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Abstract

Nonlinear sparse sensing (NSS) techniques have been adopted for realizing compressive sensing in many
applications such as radar imaging. Unlike the NSS, in this paper, we propose an adaptive sparse sensing (ASS)
approach using the reweighted zero-attracting normalized least mean fourth (RZA-NLMF) algorithm which depends
on several given parameters, i.e., reweighted factor, regularization parameter, and initial step size. First, based on the
independent assumption, Cramer-Rao lower bound (CRLB) is derived as for the performance comparisons. In
addition, reweighted factor selection method is proposed for achieving robust estimation performance. Finally, to
verify the algorithm, Monte Carlo-based computer simulations are given to show that the ASS achieves much better
mean square error (MSE) performance than the NSS.

Keywords: Nonlinear sparse sensing (NSS); Adaptive sparse sensing (ASS); Normalized least mean fourth (NLMF);
Reweighted zero-attracting NLMF (RZA-NLMF); Sparse constraint; Compressive sensing
1 Introduction
Compressive sensing (CS) [1,2] has been attracting high
attention in compressive radar/sonar sensing [3,4] due
to its many applications such as civilian, military, and
biomedical. The main task of CS problems can be di-
vided into three aspects as follows: (1) sparse signal
learning: The basic model suggests that natural signals
can be compactly expressed, or efficiently approximated,
as a linear combination of prespecified atom signals,
where the linear coefficients are sparse as shown in
Figure 1 (i.e., most of them zero). (2) Random measurement
matrix design: It is important to make a sensing matrix
which allows recovery of as many entries of unknown
signal as possible by using as few measurements as pos-
sible. Hence, sensing matrix should satisfy the conditions
of incoherence and restricted isometry property (RIP) [5].
Fortunately, some special matrices (e.g., Gaussian matrix
and Fourier matrix) have been reported that they are satis-
fying RIP in high probability. (3) Sparse reconstruction
algorithms: Based on the previous two steps, many sparse
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reconstruction algorithms have been proposed to find the
suboptimal sparse solution.
It is well known that the CS provides a robust frame-

work that can reduce the number of measurements re-
quired to estimate a sparse signal. Many nonlinear
sparse sensing (NSS) algorithms and their variants have
been proposed to deal with CS problems. They mainly
fall into two basic categories: convex relaxation (basis
pursuit de-noise (BPDN) [6]) and greedy pursuit (or-
thogonal matching pursuit (OMP) [7]). The above NSS-
based CS methods have either high complexity or low
performance, especially in the case of low signal-to-
noise ratio (SNR) regime. Indeed, it was very hard to
adapt trade-off between high complexity and good
performance.
In this paper, we propose an adaptive sparse sensing

(ASS) method using the reweighted zero-attracting nor-
malized mean fourth error algorithm (RZA-NLMF) [8]
to solve the CS problems. Different from NSS methods,
each observation and corresponding sensing signal vec-
tor will be implemented by the RZA-NLMF algorithm to
reconstruct the sparse signal during the process of adap-
tive filtering. According to the concrete requirements,
the complexity of the proposed ASS method could be
pen Access article distributed under the terms of the Creative Commons
g/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
roperly credited.
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Figure 1 A typical example of sparse structure signal.
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adaptively reduced without sacrificing much recovery
performance. The effectiveness of our proposed method
is confirmed via computer simulation when comparing
with NSS.
The remainder of the paper is organized as follows.

The basic CS problem is introduced and the typical NSS
method is presented in Section 2. In Section 3, ASS
using the RZA-NLMF algorithm is proposed for solving
CS problems and its derivation process is highlighted.
Computer simulations are given in Section 4 in order to
evaluate and compare performances of the proposed
ASS method. Finally, our contributions are summarized
in Section 5.

