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Abstract

Low-complexity least-squares (LS) estimators based on time-of-arrival (TOA) or time-difference-of-arrival (TDOA)
measurements have been developed to locate a target node with the help of anchors (nodes with known
positions). They require to select a reference anchor in order to cancel nuisance parameters or relax stringent
synchronization requirements. Thus, their localization performance relies heavily on the reference selection. In this
article, we propose several reference-free localization estimators based on TOA measurements for a scenario, where
anchor nodes are synchronized, and the clock of the target node runs freely. The reference-free LS estimators that
are different from the reference-based ones do not suffer from a poor reference selection. Furthermore, we
generalize existing reference-based localization estimators using TOA or TDOA measurements, which are scattered
over different research areas, and we shed new light on their relations. We justify that the optimal weighting
matrix can compensate the influence of the reference selection for reference-based weighted LS (WLS) estimators
using TOA measurements, and make all those estimators identical. However, the optimal weighting matrix cannot
decouple the reference dependency for reference-based WLS estimators using a nonredundant set of TDOA
measurements, but can make the estimators using the same set identical as well. Moreover, the Cramér-Rao
bounds are derived as benchmarks. Simulation results corroborate our analysis.

1. Introduction
Localization is a challenging research topic under investi-
gation for many decades. It finds applications in the glo-
bal positioning system (GPS) [1], radar systems [2],
underwater systems [3], acoustic systems [4,5], cellular
networks [6], wireless local area networks (WLANs) [7],
wireless sensor networks (WSNs) [8,9], etc. It is
embraced everywhere at any scale. New applications of
localization are continuously emerging, which motivates
further exploration and attracts many researchers from
different research areas, such as geophysics, signal pro-
cessing, aerospace engineering, and computer science. In
general, the localization problem can be solved by two
steps [7-9]: firstly measure the metrics bearing location
information, the so-called ranging or bearing, and sec-
ondly estimate the positions based on those metrics, the
so-called location information fusion. There are mainly
four metrics: time-of-arrival (TOA) or time-of-flight
(TOF) [10], time-difference-of-arrival (TDOA) [4,11],
angle-of-arrival (AOA) [12], and received signal strength

(RSS) [13]. The ranging methods using RSS can be imple-
mented by energy detectors, but they can only achieve a
coarse resolution. Antenna arrays are required for AOA-
based methods, which encumbers their popularity. On
the other hand, the high accuracy and potentially low
cost implementation make TOA or TDOA based on
ultra-wideband impulse radios (UWB-IRs) a promising
ranging method [8].
Closed-form localization solutions based on TOAs or

TDOAs are used to locate a target node with the help of
anchors (nodes with known positions). They are appre-
ciated for real-time localization applications, initiating
iterative localization algorithms, and facilitating Kalman
tracking [14]. They have much lower complexity com-
pared to the optimal maximum likelihood estimator
(MLE), and also do not require prior knowledge of noise
statistics. However, a common feature of existing closed-
form localization solutions is reference dependency. The
reference here indicates the time associated with the
reference anchor. For instance, in order to measure
TDOAs, a reference anchor has to be chosen first [7].
The reference anchor is also needed to cancel nuisance
parameters in closed-form solutions based on TOAs or
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TDOAs [15]. Thus, the localization performance depends
heavily on the reference selection. There are some efforts
to improve the reference selection [16-18], but they
mainly rely on heuristics. Furthermore, when TOAs are
measured using the one-way ranging protocol for calcu-
lating the distance between the target and the anchor,
stringent synchronization is required between these two
nodes in the conventional methods [7,10]. However, it is
difficult to maintain synchronization due to the clock
inaccuracy and other error sources. Therefore, various
closed-form localization methods resort to using TDOA
measurements to relax this synchronization constraint
between the target and the anchor. These methods only
require synchronization among the anchors, e.g., the
source localization methods based on TDOAs using a
passive sensor array [4,19-22].a

In this article, we also relax the above synchronization
requirement, and consider a scenario, where anchor
nodes are synchronized, and the clock of the target node
runs freely. However, instead of using TDOAs, we model
the asynchronous effect as a common bias, and propose
reference-free least-squares (LS), weighted LS (WLS),
and constrained WLS (CWLS) localization estimators
based on TOA measurements. Furthermore, we general-
ize existing reference-based localization solutions using
TOA or TDOA measurements, which are scattered over
different research areas, and provide new insights into
their relations, which have been overlooked. We clarify
that the reference dependency for reference-based WLS
estimators using TOA measurements can be decoupled
by the optimal weighting matrix, which also makes all
those estimators identical. However, the influence of the
reference selection for reference-based WLS estimators
using a nonredundant set of TDOA measurements can-
not be compensated by the optimal weighting matrix.
But the optimal weighting matrix can make the estima-
tors using the same set equivalent as well. Moreover, the
Cramér-Rao bounds (CRBs) are derived as benchmarks
for comparison.
The rest of this article is organized as follows. In Sec-

tion 2, different kinds of reference-free TOA-based esti-
mators are proposed, as well as existing reference-based
estimators using TOA measurements. Their relations
are thoroughly investigated. In Section 3, we generalize
existing reference-based localization algorithms using
TDOA measurements, and shed light on their relations
as well. Simulation results and performance bounds are
shown in Section 4. Conclusions are drawn at the end
of the article.
Notation: We use upper (lower) bold face letters to

denote matrices (column vectors). [X]m,n, [X]m,: and [X]:,n
denote the element on the mth row and nth column, the
mth row, and the nth column of the matrix X, respectively.
[x]n indicates the nth element of x. 0m (1m) is an all-zero

(all-one) column vector of length m. Im indicates an iden-
tity matrix of size m × m. Moreover, (·)T, || · ||, and ⊙ des-
ignate transposition, ℓ2 norm, and element-wise product,
respectively. All other notation should be self-explanatory.

2. Localization based on TOA measurements
Considering M anchor nodes and one target node, we
would like to estimate the position of the target node. All
the nodes are distributed in an l-dimensional space, e.g.,
l = 2 (a plane (2-D)) or l = 3 (a space (3-D)). The coordi-
nates of the anchor nodes are known and defined as Xa =
[x1, x2, ..., xM], where the vector xi = [x1,i, x2,i, . . ., xl,i]

T of
length l indicates the known coordinates of the ith
anchor node. We employ a vector x of length l to denote
the unknown coordinates of the target node. Our method
can also be extended for multiple target nodes. We
remark that in a large scale WSN, it is common to loca-
lize target nodes in a sequential way [23]. The target
nodes that have enough anchors are localized first. Then,
the located target nodes can be viewed as new anchors
that can facilitate the localization of other target nodes.
Therefore, the multiple-anchors-one-target scenario here
is of practical interest. We can even consider a case with
a moving anchor, in which a ranging signal is periodically
transmitted by the target node, and all the positions
where the moving anchor receives the ranging signal are
viewed as the fixed positions of some virtual anchors. We
assume that all the anchors are synchronized, and their
clock skews are equal to 1, whereas the clock of the tar-
get node runs freely. Furthermore, we assume that the
target node transmits a ranging signal, and all the
anchors act as receivers. We remark that other systems
may share the same data model such as a passive sensor
array for source localization or a GPS system, where a
GPS receiver locates itself by exploring the received ran-
ging signals from several satellites [1]. All the satellites
are synchronized to an atomic clock, but the GPS recei-
ver has a clock offset relative to the satellite clock. Note
that this is a stricter synchronization requirement than
ours, as we allow the clock of the target node to run
freely. Every satellite sends a ranging signal and a corre-
sponding transmission time. The GPS receiver measures
the TOAs, and calculates the time-of-flight (TOF) plus
an unknown offset. In this section, TOA measurements
are used, and TDOA measurements are employed in the
next section.

