfer to
compare with single impeller configurations in all types of
impellers (Figure 4).
For low agitation rates (0 to 300 rpm) the turbulence is

not enough to trap and hold up the air bubbles and con-
sequently performance of volumetric mass transfer may
not increase noticeably. Therefore based on the results
obtained, agitation speed of 400 to 800 rpm would be
beneficial for all the future bioprocess operations that
may lead to a higher productive biomass system.
Figure 4 shows that for most of conditions studied the

agitation proved to be more efficient in KLa enhancement
than the aeration. This behavior is in agreement with the
results of Chen et al. and Amaral [5,23].
The results in Figure 5 showed that in stirred vessels, de-

sign of the sparger and the mechanics of bubble formation
are of secondary importance compared with the effects of
the impeller. When the sparger is located under the stirrer,
it has been shown that sparger type does not significantly
affect mass transfer. Also Oosterhuis et al. has noted that
correlations related to KLa in stirred bioreactors do not de-
pend on the sparger or stirrer design [26].
The constants obtained from the correlations of the 6

single and twin impeller configurations are shown in
Table 5. The exponent over (Pg/V) increased with single to
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twin impeller configurations in all types of impellers, indi-
cating more effective utilization of the power with multiple
impeller systems. No significant effect was observed on the
exponent over Vg for single and twin impeller systems. Also
in Figure 6 it can be seen that the experimental KLa turned
out to lay within the values predicted. Empirical correla-
tions for the volumetric mass transfer coefficient depend
on several geometrical parameters, although there is no
agreement in the literature about how to take into accounts
this influence [6].

Conclusions
Evaluation of the experimental data shows that KLa
values are affected by process variables such as impeller
configuration, impeller speed and aeration rate. From
the above discussion it is clear that twin impeller showed
better results in different types of impellers. As the
results have shown, twin Rushton turbine represent an
average enhancement on the KLa values of 50 to 69%
and 60 t0 77% with respect to P4B and P2B impellers re-
spectively. It was found that agitation speeds of 400 to
800 rpm would be beneficial for all the future bioprocess
operations that may lead to a higher productive biomass
system. Also it was observed that with an increase in the
gas flow rates, the KLa values increased and higher num-
ber of blades in identical impeller types resulted in notice-
able enhancement of KLa in the stirred tank bioreactor.
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