2 Nonlinear sparse sensing
Assume that a finite-length discrete signal vector s = [s1,
s2,⋯, sN]

T can be sparse represented in a signal domain
D, that is,

s ¼
XN
i¼1

dihi ¼ Dh; ð1Þ

where h = [h1, h2,⋯, hN]
T is the unknown K-sparse coef-

ficient vector (K≪N) and D is an N ×N orthogonal
basis matrix with {di, i = 1, 2,⋯, N} as its columns. Take
a random measurement signal matrix W, and then the
received signal vector y = [y1,⋯, ym,⋯, yM]

T can be writ-
ten as

y ¼ Wsþ z
¼ WDhþ z
¼ Xhþ z;

ð2Þ
where X =WD denotes a M ×N random sensing matrix
as

X ¼

xT1
⋮
xTm
⋮
xTM

2
66664

3
77775 ¼

x11 ⋯ x1n ⋯ x1N
⋮ ⋱ ⋮ ⋱ ⋮

xm1 ⋯ xmn ⋯ xmN

⋮ ⋱ ⋱ ⋱ ⋮
xM1 ⋯ xMn ⋯ xMN

2
66664

3
77775 ð3Þ

and z = [z1,⋯, zm,⋯, zM]
T is an additive white Gaussian

noise (AWGN) with distribution CN 0; σ2nIM
� �

; where IM
denotes an M ×M identity matrix. From the perspective
of CS, the sensing matrix X satisfies the restricted isom-
etry property (RIP) in overwhelming probability [5] so
that the sparse signal h can be reconstructed correctly
by NSS methods, e.g., BPDN [6] and OMP [7]. Take the
BPDN as an example to illustrate the NSS realization ap-
proach. Since the sensing matrix X satisfies RIP of order
K with positive parameter δK ∈ (0, 1), i.e., X ∈ RIP(K, δK)
if

1−δKð Þ hk k22≤ Xhk k22≤ 1þ δKð Þ hk k22 ð4Þ
holds for all h having no more than K nonzero coeffi-
cients, then the unknown sparse vector h can be recon-
structed by BPDN as

~hnss ¼ arg lim
~h

1
2

y−Xhk k22þλ hk k1
� �

; ð5Þ

where λ denotes a regularization parameter which bal-
ances the mean square error (MSE) term and sparsity of
h. If the mutual interference of sensing matrix X can be
completely removed, then the theoretical Cramer-Rao
lower bound (CRLB) of the NSS can be derived as [9,10]

CRLB ~hnss
� � ¼ E ~hnss−h

�� ��
2

n o
¼ Kσ2n

N
: ð6Þ

3 Adaptive sparse sensing
We reconsider the above system model (2) with respect
to the adaptive sensing case. At the observation side, the
mth observed signal ym can be written as

ym ¼ hTxm þ zm; ð7Þ
for m = 1, 2,⋯, M. The objective of ASS is to adaptively
estimate the unknown sparse vector h using the sensing
signal vector xm and the observed signal ym. Different
from NSS approaches, we proposed an alternative ASS
method using the RZA-NLMF algorithm as shown in

Figure 2. Assume that ~ym nð Þ ¼ xTm~h nð Þ is an estimated ob-

served signal which depends on signal estimator ~h nð Þ and
hence the nth observed signal error as em(n) = ym − ỹm(n).



Figure 2 RZA-NLMF algorithm for ASS.
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Notice that em(n) is in correspondence with the nth itera-
tive error when using the mth sensing signal vector xm and
m =mod(n,M). Notice that mod(⋅) denotes a modulo
function, for example, mod(5,3) = 2 and mod(5,2) = 1. First
of all, the cost function of the RZA-NLMF algorithm is
constructed as

G nð Þ ¼ 1
4
e4m nð Þ þ λass

XN

i¼1
log 1þ ε hij jð Þ; ð8Þ

where λass > 0 is a regularization parameter which trades
off the sensing error and coefficient vector sparsity. ε > 0
denotes a reweighted factor which enhances to exploit
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Figure 3 Sparse constraint strength comparison using different rewei
the signal sparsity at each iteration. A figure example to
show the relationship between reweighted factors and
sparse constraint strength is given in Figure 3. Accord-
ing to the cost function (8), the corresponding update
equation can be derived as