2.1. System model
In this section, all localization algorithms are based on
TOA measurements. When the target node transmits a
ranging signal, all the anchors receive it and record a
timestamp upon the arrival of the ranging signal inde-
pendently. We define a vector u of length M to collect
all the distances corresponding to the timestamps,
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which is given by u = [u1, u2, . . ., uM]
T. We employ b to

denote the distance corresponding to the true target
node transmission instant, which is unknown. We
remark that if we consider a GPS system, then u collects
the distances corresponding to the biased TOFs calcu-
lated by the GPS receiver, and b indicates the distance
bias corresponding to the unknown clock offset of the
GPS receiver relative to the satellite. Consequently, the
TOA measurements can be modeled as

u − b1M = d + n, (1)

where d = [d1, d2, ..., dM]
T, with di = ||xi - x|| the true

distance between the ith anchor node and the target
node, and n = [n1, n2, ..., nM]

T with ni the distance error
term corresponding to the TOA measurement error at
the ith anchor, which can be modeled as a random vari-
able with zero mean and variance σ 2

i , and which is
independent of the other terms (E[ni nj] = 0, i ≠ j). We
remark that instead of using TDOAs to directly get rid
of the distance bias, we use TOAs and take the bias into
account in the system model.

2.2. Localization based on squared TOA measurements
2.2.1. Proposed localization algorithms
Note that (1) is a nonlinear equation with respect to
(w.r.t.) x. To solve it, a MLE can be derived, which is
optimal in the sense that for a large number of data it
is unbiased and approaches the CRB. However, the
MLE has a high computational complexity, and also
requires the unknown noise statistics. Therefore, low-
complexity solutions are of great interest for localiza-

tion. From ‖xi − x‖2 = ‖xi‖2 − 2xTi x + ‖x‖2 , we derive

that d � d = ψa − 2XT
a x + ‖x‖21M, where

ψa = [‖x1‖2, ‖x2‖2, . . . , ‖xM‖2]T . Element-wise multipli-

cation at both sides of (1) is carried out, which leads to

u � u − 2bu + b21M = ψa − 2XT
ax + ‖x‖21M + 2d � n + n � n. (2)

Moving knowns to one side and unknowns to the
other side, we achieve

ψa − u � u = 2XT
ax − 2bu + (b2 − ‖x‖2)1M +m, (3)

where m = -(2d ⊙ n + n ⊙ n). The stochastic proper-
ties of m are as follows

E[[m]i] = −σ 2
i ≈ 0, (4)

[�]i,j = E[[m]i[m]j] − E[[m]i]E[[m]j]

= E[(2dini + n2i )(2djnj + n2j )] − σ 2
i σ 2

j

= 4didjE[ni,nj] + E[n2i n
2
j ] − σ 2

i σ 2
j

=
{
4d2i σ

2
i + 2σ 4

i ≈ 4d2i σ
2
i , i = j

0, i �= j
,

(5)

where we ignore the higher order noise terms to
obtain (5) and assume that the noise mean E[[m]i] ≈ 0
under the condition of sufficiently small measurement
errors. Note that the noise covariance matrix Σ depends
on the unknown d.
Defining j = ψa-u ⊙ u, y = [xT, b, b2 - ||x||2]T, and

A = [2XT
a ,−2u,1M], we can finally rewrite (3) as

φ = Ay +m. (6)

Ignoring the parameter relations in y, an uncon-
strained LS and WLS estimate of y can be computed
respectively given by

ŷ = (ATA)−1ATφ, (7)

and

ŷ = (ATWA)−1ATWφ, (8)

where W is a weighting matrix of size M × M. Note
that M ≥ l + 2 is required in (7) and (8), which indicates
that we need at least four anchors to estimate the target
position on a plane. The optimal W is W* = Σ-1, which
depends on the unknown d as we mentioned before.
Thus, we can update it iteratively, and the resulting
iterative WLS can be summarized as follows:

(1) Initialize W using the estimate of d based on the
LS estimate of x;
(2) Estimate ŷ using (8);
(3) Update W = �̂

−1 where �̂ is computed using ŷ ;
(4) Repeat Steps (2) and (3) until a stopping criterion
is satisfied.

The typical stopping criteria are discussed in [24]. We

stop the iterations when
∥∥∥ŷ(k+1) − ŷ(k)

∥∥∥ ≤ ε , where ŷ (k)

is the estimate of the kth iteration and � is a given
threshold [25]. An estimate of x is finally given by

x̂ = [Il 0l×2]ŷ. (9)

To accurately estimate y, we can further explore the
relations among the parameters in y. A CWLS estimator
is obtained as

ŷ = argmin
ŷ

(φ − Ay)TW(φ − Ay) (10)

subject to

yTJy + ρTy = 0, (11)

where ρ = [0Tl+1, 1]
T and

J =

⎡⎣ Il 0l 0l
0Tl −1 0
0Tl 0 0

⎤⎦ . (12)
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Solving the CWLS problem is equivalent to minimiz-
ing the Lagrangian [4,10]

L(y,λ) = (φ − Ay)TW(φ − Ay) + λ(yTJy + ρTy), (13)

where l is a Lagrangian multiplier. A minimum point
for (13) is given by

ŷ = (ATWA + λJ)−1
(
ATWφ − λ

2
ρ

)
, (14)

where l is determined by plugging (14) into the fol-
lowing equation

ŷTJŷ + ρT ŷ = 0. (15)

We could find all the seven roots of (15) as in [4,10], or
employ a bisection algorithm as in [26] to look for l
instead of finding all the roots. If we obtain seven roots
as in [4,10], we discard the complex roots, and plug the
real roots into (14). Finally, we choose the estimate ŷ,
which fulfills (10). The details of solving (15) are men-
tioned in Appendix 1. Note that the proposed CWLS
estimator (14) is different from the estimators in [4,10].
The CLS estimator in [4] is based on TDOA measure-
ments, and the CWLS estimator in [10] is based on TOA
measurements for a synchronous target (b = 0). Further-
more, we remark that the WLS estimator proposed in
[27] based on the same data model as (1), is labeled as an
extension of Bancroft’s algorithm [28], which is actually
similar to the spherical-intersection (SX) method pro-
posed in [29] for TDOA measurements. It first solves a
quadratic equation in b2 - ||x||2, and then estimates x
and b via a WLS estimator. However, it fails to provide a
solution for the quadratic equation under certain circum-
stances, and performs unsatisfactorily when the target
node is far away from the anchors [29].
Many research works have focused on LS solutions

ignoring the constraint (11) in order to obtain low-com-
plexity closed-form estimates [7]. As squared range (SR)
measurements are employed, we call them uncon-
strained SR-based LS (USR-LS) approaches, to be con-
sistent with [26]. Because only x is of interest, b and b2

- ||x||2 are nuisance parameters. Different methods have
been proposed to get rid of them instead of estimating
them. A common characteristic of all these methods is
that they have to choose a reference anchor first, and
thus we label them reference-based USR-LS (REFB-
USR-LS) approaches. As a result, the performance of
these REFB-USR-LS methods depends on the reference
selection [7]. However, note that the unconstrained LS
estimate of y in (7) does not depend on the reference
selection. Thus, we call (7) the reference-free USR-LS
(REFF-USR-LS) estimate, (8) the REFF-USR-WLS, and
(14) the REFF-SR-CWLS estimate.

Moreover, we propose the subspace minimization
(SM) method [22] to achieve a REFF-USR-LS estimate
of x alone, which is identical to x̂ in (7), but shows
more insight into the links among different estimators.
Treating b and b2 - ||x||2 as nuisance parameters, we
try to get rid of them by orthogonal projections instead
of random reference selection. We first use an orthogo-

nal projection P = IM − 1
M

1M1TM of size M × M onto

the orthogonal complement of 1M to eliminate (b2 - ||
x||2) 1M. Sequentially, we employ a second orthogonal
projection Pu of size M × M onto the orthogonal com-
plement of Pu to cancel -2bPu, which is given by

Pu = IM − PuuTP
uTPu

. (16)

Thus, premultiplying (3) with PuP, we obtain

PuPφ = 2PuPXT
ax + PuPm, (17)

which is linear w.r.t. x. The price paid for applying
these two projections is the loss of information. The rank
of PuP is M - 2, which means that M ≥ l + 2 still has to
be fulfilled as before to obtain an unconstrained LS or
WLS estimate of x based on (17). In a different way, PuP
can be achieved directly by calculating an orthogonal
projection onto the orthogonal complement of [1M,u].
Let us define the nullspace N (UT) = span(1M,u) , and

R(U) ⊕ N (UT) = RM , where R(U) is the column space
of U, ⊕ denotes the direct sum of two linearly indepen-
dent subspaces and ℝM is the M-dimensional vector
space. Therefore, PuP is the projection onto R(U) . Note

that the rank of PuPXT
a has to be equal to l, which indi-

cates that the anchors should not be co-linear for both 2-
D and 3-D or co-planar for 3-D. A special case occurs
when u = k1M, where k is any positive real number. In
this case, P can cancel out both (b2 - ||x||2)1M and -2bu,
and one projection is enough, leading to the condition M
≥ l + 1. The drawback though is that we can then only
estimate x and b2 - ||x||2 - 2bk due to the dependence
between u and 1M according to (3). The SM method
indicates all the insights mentioned above, which cannot
be easily observed by the unconstrained estimators.
Based on (17), the LS and WLS estimate of x is

respectively given by,

x̂ =
1
2
(XaPPuPXT

a )
−1XaPPuPφ, (18)

and

x̂ =
1
2
(XaQXT

a )
−1XaQφ, (19)
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where Q is an aggregate weighting matrix of size M ×
M. The optimal Q is given by

Q∗ = PPu(PuP�PPu)†PuP (20)

= (PuP�PPu)†, (21)

where the pseudo-inverse (†) is employed, because the
argument is rank deficient. Note that PuP is the projec-
tion onto R(U) , and is applied to both sides of Σ.
Thus, (Pu PΣPPu)

† is still in R(U) , and would not
change with applying the projection again. As a result,
we can simplify (20) as (21). Consequently, Q* is the
pseudo-inverse of the matrix obtained by projecting the
columns and rows of Σ onto R(U) , which is of rank M
- 2. We remark that x̂ in (18) (or (19)) is identical to
the one in (7) (or (8)) according to [22]. The SM
method and the unconstrained LS (or WLS) method
lead to the same result. Therefore, x̂ in (18) and (7) (or
in (19) and (8)) are all REFF-USR-LS (or REFF-USR-
WLS) estimates.
2.2.2. Revisiting existing localization algorithms
As we mentioned before, all the REFB-USR-LS methods
suffer from a poor reference selection. There are some
efforts to improve the reference selection [16-18]. In [16],
the operation employed to cancel ||x||21M is equivalent
to the orthogonal projection P. All anchors are chosen as
a reference once in [17] in order to obtain M(M - 1)/2
equations in total. A reference anchor is chosen based on
the criterion of the shortest anchor-target distance mea-
surement in [18]. However, reference-free methods are
better than these heuristic reference-based methods in
the sense that they cancel nuisance parameters in a sys-
tematic way. To clarify the relations between the REFB-
USR and the REFF-USR approaches, we generalize the
reference selection of all the reference-based methods as
a linear transformation, which is used to cancel nuisance
parameters, similarly as an orthogonal projection. To
eliminate (b2 - ||x||2)1M, the ith anchor is chosen as a
reference to make differences. As a result, the corre-
sponding linear transformation Ti of size (M - 1) × M
can be obtained by inserting the column vector -1M-1

after the (i-1)th column of IM-1, which fulfills Ti1M = 0M-

1, i Î {1,..., M}. For example, if the first anchor is chosen
as a reference, then T1 = [-1M-1, IM-1]. Furthermore, we
can write Tid = Ti1 d - di 1m-1, where Ti1 is achieved by
replacing the ith column of Ti with the column vector
0M-1. Applying Ti to both sides of (3), we arrive at

Tiφ = 2TiXT
ax − 2bTiu + Tim. (22)

Sequentially, we investigate the second linear trans-
formation Mj of size (M - 2) × (M - 1), which fulfills
MjTiu = 0M-2, j Î {1,..., M} and j ≠ i. As a result, the

nullspace N (MjTi) = span(1M,u) = N (UT) , and

R(TTi M
T
j ) = R(U) . Note that b = 0 in [7,16-18,22,26],

which means that there is no need to apply M j in
these works. But the double differencing method in
[15] is equivalent to employing M j, and thus the
results of [15] can be used to design Mj. Let us first

define a matrix T̄j1 of size (M - 2) × (M - 1) similarly

as Ti1 using the column vector 0M-2 instead of 0M-1.
When the jth anchor is chosen as a reference and j <i,
Mj can be obtained by inserting the column vector -(1/
(uj - ui))1M-2 after the (j - 1)th column of the matrix

diag(T̄j1(1M−1 	 (Tiu))) , where ∅ is element-wise divi-

sion. If j >i, then Mj can be obtained by inserting the
column vector -(1/(uj - ui))1M-2 after the (j - 2)th col-

umn of the matrix diag(T̄(j−1)1(1M−1 	 (Tiu))) . For

example, if the first anchor is chosen to cancel out (b2

- ||x||2) 1M (T1 is used), and the second anchor is cho-
sen to eliminate T1 u, then M2 is given by

M2 =

⎡⎢⎢⎢⎣
−1/(u2 − u1) 1/(u3 − u1)
−1/(u2 − u1) 1/(u4 − u1)

...
. . .

−1/(u2 − u1) 1/(uM − u1)

⎤⎥⎥⎥⎦ . (23)

Premultiplying MjTi to both sides of (3), we achieve

MjTiφ = 2MjTiXT
a x +MjTim. (24)

Consequently, the general form of the REFB-USR-LS
and the REFB-USR-WLS estimates are derived in the
same way as (18) and (19) by replacing PPuP and Q

with TTi M
T
j MjTi and Qi,j, respectively. We do not repeat

these equations for the sake of brevity. Note that Qi,j is
an aggregate weighting matrix of size M × M. The opti-
mal Qi,j is given by

Q∗
i,j = TTi M

T
j (MjTi�TTi M

T
j )

−1MjTi (25)

= [(MjTi)†MjTi�TTi M
T
j (T

T
i M

T
j )

†]†, (26)

where (MjTi)†MjTi = TTi M
T
j (T

T
i M

T
j )

† = TTi M
T
j (MjTiTTi M

T
j )

−1MjTi ,

which is also the projection onto R(U) , and thus is
equivalent to PuP. The equality between (25) and (26)
can be verified using a property of the pseudo-inverse.b

Hence, Q∗
i,j is of rank M - 2, and

Q∗
i,j = Q∗, i, j ∈ {1, . . . ,M} with i ≠ j. As a result, the

REFB-USR-WLS estimate and the REFF-USR-WLS esti-
mate are identical if the optimal weighting matrix is
used. Hence, the optimal weighting matrix can compen-
sate the impact of random reference selection. However,
since Σ depends on the unknown d, the optimal weight-
ing matrix can only be approximated iteratively. Also
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note that the REFB-USR-LS estimate suffers from the
ad-hoc reference selection, while the REFF-USR-LS esti-
mate is independent of the reference selection.

2.3. Localization based on squared differences of TOA
measurements
2.3.1. Proposed localization algorithms
Let us recall (1) here, i.e.,

u − b1M = d + n. (27)

In general, b is regarded as a nuisance parameter.
Instead of first carrying out element-wise multiplication
at both sides of (27), we can also try to get rid of b
before element-wise multiplication. By choosing a refer-
ence anchor, and then subtracting the TOAs of other
anchors from the TOA of the reference anchor [7], M -
1 TDOAs are obtained and b is canceled out. Note that
these TDOAs are achieved differently from the TDOAs
obtained directly by cross-correlating the received sig-
nals from different anchors. The obvious drawback of
this conventional scheme is again the reference depen-
dency. On the other hand, since b is a common term in
(1), we can again apply P to eliminate -b1M instead of
randomly choosing a reference anchor. Then we arrive
at

Pu = Pd + Pn. (28)

Note that Pu = u − ū1M , where ū is the average TOA.
Thus, Pu represents the differences between the anchor
TOAs and the average TOA. Moreover, Pd = d − d̄1M ,

where d̄ =
1
M

∑M
i=1 di is the unknown average of the dis-

tances between the target node and the anchors, and

Pn = n − n̄1M , where n̄ =
1
M

∑M
i=1 ni . Thus, (28) can be

rewritten as

Pu + (d̄ + n̄)1M = d + n, (29)