~h nþ 1ð Þ ¼ ~h nð Þ−μiss
∂G nð Þ
∂~h nð Þ

¼ ~h nð Þ þ μisse
3
m nð Þxm

xmk k22 xmk k22þe2m nð Þ� �− ρ sgn ~h nð Þ� �
1þ ε ~h nð Þ		 		

¼ ~h nð Þ þ μass nð Þem nð Þxm
xmk k22

−
ρ sgn ~h nð Þ� �
1þ ε ~h nð Þ		 		 ;

ð9Þ
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where ρ = μissλ/ε is a parameter which depends on initial
step size μiss, regularization parameter λ, and threshold
ε. In the second term of (9), if the coefficient magnitudes

of ~h nð Þ are smaller than 1/ε, then these small coeffi-
cients will be replaced by zeros in high probability [11].
Here, it is worth noting that μass(n) is a variable step
size:

μass nð Þ ¼ μisse
2
m nð Þ

xmk k22þe2m nð Þ ; ð10Þ

which depends on three factors: initial step size μiss, in-
put signal xm, and update iterative error em(n). Since μiss
is a given initial step size and xm is a random scaling in-
put signal, hence, μass in Equation 10 can also be rewrit-
ten as

μass nð Þ ¼ μiss
xmk k22=e2m nð Þ þ 1

; ð11Þ

which is a variable step size (VSS) that is adaptive to
change as square sensing error em

2 (n); a smaller error
incurs a smaller step size to ensure the stability of the
gradient descent while a larger error yields a larger
step size to accelerate the convergence speed of this
algorithm [12]. According to the update equation in
(9), our proposed ASS method can be concluded in
Algorithm 1.
As for the trademark of the performance comparisons, the
CRLB of the proposed ASS method is derived in the subse-

quent. The signal error is defined as v nð Þ :¼ ~h nð Þ−h, and e
(n) can be written as em(n) = zm− vT(n)xm. To simply derive
the CRLB, four assumptions are considered in the subse-
quent analysis: (1) the input signal xm and noise zm are mu-
tually independent, (2) each row xm of the signal matrix X is
random independent with zero mean and random Gaussian
variance σ2IN, (3) noise zm is random independent with zero

mean and variance σn
2, (4) ~h nð Þ is independent of X. Assume

that the nth adaptive receive error e(n) is sufficiently small so
that em

2 (n)≪ xm; hence, μass ¼ μisse
2
m nð Þ=xm . According to

(9), the nth update signal error v(n+ 1) can be written as

v nþ 1ð Þ ¼ v nð Þ þ μisse
3
m nð Þxm
xmk k22

−
ρ sgn ~h nð Þ� �
1þ ε ~h nð Þ		 		 ; ð12Þ

where em
3 (n) can be expanded as

e3m nð Þ ¼ zm−vT nð Þxmð Þ3
¼ z3m−3z

2
mv

T nð Þxm þ 3zm vT nð Þxmð Þ2− vT nð Þxmð Þ3: ð13Þ

Substituting (13) into (12), v(n + 1) can be further rep-
resented as

v nþ 1ð Þ ¼ v nð Þ þ μissz
3
mxm

xmk k22
−
3μissz

2
m vT nð Þxmð Þxm

xmk k22
þ 3μisszm vT nð Þxmð Þ2xm

xmk k22
−
μiss v

T nð Þxmð Þ3xm
xmk k22

−
ρ sgn ~h nð Þ� �
1þ ε ~h nð Þ		 		 :