By making element-wise multiplication of (29) and re-
arranging all the terms, we achieve

ψa − (Pu) � (Pu) = 2XT
a x + 2d̄Pu + (d̄2 − ||x||2)1M +m + n̄21M + 2n̄(d̄1M + Pu), (30)

where ψa = [||x1||
2, ||x2||

2,..., ||xM||
2]T and m = -(2d

⊙ n + n ⊙ n) as before. Using the SM method to obtain
an unconstrained LS estimate of x alone, we employ
again two projections P and Pu, and arrive at

PuP(ψa − (Pu) � (Pu)) = 2PuPXT
a x + PuPm, (31)

the right hand side of which is exactly the same as the
one in (17), and thus we can state PuP(ψa - (Pu) ⊙
(Pu)) = Pu Pj. Note that although (30) is different from

(3), we find that (31) and (17) become equivalent after
premultiplying Pu P. Furthermore, (Pu) ⊙ (Pu) can be
labeled as a SR difference (SRD) term. As a result, the
unconstrained LS and WLS estimate of x based on (31),
which are named the reference-free USRD-LS (REFF-
USRD-LS) estimate and the REFF-USRD-WLS estimate,
are exactly the same as the REFF-USR-LS estimate (18)
and the REFF-USR-WLS estimate (19), respectively. We
do not repeat them here in the interest of brevity. More-
over, the constrained LS and WLS based on (30),
namely the REFF-SRD-CLS estimate and the REFF-
SRD-CWLS estimate, are identical to the REFF-SR-CLS
and the REFF-SR-CWLS estimate (14) as well.
2.3.2. Revisiting existing localization algorithms
Existing methods choose a reference anchor to obtain
range differences, and further investigate low-complexity
closed-form LS or WLS solutions. Thus, we call them
reference-based USRD-LS (REFB-USRD-LS) and REFB-
USRD-WLS approaches. To expose interesting links
among the different reference-based or reference-free
SR-based or SRD-based approaches, we generalize the
conventional REFB-USRD-LS and REFB-USRD-WLS
approaches [7] in the same way as in Section 2.2.2. The
reference selection can be generalized by a linear trans-
formation similarly as in Section 2.2.2. In order to elimi-
nate -b1M in (27), the ith anchor is chosen as a
reference, thus Ti defined in Section 2.2.2 is employed,
which fulfills Ti1M = 0M-1. Applying Ti instead of P to
(27), following the same operations to obtain (30), and
noting that (Ti1 (d + n)) ⊙ (Ti1(d + n)) = Ti1 ((d + n)
⊙ (d + n)), we arrive at

Tiψa − (Tiu) � (Tiu) = 2TiXT
a x + 2diTiu + Tim + 2niTiu, (32)

which is different from (30), and has only one nui-
sance parameter di at the right hand side. Ignoring the
relation between x and di, we still have two ways to deal
with di. The first one is to estimate x and di together
[22], which means we only use a reference once for cal-
culating the TDOAs. The second one is again to apply
Mj, which fulfills Mj Ti u = 0M-2. It employs two differ-
ent references, one for calculating the TDOAs, and the
other for eliminating the nuisance parameter. In order
to distinguish these two, we call them the REFB-USRD-
LS(1) and the REFB-USRD-LS(2) estimate, respectively,
where the number between brackets indicates the num-
ber of references used in the approach. In the same way
as we clarified the equivalence between the REFF-
USRD-LS and the REFF-USR-LS estimate in the pre-
vious subsection, we can easily confirm the equivalence
between the REFB-USRD-LS(2) (or the REFB-USRD-
WLS(2)) and the REFB-USR-LS (or the REFB-USR-
WLS) estimate of Section 2.2.2. We omit the details for
the sake of brevity. Furthermore, we recall that similarly
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as above we could have dealt with -2bTi u in (22) in two
different ways. But since b = 0 in [7,16-18,22,26], there
are no discussions about these two different ways in lit-
erature, and we do not distinguish between them in the
REFB-USR-LS method.
Since there is no counterpart of the REFB-USRD-LS(1)

estimate in Section 2.2.2 for the SR-based methods, we
briefly discuss the REFB-USRD-LS(1) estimate to complete
the investigation of the links among all the estimators
based on TOA measurements. Employing the SM method,
we again use an orthogonal projection Pi of size (M - 1) ×
(M - 1) onto the orthogonal complement of Ti u to fulfill
Pi Ti u = 0M-1, which can be derived in the same way as
(16) by replacing IM and Pu with IM-1 and Tiu, respec-
tively. As a result, N (PiTi) = span(1M,u) = N (UT) and

R(TTi Pi) = R(U) . Premultiplying (32) with Pi, we obtain

PiTiψa − Pi((Tiu) � (Tiu)) = 2PiTiXT
a x + PiTim. (33)

Note that Pi ((Ti u) ⊙ (Ti u)) = Pi Ti (u ⊙ u) (see
Appendix 2 for a proof), and thus we can state Pi Tiψa

-Pi ((Ti u) ⊙ (Ti u)) = Pi Tij). Consequently, the REFB-
USRD-LS(1) and the REFB-USRD-WLS(1) estimates can
also be written as (18) and (19) by replacing PPu P and

Q with TTi PiTi and Qi, respectively. We do not repeat the

equations in the interest of brevity. We remark that Qi is
again an aggregate weighting matrix of size M × M, and
the optimal Qi of rank (M - 2) is given by

Q∗
i = TTi Pi(PiTi�TTi Pi)†PiTi (34)

= (ViVT
i �ViVT

i )
†, (35)

where Vi is of size M × (M - 2), and collects the right
singular vectors corresponding to the M - 2 nonzero
singular values of Pi Ti. We derive (35) in Appendix 3,

and prove that ViVT
i is the projection onto R(U) . As a

result, Q∗
i = Q∗

i,j = Q∗, i, j ∈ {1, . . . ,M} and i ≠ j.

Based on the above discussions, we achieve the impor-
tant conclusion that the REFF-USRD-WLS, the REFB-
USRD-WLS(1), the REFB-USRD-WLS(2), the REFF-
USR-WLS, and the REFB-USR-WLS estimate are all
identical if the optimal weighting matrix is adopted. The
optimal weighting matrix releases the reference-based
methods from the influence of a random reference
selection. Moreover, the REFF-USR-LS and the REFF-
USRD-LS estimate are identical, and free from a refer-
ence selection, whereas the REFB-USR-LS and the
REFB-USRD-LS(2) estimate are equivalent, but still suf-
fer from a poor reference selection.
To further improve the localization accuracy, a con-

strained WLS estimate based on (32) can be pursued
considering the relation between x and di similarly as in

[26]. We call it the reference-based SRD CWLS (REFB-
SRD-CWLS) estimate. Denoting

z = [xT , di]T ,Bi = 2Ti[XT
a ,u] and ϱi = Ti ψa - (Ti u) ⊙

(Ti u), it is given by,

ẑ = argmin
ẑ

(ρi − Biz)TWi(ρi − Biz) (36)

subject to

(z − zi)TL(z − zi) = 0 and [z]l+1 ≥ 0, (37)

where Wi is a weighting matrix of size (M - 1) × (M -
1), zi = [xTi 0]T and

L =
[
Il 0l
0Tl −1

]
. (38)

The method to solve this CWLS problem is proposed
in [26]. We do not review it for the sake of brevity.
Note that there are two constraints for (36) compared
to one for (10), thus the method to solve (36) is differ-
ent from the one to solve (10).
All the estimators based on TOA measurements are

summarized in Tables 1, 2, and 3. They are characterized
by the number of references, the reference dependency,
the minimum number of anchors, and the optimal
weighting matrices. We also shed light on their relations
and categorize the existing methods from literature. We
remark that the authors in [30] claim that the error cov-
ariance of the optimal position estimate using TOAs with
a distance bias is equivalent to the one using TDOAs
regardless of the reference selection, where the error cov-
ariance is defined as the product of the position dilution
of precision (PDOP) and a composite user-equivalent
range error (UERE). However, a more appropriate indica-
tion of the localization performance is the Cramér-Rao
bound (CRB), which is a bound for unbiased estimators.
Therefore, the CRB based on (1) for TOAs with a dis-
tance bias is derived in Appendix 4. Since the TDOAs in
Section 2.3 are calculated by making differences of the
TOAs in (1), the CRB based on these TDOAs is the same
as the one based on (1).

3. Localization based on TDOA measurements
3.1. System model
Let us now focus on TDOA measurements. In passive
sensor array or microphone array localization, TDOA
measurements are obtained directly by cross-correlating
a pair of received signals. Thus, no correlation template
is needed, and the clock-offset can be canceled out
immediately. We reemphasize that these TDOA mea-
surements are different from the TDOAs calculated by
subtracting the TOAs. The data model for these TDOA
measurements is given by [31]
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ri,j = dj − di + ni,j, i, j ∈ {1, 2, . . . ,M}, i �= j, (39)

where ri ,j is the TDOA measurement, which is
obtained by cross-correlating the received signal from
the jth anchor with the one from the ith anchor. Note
that the stochastic properties of the noise terms ni,j are
totally different from the ones of the noise terms ni of
(1). We approximate ni,j as zero-mean random variables,
where cov(ni,j, np,q) = E[(ni,j-E[ni,j])(np,q - E[np,q])] = E
[ni,j np,q], i, j, p, q, Î {1, 2,..., M}, i ≠ j, and p ≠ q. Defin-
ing ri as the collection of the corresponding distances to
the M -1 TDOA measurements using the ith anchor as
a reference, ri = [ri,1,..., ri,i-1, ri,i+1,..., ri,M]T, and ni =
[ni,1,..., ni,i-1, ni,i +1,..., ni,M]

T as the related noise vector,
we write (39) in vector form as

ri = Ti1d − di1M−1 + ni. (40)

Moving -di 1M-1 to the other side, making an element-
wise multiplication and re-arranging, we achieve

ϕi = 2TiXT
ax + 2diri +mi, (41)

where �i = Tiψa- ri ⊙ ri and mi = -(2(Ti1 d) ⊙ ni + n
i ⊙ ni). The stochastic properties of mi are as follows

E[[mi]k] = −E[[ni]k � [ni]k] ≈ 0, (42)

[
∑

i
]k,l = E[[mi]k[mi]l] − E[[mi]k]E[[mi]l]

≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4dkdlE[ni,kni,l], k < i and l < i

4dk+1dl+1E[ni,k+1ni,l+1], k ≥ i and l ≥ i

4dkdl+1E[ni,kni,l+1], k < i and l ≥ i

4dk+1dlE[ni,k+1ni,l], k ≥ i and l < i

,
(43)

where we ignore the higher order noise terms to
obtain (43) and assume that the noise mean E[[m]i] ≈ 0
under the condition of sufficiently small measurement
errors. Note that the noise covariance matrix Σi of size
(M - 1) × (M - 1) depends on the unknown d as well.

3.2. Localization based on squared TDOA measurements
We do not propose any new algorithms in this section,
but summarize existing localization algorithms spread
over different research areas and shed light on their
relations. All these algorithms are categorized as refer-
ence-based SRD approaches. Note that (41) looks similar
to (32). Only the available data and the noise character-
istics are different, which leads to totally different rela-
tions among the estimators as we will show in the
following paragraphs. The approach to achieve the
REFB-USRD-LS(1) estimate, the REFB-USRD-LS(2) esti-
mate and the REFB-SRD-CWLS estimate (36) based on
TOA measurements in Section 2.3.2 can be adopted
here as well. The orthogonal projection P̃i of size (M -
1) × (M - 1) onto the complement of ri is employed,
which is given by (16), where we replace IM and Pu
with IM-1 and ri. Let us define the nullspace

N (Ũ
T
i ) = span(ri) , and R(Ũi) ⊕ N (Ũ

T
i ) = RM−1.

Therefore, P̃i is the projection onto R(Ũi) . As a result,
the REFB-USRD-LS(1) and REFB-USRD-WLS(1) esti-
mate based on TDOA measurements is respectively
given by,

x̂ = −1
2

(
XaTTi P̃iTiXT

a

)−1
XaTTi P̃iϕi, (44)

Table 2 WLS estimators based on TOAs for locating an asynchronous target

REFF-USR-WLS REFB-USR-WLS REFF-USRD-WLS REFB-USRD-WLS(1) REFB-USRD-WLS(2)

Relations The REFB-USR-WLS and the REFB-USRD-WLS(2) estimate are identical They are all identical with

optimal weighting matrices Q∗ = Q∗
i,j = Q∗

i

No. of references 0 2 0 1 2

Reference dependency No Yes, with Qi,j No Yes, with Qi Yes, with Qi,j

No, with Q∗
i,j No, with Q∗

i No, with Q∗
i,j

Literature Proposed Proposed

Min. no. of anchors, x of length l l+2

Table 1 LS estimators based on TOAs for locating an asynchronous target

REFF-USR-LS REFB-USR-LS REFF-USRD-LS REFB-USRD-LS(1) REFB-USRD-LS(2)

Relations The REFF-USR-LS and the REFF-USRD-LS estimate are identical The REFB-USR-LS and the REFB-
USRD-LS(2) estimate are identical

No. of references 0 2 0 1 2

Reference dependency No Yes No Yes Yes

Literature Proposed [5,17,18] Proposed [7,22] [15]

Min. no. of anchors, x of length l l + 2
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and

x̂ = −1
2

(
XaTTi Q̃iTiX

T
a

)−1
XaTTi Q̃iϕi, (45)

where Q̃i is an aggregate weighting matrix of size (M -
1) × (M - 1) as well. Note that (44) (or (45)) differs from
(18) (or (19)) since M - 1 TDOA measurements are used
instead of M TOA measurements. The optimal Q̃i is

given by

Q̃
∗
i = P̃i(̃Pi�iP̃i)†P̃i (46)

= (̃Pi�iP̃i)†, (47)

where Q̃
∗
i , i ∈ {1, . . . ,M} is the pseudo-inverse of the

matrix achieved by projecting the columns and rows of Σi

onto R(Ũi) , which is of rank M - 2. We remark that the

REFB-USRD-LS(1) estimate (44) is equivalent to the ones
in [22,32].
Let us also revisit the REFB-USRD-LS(2) estimate and

the REFB-USRD-WLS(2) estimate based on TDOA mea-

surements. A linear transformation M̃j of size (M - 2) ×

(M - 1), which fulfills M̃jri = 0M−2, can be devised in the

same way as Mj by replacing Tiu and 1/(uj-ui) with ri and

1/ri,j, respectively. Thus, R(M̃
T
j ) = R(Ũi) . Note that

another heuristic method to obtain M̃j is proposed in

[20]. As a result, the general form of the REFB-USRD-LS
(2) and the REFB-USRD-WLS(2) estimates can be derived
in the same way as (44) and (45) by replacing P̃i and Q̃i

with M̃
T
j M̃j and Q̃i,j , respectively. Note that Q̃i,j is also an

aggregate weighting matrix of size (M - 1) × (M - 1). The

optimal Q̃
∗
i,j is given by

Q̃
∗
i,j = M̃

T
j (M̃j�iM̃

T
j )

−1M̃j (48)

=
[
(M̃j)

†
M̃j�iM̃

T
j (M̃

T
j )

†
]†

, (49)

where (M̃j)†M̃j = M̃
T
j (M̃

T
j )

† = M̃
T
j (M̃jM̃

T
j )