ð14Þ
Hence, the steady-state mean square error (MSE) can

be derived as



E vT nþ 1ð Þv nþ 1ð Þ½ � ¼ E vT nð Þv nð Þ½ � þ μ2nssE z6m= xmk k22

 �þ 9μ2issE

z4m vT nð Þxmð Þ2
xmk k22

" #

þ9μ2nssE
z2m vT nð Þxmð Þ4

xmk k22

" #
þ μ2issE

z2m vT nð Þxmð Þ6
xmk k22

" #

þρ2E
sgn ~hT nð Þ� �

sgn ~h nð Þ� �
1þ ε ~h nð Þ		 		� �2

" #
þ 2μissE

z3mv
T nð Þxm
xmk k22

" #

−6μissE
z2m vT nð Þxmð Þ2

xmk k22

" #
þ 6μissE

zm vT nð Þxmð Þ3
xmk k22

" #

−2μissE
vT nð Þxmð Þ4

xmk k22

" #
−2ρE

vT nð Þ sgn ~h nð Þ� �
1þ ε ~h nð Þ		 		

" #
−6μ2issE

z5mv
T nð Þxm
xmk k22

" #

þ6μ2issE
z4m vT nð Þxmð Þ2

xmk k22

" #
−2μ2issE

z3m vT nð Þxmð Þ3
xmk k22

" #

−2ρμissE
z3mx

T
m sgn ~h nð Þ� �

xmk k22 1þ ε ~h nð Þ		 		� �
" #

−18μ2issE
z3m vT nð Þxmð Þ3

xmk k22

" #

þ6μ2issE
vT nð Þxmð Þ4

xmk k22

" #
þ 6ρμissE

z2m vT nð Þxmð ÞxTm sgn ~h nð Þ� �
xmk k22 1þ ε ~h nð Þ		 		� �

" #
:

ð15Þ
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Based on the abovementioned independent assump-
tions and ideal Gaussian noise assumption [13], we can
get the following approximations:

E zm½ � ¼ E z3m

 � ¼ E z5m


 � ¼ 0; ð16Þ

E z4m

 � ¼ 3σ4n; ð17Þ

E z6m

 � ¼ 15σ6n; ð18Þ

E xTmxm

 � ¼ Nσ2: ð19Þ

Due to the independence between xm and v(n), {vT(n)
xm} satisfies zero-mean Gaussian distribution, that is, E
[vT(n)xm] = 0 [13]. Hence, we can also get the following
approximations:

E vT nð Þxm
� �2

v nð Þj � ¼ σ2E vT nð Þv nð Þ
 �
;

h
ð20Þ

E vT nð Þxm
� �4

v nð Þj � ¼ 3σ4E vT nð Þv nð Þ
 �2
;

h
ð21Þ

E vT nð Þxm
� �6

v nð Þj � ¼ 15σ6E vT nð Þv nð Þ
 �3
:

h
ð22Þ

By neglecting the random fluctuations in vT(n)v(n) and
using approximation equation vT(n)v(n) ≈ E[vT(n)v(n)] =
b(n), substitute (16) to (22) into (15) which can be sim-
plified as
b nþ 1ð Þ ¼ 1þ 27μ2issσ
4
n−6μissσ

2
n

N

� 

b nð Þ

þ 27μ2issσ
2
nσ

2−2μiss3σ
2

N
þ 18μ2issσ

2

Nσ2

� 

b2 nð Þ

þ 15μ2issσ
2
nσ

4

N
b3 nð Þ− 15μ2issσ

6
n

Nσ2
þ ϕ nð Þ;

ð23Þ

where ϕ(n) is incurred by the last term of (12) and it is
expressed by

ϕ nð Þ ¼ 6ρμissσ
2
n

N
E

vT nð Þxmð ÞxTm sgn ~h nð Þ� �
1þ ε ~h nð Þ		 		

" #

þρ2E
sgn ~hT nð Þ� �

sgn ~h nð Þ� �
1þ ε ~h nð Þ		 		� �2

" #
−2ρE

vT nð Þ sgn ~h nð Þ� �
1þ ε ~h nð Þ		 		

" #
:

ð24Þ

Since the adaptive update square error b(n) is too
small (i.e., b(n)≪ 1), hence, higher than two-order errors
are considered zero, i.e., b2(n) = 0 and b3(n) = 0. The
MSE can be derived from (23) as

b ∞ð Þ ¼ 5μissσ
4
n

9μissσ2nσ
2−2σ2

−
Nϕ ∞ð Þ

27μ2issσ
4
n−6μissσ2n

: ð25Þ

Assume that ideal reconstruction vector ~h nð Þ can be

obtained, then one can get limn→∞ ~h nð Þ�� ��
1 ¼ hk k1 and

limn→∞ sgn ~hT nð Þ� �
sgn ~h nð Þ� � ¼ K , where K denotes the

number of nonzero coefficients in h. Hence, ϕ(∞) in (25)
can be derived as
Finally, the CRLB of the proposed ASS can be ob-

tained as



ϕ ∞ð Þ ¼ limn→∞ ϕ nð Þ

¼ limn→∞
6ρμissσ

2
nσ

2

N
−2ρ

� �
E

~h nð Þ−h� �T
sgn ~h nð Þ� �

1þ ε ~h nð Þ		 		
" #

þ ρ2E
sgn ~hT nð Þ� �

sgn ~h nð Þ� �
1þ ε ~h nð Þ		 		� �2

" #

¼ limn→∞
6ρμissσ

2
nσ

2

N
−2ρ

� �
E

~h nð Þ
1þ ε ~h nð Þ		 		

�����
�����
1

−
h

1þ ε ~h nð Þ		 		
�����

�����
1

" #
þ ρ2E

sgn ~hT nð Þ� �
sgn ~h nð Þ� �

1þ ε ~h nð Þ		 		� �2
" #

≤ρ2K :

ð26Þ
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CRLB ~hass
� � ¼ b ∞ð Þ

¼ 5μissσ
4
n

9μissσ2nσ
2−2σ2

−
ρ2NK

27μ2issσ
4
n−6μissσ2n

:

ð27Þ

4 Computer simulations
In this section, the proposed ASS approach using the
RZA-NLMF algorithm is evaluated. For achieving aver-
age performance, 1,000 independent Monte Carlo runs
are adopted. For easy evaluation of the effectiveness of
the proposed approach, signal representation domain D
is assumed as an identity matrix IN × N and unknown
signal s is set as sparse directly. Sensing matrix is
equivalent to random measurement matrix, i.e., X =W.
For ensuring that X satisfies RIP, W is set as a random
Gaussian matrix [5]. Then, sparse coefficient vector
h equals to s. The details of the simulation parame-
ters are listed in Table 1. Notice that each nonzero
coefficient of h follows random Gaussian distribution
as CN 0; σ2ð Þ and their positions are randomly allo-
cated within the signal length of h which is subject
to E{||h||2

2} = 1, where E{∙} denotes the expectation oper-
ator. The output signal-to-noise ratio (SNR) is defined
as 20 log (Es/σn

2), where Es = 1 is the unit transmission
power. All of the step sizes and regularization parame-
ters are listed in Table 1. The estimation performance is
Table 1 Simulation parameters

Parameters Values

Signal length N = 40

Measurement length M = 20

Sensing matrix Random Gaussian distribution

Number of nonzero coefficients K ∈ {2, 6, 10}

Distribution of nonzero coefficients Random Gaussian

Signal-to-noise ratio (SNR) (0 dB, 12 dB)

Initial step size: μiss 1.5

Regularization parameter: λ 5 × 10−8

Reweighted factor: ε 2,000
evaluated by average mean square error (MSE) which is
defined by

Average MSE ~h nð Þ� �
:¼ E h−~h nð Þ�� ��2

2

n o
; ð28Þ

where h and ~h nð Þ are the actual channel vector and its
nth iterative adaptive channel estimator, respectively. Ac-
cording to our previous work [8], the regularization par-
ameter for RZA-NLMF is set as λ = 5 × 10−8 so that it
can exploit signal sparsity robustly. Since the RZA-
NLMF-based ASS method depends highly on the
reweighted factor ε, hence, we first select the reasonable
factor ε by virtue of the Monte Carlo method. Later, we
compare the proposed method with two typical NSS
ones, i.e., BPDN [6] and OMP [7].