−1M̃j is also

the projection onto R(Ũi) , which means that

Q̃
∗
i,j = Q̃

∗
i , i, j ∈ {1, . . . ,M} and i ≠ j. The REFB-USRD-

LS(2) estimate and the REFB-USRD-WLS(2) estimate
based on TDOA measurements are generalizations of
the estimators proposed in [20]. However, the noise cov-
ariance matrix in [20] is a diagonal matrix, and the noise
covariance matrix Σi here is a full matrix.
We remark here that with the optimal weighting

matrix, the REFB-USRD-WLS(1) estimate (45) and the
REFB-USRD-WLS(2) estimate based on the same set of
TDOA measurements are identical. However, the opti-
mal weighting matrix cannot decouple the reference
dependency. The performance of all the estimates still
depends on the reference selection, since the reference
dependency is an inherent property of the available
measurement data. To further improve the localization
performance, the REFB-SRD-CWLS estimate based on
(41) can be derived in the same way as the estimate (36)

by replacing ϱi and Bi with �i and 2[TiXT
a , ri] , respec-

tively. A solution to this CLS problem is presented in
[26].
Note that all the above estimators are based on a so-

called nonredundant set of TDOA measurements [31],
resulting in reference dependency. Recently, a SM
method based on the full set of TDOA measurements
has been proposed in [33], labeled “reference-free
TDOA source localization”. It is reference-free in the
sense that every anchor plays the role of reference, as in
[17], thus there is no need to specifically choose one.
We revisit the proposed method in [33] here to clarify
its relation to our framework. Let us define
Dr = [̃r1, r̃1, . . . , r̃M], where r̃i can be achieved by
inserting a 0 in ri between ri,i-1 and ri,i+1. Using our
notations, we can rewrite (22) of [33] as

1
2M

(Dr � Dr)1M − 1
M

Drd =
1
2
Pψa − PXT

ax. (50)

Then, a matrix G of size (M - 2) × M, which fulfills
GDr = 0M-2, can be obtained by exploring the nullspace

Table 3 CLS estimators based on TOAs for locating an asynchronous target

REFF-SR-CWLS REFF-SRD-CWLS REFB-SRD-CWLS

Equations (14) (36)

No. of references 0 0 1

Reference dependency No No Yes, with Wi

No, with W∗
i

Literature Proposed Proposed [26]

Min. no. of anchors, x of length l l+2
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of Dr using the singular value decomposition (SVD).
Consequently, an LS estimator of x is given by

x̂ =
1
2
(XaPGTGPXT

a )
−1XaPGTG

(
Pψa − 1

M
(Dr � Dr)1M

)
. (51)

Note that Dr = [d,1M]
[

1TM
−dT

]
without noise, and

GDr = 0M-2. Thus, 1M is in the nullspace of G. As P is
the projection onto the orthogonal complement of 1M,
GP is still of rank M - 2 with probability 1. In a differ-
ent way, we can make use of the full set of TDOA mea-
surements similarly as the second extension of the
approach proposed in [32]. We collect (41) in vector
form as⎡⎢⎢⎢⎣

ϕ1

ϕ2
...

ϕM

⎤⎥⎥⎥⎦ = 2

⎡⎢⎢⎢⎣
T1
T2
...
TM

⎤⎥⎥⎥⎦XT
a x + 2

⎡⎢⎢⎢⎣
r1

r2
. . .

rM

⎤⎥⎥⎥⎦d +

⎡⎢⎢⎢⎣
m1

m2
...

mM

⎤⎥⎥⎥⎦(52)
As a result, a LS estimator of x and d can be derived

based on (52). We do not detail it in the interest of
brevity.
Furthermore, as indicated in [31], an optimal nonre-

dundant set can be achieved by the optimum conversion
of the full TDOA set in order to approach the same
localization performance, and the use of this optimal
nonredundant set is recommended to reduce the com-
plexity. Because [31] relies on the assumption that the
received signals at the anchors are corrupted by noise
with equal variances, the optimal nonredundant set can
be estimated by a LS estimator. This is not the case
here however, where it should be estimated by a WLS
estimator, which requires the knowledge of the stochas-
tic properties of the noise.
We summarize the characteristics of all the estimators

based on TDOA measurements in Table 4. With the
nonredundant TDOA measurement set of length M - 1,
the estimator performance suffers from a poor reference
selection. Although the performance improves with the
full set or the optimal nonredundant set, it first has to
measure the full set of TDOAs of length M(M - 1)/2.

4. Numerical results
4.1. Noise statistics
In order to make a fair comparison between the locali-
zation performance of the different estimators using
TOA measurements and TDOA measurements, we
derive the statistics of ni and ni,j based on the same
received signal models. The received signal is modeled
by [33]

zi(n) =
κ

di
s(n − τi) + ei(n), n = 0, 1, . . . ,N − 1, (53)

where N is the number of samples, � is a constant
parameter, s(n) is the source signal, and ei(n) and τi are
respectively the additive noise and the delay at the ith
node. We assume that s(n) is a zero-mean white

sequence with variance σ 2
s , and ei(n) is also a zero-

mean white sequence with variance σ 2
e , independent

from the other noise sequences and s(n).
For the TOA-based approaches, we assume knowledge

of the template s(n), and estimate τi by cross-correlating
the received signal with the clean template:

τ̂i = argmax
τi

{
N−1∑
n=0

zi(n)s(n − τi)

}
. (54)

Since there is an unknown bias due to asynchronous
nodes, the distance ui corresponding to the timestamp
is modeled as ui = cτ̂i = di + b + ni , where c is the signal
propagation speed. The statistical properties of ni can be
derived in a similar way as in [31], and are given by

E[ni] = 0, (55)

cov (ni,nj) = E[ninj]

=

⎧⎨⎩σ 2
i =

3c2

Nπ2κ2

d2i
SNR

i = j

0 i �= j
, (56)

where SNR = σ 2
s /σ

2
e . We remark that in reality, it is

very difficult to obtain a clean template, since there are
various kinds of error sources, such as multipath fading,
antenna mismatch, pulse distortion, etc. Plugging (55)

Table 4 LS, WLS, and CWLS estimators based on TDOAs for locating an asynchronous target

REFB-USRD-LS(1) REFB-USRD-WLS(1) REFB-USRD-LS(2) REFB-USRD-WLS(2) REFB-SRD-CWLS

Relations The REFB-USRD-WLS(1) and the REFB-USRD-WLS(2) estimate are identical with the optimal weighting matrices

Q̃
∗
i = Q̃

∗
i,j

No. of references 1 1 2 2 1

Reference dependency Yes Yes Yes Yes Yes

Literature [19,22,32,33,36] [21] [20] [20] [4,26]

Min. no. of anchors, x of length l l + 2
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and (56) into (5), the entries of the covariance matrix Σ
are given by

[�]i,j = 4didjE[ninj] + E[n2i n
2
j ] − σ 2

i σ 2
j

=

⎧⎨⎩4d2i σ
2
i + 2σ 4

i ≈ 12c2

Nπ2κ2

d4i
SNR

, i = j

0, i �= j
.

(57)

On the other hand, the TDOA estimates can be
achieved by cross-correlating two received signals as fol-
lows

τ̂i,j = argmax
τi,j

{
N−1∑
n=0

zi(n)zj(n − τi,j)

}
. (58)

Thus, the estimate of the distance difference is
ri,j = cτ̂i,j = dj − di + ni,j , where the bias is canceled out
naturally. The statistical properties of ni,j can also be
derived in a similar way as in [31,33], and are given by

E[ni,j] = 0, (59)

cov (ni,j,np,q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3c2

Nπ2κ2

(
d2i
SNR

+
d2j
SNR

+
d2i d

2
j

SNR2

)
i = p and j = q

3c2

Nπ2κ2

d2i
SNR

i = p and j �= q

3c2

Nπ2κ2

d2j
SNR

j = q and i �= p

− 3c2

Nπ2κ2

d2i
SNR

i = q and j �= p

− 3c2

Nπ2κ2

d2j
SNR

j = p and i �= q

0 else

. (60)

Note that similarly as in [33] the signal attenuation is
taken into account in order to obtain more general
noise statistics than in [31], but we correct the deriva-
tion errors in [33]. We remark that in reality, the
TDOA estimates may face similar problems as the TOA
estimates, since the received signals at different anchors
may be totally different. Plugging (59) and (60) into
(43), the entries of the covariance matrix Σi are given by

[
∑
i

]k,l ≈

⎧⎪⎪⎨⎪⎪⎩
4dkdlE[ni,kni,l], k < i and l < 1
4dk+1dl+1E[ni,k+1ni,l+1], k ≥ i and l ≥ i
4dkdl+1E[ni,kni,l+1], k < i and l ≥ i
4dk+1dlE[ni,k+1ni,l], k ≥ i and l < i

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

12c2d2k
Nπ2κ2

(
d2i
SNR

+
d2k
SNR

+
d2i d

2
k

SNR2

)
, k = landk < i

12c2d2k+1
Nπ2κ2

(
d2i
SNR

+
d2k+1
SNR

+
d2i d

2
k+1

SNR2

)
, k = l and k ≥ i

12c2dkdl
Nπ2κ2

d2i
SNR

, k �= l, k < i and l < i

12c2dk+1dl+1
Nπ2κ2

d2i
SNR

, k �= l, k ≥ i and l ≥ i

12c2dkdl+1
Nπ2κ2

d2i
SNR

, k < i and l ≥ i

12c2dk+1dl
Nπ2κ2

d2i
SNR

, k ≥ i and l < i

.

(61)

In the simulations, we generate ni and ni,j as zero-
mean Gaussian random variables with covariance
matrices specified as above.

4.2. Performance evaluation
As a well-adopted lower bound, the CRB is derived for
localization estimators based on TOA measurements
and TDOA measurements, respectively. Note that the
estimators derived in this paper are biased. We remark
that although the CRB is a bound for unbiased estima-
tors, it still is interesting to compare it with the pro-
posed biased estimators. Here, we exemplify the CRBs
for location estimation on a plane, e.g., we take l = 2.
We assume that ni and ni,j are Gaussian distributed.
The Fisher information matrix (FIM) I1(θ) based on
model (1) in Section 2 for TOA measurements is
derived in Appendix 4, where θ = [xT, b]T, and x = [x1,

x2]
T. Consequently, we obtain CRB(x1) = [I−1

1 (θ)]1,1 .

We observe that b is not part of I−1
1 (θ) . Therefore, no

matter how large b is, it has the same influence on the
CRB for TOA measurements. The FIM I2(x) and I3(x)
based on model (39) in Section 3 are derived in Appen-
dix 5 for the nonredundant set and the full set of
TDOA measurements, respectively.
We consider three simulation setups. In Setups 1 and

2, eight anchors are evenly located on the edges of a
100 m × 100 m rectangular. Meanwhile the target node
is located at [200 m, 30 m] and [10 m, 20 m] for Setups
1 and 2, respectively. Thus, the target node is far away
from the anchors in Setup 1, but close to them in Setup
2. In Setup 3, all anchors and the target node are ran-
domly distributed on a grid with cells of size 1 m × 1 m
inside the rectangular. The performance criterion is the
root mean squared error (RMSE) of x̂ versus a reference

range
(
SNRr =

Nπ2κ2

3c2
SNR

)
, which can be expressed

as
√
1/Nexp

∑Nexp

j=1
||̂x(j) − x||2, where x̂(j) is the estimate

obtained in the jth trial. Each simulation result is aver-
aged over Nexp = 1,000 Monte Carlo trials. The bias b
corresponding to the clock offset is randomly generated
in the range of [0 m, 100 m] in each Monte Carlo run.
We would like to compare all the REFF and REFB esti-
mators, as well as the estimator proposed in [27] (first
iteration) using TOA measurements, labeled the LS1
estimator, and the estimator proposed in [33] using the
full TDOA set, namely the REFF-LS2 estimator.
4.2.1. Estimators using TOA measurements
Figure 1 shows the localization performance of the REFF
estimators using TOA measurements under the three

considered setups. The I−1
1 (θ) (the dotted line with “×”
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markers) is used as a benchmark. The REFF-USR-WLS
estimator (8) with the optimal weighting matrix (the
solid line with “+” markers) achieves the best perfor-
mance, while the iterative approach to update the

weighting matrix (the solid line with “◊” markers) also
helps the REFF-USR-WLS estimator to converge to the
best performance. The REFF-SR-CLS estimator (14) (the
solid line with “○” markers) benefits from the
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(b)
Figure 1 RMSE of x for the REFF estimators using TOAs for locating an asynchronous target. (a) Setup 1 and Setup 2. (b) Setup 3.

Wang and Leus EURASIP Journal on Advances in Signal Processing 2012, 2012:19
http://asp.eurasipjournals.com/content/2012/1/19

Page 12 of 21



constraints, and thus outperforms the REFF-USR-LS
estimator (7) (the solid line with “*” markers). The con-
crete value of the bias b does not influence the localization
performance. The curve of the REFF-USR-LS estimator
with fixed b (the solid line with “∇” markers) and the one
with random b overlap. Furthermore, the LS1 estimator
[27] (the solid line with “□” markers) is sensitive to the
geometry. It performs better than the REFF-USR-LS esti-
mator in Setup 2, but worse in Setup 1. This observation
is consistent with the one in [19]. In Setup 3 (random geo-
metry), it fails under some cases due to its inherent
instability, and performs unsatisfactorily.
Figure 2 compares the localization performance of the

REFF with the one of the REFB estimators using TOA
measurements under Setups 1 and 2. Since there are no
fixed anchors in Setup 3, we skip it in the comparison. We
show both the performance of the best and the worst
reference selection, which indicates the performance limits
of the REFB estimators. The dashed lines with “+” and “∇”
markers denote the performance bounds for the REFB-
USRD-LS(1) and the REFB-USRD-LS(2), respectively. The
best reference choice for the REFB-USRD-LS(1) estimator
is the reference anchor with the shortest distance to the
target node. Meanwhile, we do not observe the best refer-
ence pair selection for the REFB-USRD-LS(2) estimator
following any rules. The curves for the REFF-USR-LS esti-
mator (7) (the solid line with “*” markers) and the REFF-
SR-CLS estimator (14) (the solid line with “○” markers) lie
inside these limits. Their performances are neither too bad
nor too good, but they do not suffer from a poor reference
selection. As we have already proved that the optimal
weighting matrix can compensate the impact of the refer-
ence selection, the curves of all the WLS estimators with
optimal weights will overlap. Thus, we do not show the
performance of the REFF-USR-WLS estimator again,
which is already illustrated in Figure 1.
4.2.2. Estimators using TDOA measurements
Let us first compare the CRBs employing different mea-
surements in Figure 3. We observe the same tendency for
both Setups 1 and 2. All the CRBs overlap above a speci-
fic SNRr threshold, which is 55 dB for Setup 1, and 50dB
for Setup 2. Below the threshold, the CRB using TOA
measurements (the solid line with “×” markers) is lower
than the other CRBs. Meanwhile, the CRB using the full
TDOA set (the dotted line with “×” markers) is lower
than the ones using a nonredundant TDOA set (the
dotted lines). The observations are consistent with the
ones in [31]. On the other hand, the SNRr ranges of
interest corresponding to a RMSE smaller than 100 = 1
m, are SNRr > 60 dB and SNRr > 30 dB for Setup 1 and
Setup 2, respectively. Within this range of interest, there
are no differences among the CRBs in Setup 1, and only
small differences in Setup 2. Therefore, using different

measurements would not cause obvious differences in
the CRB at high SNR.
Figure 4 shows the localization performance of the

REFF estimators using the full TDOA set under three

setups. The CRB I−1
3 (θ) (the dotted line with × mar-

kers) is still used as a benchmark. We observe similar
tendencies as in Figure 1. The REFF-WLS estimator
based on (52) with the optimal weighting matrix (the
solid line with “+” markers) achieves the best perfor-
mance, while the iterative approach to update the
weighting matrix (the solid line with “◊” markers) also
facilitates the REFF-WLS estimator based on (52) to
converge to the best performance. Moreover, the perfor-
mance of the REFF-LS2 estimator (51) [33] (the solid
line with “□” markers) is slightly worse than the REFF-
LS estimator based on (52) (the solid line with “*” mar-
kers) in Setup 1. In general, their performances are very
close. In Setup 3 (random geometry), they almost over-
lap with each other.
Figure 5 compares the localization performance of the