4.1 Reweighted factor selection
Since the RZA-NLMF algorithm depends highly on
reweighted factor, hence, selection of the robust
reweighted factor for different noise environments and
different signal sparsities is a typical important step for
the RZA-NLMF algorithm. It is well known that ℓ0-
norm normalized least mean fourth (L0-NLMF) for CS
can achieve optimal solution, but it is a NP-hard prob-
lem in practical applications such as noise environment
[2]. One can find that RZA-NLMF reduces to L0-NLMF
when the reweighted factor approaches to infinity. Due
to the noise interference, we should select the suitable
reweighted factor which not only can exploit signal
sparsity but also can mitigate noise interference effect-
ively. Hence, the reweighted factor of RZA-NLMF is
selected empirically. By means of the Monte Carlo
method, the performance curves of the proposed ASS
method with different reweighted factors ε ∈ {2, 20, 200,
2,000, 20,000} with respect to different numbers of non-
zero coefficients K ∈ {2, 6, 10} and different SNR regimes
(5 and 10 dB) are depicted in Figures 4, 5, 6, 7. Under
the simulation setup considered, RZA-NLMF using ε =
2,000 can achieve robust performance in different cases
as shown in Figures 4, 5, 6, 7. From the four figures, one
can find that sparser signal requires larger reweighted
factor but no more than 20,000 in this system. This is
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Figure 4 RZA-NLMF performance versus reweighted factors (K = 2 and SNR = 5 dB).
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concise with the fact that stronger sparse penalty not
only exploits more sparse information but also mitigates
more noise interference.

4.2 Performance comparisons with NSS
Two experiments of ASS are verified in performance
comparisons with conventional NSS methods (e.g.,
BPDN [6] and OMP [7]). In the first experiment, the
0 0.5 1

10
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10
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10
−2

10
−1

Iter

M
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E

Figure 5 RZA-NLMF performance versus reweighted factors (K = 2 and
ASS method is evaluated in the case of SNR = 10 dB as
shown in Figure 8. On the one hand, according to this
figure, we can find that the proposed ASS method using
the RZA-NLMF algorithm achieves much lower MSE
performance than NSS methods and even if it is CRLB.
The existing big performance gap between ASS and NSS
is because ASS using RZA-NLMF not only exploits the
signal sparsity but also mitigates the noise interference
1.5 2 2.5 3

x 10
4

ations

RZA−NLMF (ε=2)
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RZA−NLMF (ε=200)
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No. nonzero: K=2

SNR=10dB

SNR = 10 dB).
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Figure 6 RZA-NLMF performance versus reweighted factors (K = 6 and SNR = 10 dB).
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using high-order error statistics for adaptive error updat-
ing. On the other hand, we can also find that ASS de-
pends on the signal sparseness. That is to say, for
sparser signal, ASS can exploit more signal structure in-
formation as for prior information and vice versa. In the
second experiment, the number of nonzero coefficients
is fixed as K = 2 as shown in Figure 9. It is easy to find
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Iter
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Figure 7 RZA-NLMF performance versus reweighted factors (K = 10 an
that our proposed ASS is much better than conventional
NSS as the SNR increases.

5 Conclusions
In this paper, we proposed an ASS method using the
RZA-NLMF algorithm for dealing with CS problems.
First, we selected the reweighted factor and regularization
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Figure 8 Performance comparisons versus signal sparsity.
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parameter for the proposed algorithm by virtue of the
Monte Carlo method. Later, based on the update equation
of RZA-NLMF, the CRLB of ASS was also derived based
on random independent assumptions. Finally, several rep-
resentative simulations have been given to show that the
proposed method achieves much better MSE performance
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Figure 9 Performance comparisons versus SNR.
than NSS with respect to different signal sparsities, espe-
cially in the case of low SNR regime.
Since the empirical reweighted factor was selected for

RZA-NLMF in the noise environment, in the future
work, we will develop the learning reweighted factor for
RZA-NLMF in the case of a noiseless environment. It is
6 8 10 12

R (dB)
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expected that RZA-NLMF using learning reweighted
factor can achieve much better recovery performance
without sacrificing much computational complexity.
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