REFF estimator using the full TDOA set with the one of
the REFB estimators using the nonredundant TDOA set
under Setups 1 and 2. Since there are no fixed anchors in
Setup 3, we again skip it in the comparison. We show
both the performance of the best and the worst reference
selection, which indicates the performance limits of the
REFB estimators. The dashed lines with “+” and “∇”
markers denote the performance limits for the REFB-
USRD-LS(1) (44) and the REFB-USRD-LS(2) estimator,
respectively. The best reference choice for the REFB-
USRD-LS(1) estimator is again the reference anchor with
the shortest distance to the target node, which means we
cross-correlate the received signal at the reference anchor
with the ones at other anchors in order to achieve a non-
redundant set of TDOA measurements. Meanwhile, we
do not observe the best reference pair selection for the
REFB-USRD-LS(2) estimator following any rules either.
The curves for the REFF-LS estimator based on (52) (the
solid line with “*” markers) and the REFF-LS2 estimator
(51) [33] (the solid line with “□” markers) lie inside these
limits. They are very close to the lower limits in Setup 1,
and in the middle of the performance band in Setup 2.
The performance band of the REFB-USRD-LS(1) estima-
tor is quite narrow in Setup 2. On the other hand, the
performance variation is very obvious for the REFB-
USRD-LS(2) estimator.
Finally, we verify the equivalence of the REFB-USRD-

WLS estimators with the same optimal weighting matrix
in Figure 6. As we have discussed before, the optimal
weighting matrix can only release the impact of the sec-
ond reference selection. The first reference selection
decides the obtained data set. Therefore, using the same
nonredundant set of TDOAs, the curves of the REFB-
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USRD-WLS(1) (45) (the solid lines with “◊” markers)
and the REFB-USRD-WLS(2) estimators (the solid lines
with “+” markers) overlap. A different performance can
be obtained by employing different nonredundant

TDOA sets. However, similarly as the CRB, the perfor-
mance converges after some SNRr threshold. Finally, in
Figure 7, we compare the localization performance of
the REFF estimators using TOAs and the full TDOA
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Figure 2 RMSE of x for the REFF and the REFB estimators using TOAs for locating an asynchronous target. (a) Setup 1. (b) Setup 2.
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set, respectively. They are very close at high SNRr, but
diverge at low SNRr.

5. Conclusions
In this article, we have proposed reference-free localiza-
tion estimators based on TOA measurements for a sce-
nario, where anchors are synchronized, and the clock of
the target node runs freely. The reference-free estima-
tors do not suffer from a poor reference selection,
which can seriously degrade the localization perfor-
mance of reference-based LS estimators. Furthermore,
we generalized existing reference-based localization esti-
mators using TOA or TDOA measurements, and expose
their relations. Based on analysis and simulations, we
have obtained the following important conclusions:

(1) Applying a projection is always preferred over
making differences with a reference to get rid of nui-
sance parameters.

(2) The optimal weighting matrix can compensate
for the impact of the reference selection for refer-
ence-based WLS estimators using TOA measure-
ments, and make all those estimators equivalent.
However, the optimal weighting matrix cannot
release the reference influence for reference-based
WLS estimators using a nonredundant set of TDOA
measurements, but can make the estimators using
the same set identical as well.
(3) There are corresponding equivalences between
the SR-based and the SR-difference-based methods,
which are all using TOA measurements.
(4) Beyond some SNR threshold, there are no
obvious differences among the CRBs using TOA
measurements, the nonredundant set and the full set
of TDOA measurements, respectively.
(5) The performance of the reference-free LS estima-
tors is neither too bad nor too good, but they do not
suffer from a poor reference selection.
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(6) The concrete value of the distance bias caused by
the inaccurate clock does not affect the localization
performance of the LS or WLS estimators.

Appendix 1 Derivation of l for CLS
Substituting (14) into the constraint (11), we obtain

(
φTWTA − λ

2
ρT

)
(ATWA + λJ)−1J(ATWA + λJ)−1

(
ATWφ − λ

2
ρ

)
+ρT(ATWA + λJ)−1

(
ATWφ − λ

2
ρ

)
= 0,

(62)

which has to be solved for l, leading to the estimate

λ̂ . We exemplify how to solve (62) for localization on a
plane, i.e.,/= 2. Since J is of rank 3, there are only three
non-zero eigenvalues of (AT WA)-1J. Therefore, the
square matrix (ATWA)-1 J of size 4 × 4 can be diagona-
lized as (AT WA)-1 J = VΛV-1, where V is of size 4 × 3,
collecting the singular vectors corresponding to the
three nonzero singular values, and Λ is a diagonal

matrix with the three nonzero singular values (gi, i = 1,
2, 3) on its diagonal. According to the Kailath variant
[34] and plugging the eigenvalue decomposition of (AT

WA)-1 J into (AT WA + lJ)-1, we obtain

(ATWA + λJ)−1 = (ATWA)−1 − λ(ATWA)−1J(I + λ(ATWA)−1J)−1(ATWA)−1

= V(I + λ�)−1V−1(ATWA)−1 (63)

Substituting (63) into the constraint (62), we achieve

0 = eT(I + λ�)−1�(I + λ�)−1f +
λ2

4
hT(I + λ�)−1�(I + λ�)−1g − λ

2
hT(I + λ�)−1�(I + λ�)−1f

− λ

2
eT(I + λ�)−1�(I + λ�)−1g + hT(I + λ�)−1f − λ

2
hT(I + λ�)−1g

(64)

where

eT = φTWTAV = [ e1 e2 e3 e4 ], (65)

f = V−1(ATWA)−1ATWφ = [ f1 f2 f3 f4 ]T , (66)

hT = ρTV = [h1 h2 h3 h4 ], (67)
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g = V−1(ATWA)−1ρ = [g1 g2 g3 g4 ]T . (68)

Now, (64) can be simplified as a seven-order equation
as follows

0 =
3∑
i=1

eifiγi
(1 + λγi)

2 +
λ2

4

3∑
i=1

higiγi
(1 + λγi)

2 − λ

2

3∑
i=1

eigiγi
(1 + λγi)

2 − λ

2

3∑
i=1

hifiγi
(1 + λγi)

2

+
3∑
i=1

hifiγi
(1 + λγi)

− λ

2

3∑
i=1

higiγi
(1 + λγi)

+ h4f4 − λ

2
h4g4.

(69)

After obtaining the seven roots of (69), we discard
the complex roots, and plug the real roots into (14).
Finally, we choose the estimate ŷ , which fulfills (10).
Note that (14) is a CLS estimate of y with W = I.
Since the optimal W* depends on the unknown d, the
CWLS problem can be solved in a similar way by
iteratively updating the weights and the estimates, thus
we do not repeat it here.

Appendix 2 Proof of Pi ((Tiu) ⊙ (Tiu)) = PiTi(u ⊙ u)
Recalling that Tiu = Ti1 u - ui 1m-i, Ti 1m = 0M-1, and Pi

Ti u = 0M-1, we prove that Pi((Ti u) ⊙ (Ti u)) in (33) is
equivalent to Pi Ti (u ⊙ u) as follows

Pi((Tiu) � (Tiu)) = Pi((Ti1u − ui1M−1) � (Ti1u − ui1M−1))

= Pi((Ti1u) � (Ti1u) − 2uiTi1u + u2i 1M−1)

= Pi((Ti1u) � (Ti1u) − 2ui(Ti1u − ui1M−1) − u2i 1M−1)

= Pi((Ti1u) � (Ti1u) − 2uiTiu − u2i 1M−1)

= Pi((Ti1u) � (Ti1u) − u2i 1M−1)

= PiTi(u � u)

(70)

Appendix 3 Derivation of (35)
The SVD of Pi Ti is given by PiTi = Ui�iVT

i , where Ui

is of size (M - 1) × (M - 2) and Vi is of size M × (M -
2), which collect the left and right singular vectors cor-
responding to the M - 2 nonzero singular values, and
Λi is a diagonal matrix with the M - 2 nonzero singu-
lar values on its diagonal. Note that

UT
i Ui = IM−2,VT

i Vi = IM−2,VT
i 1M = 0M−2 and

VT
i u = 0M−2 . As a result, the nullspace

N (VT
i ) = span(1M,u) , and R(Vi) = R(U). Using the
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SVD and the property of the pseudo-inverse, we can

write (PiTi�TT
i Pi)† as

(PiTi�TTi Pi)† = (Ui�iVT
i �Vi�iUT

i )
†

= (�iUT
i )

†(VT
i �Vi)−1(Ui�i)†

= Ui�
−1
i (VT

i �Vi)−1�−1
i UT

i .

(71)

Plugging (71) and the SVD of PiTi into (34), and making
use of the property of the pseudo-inverse again, we arrive
at

TTi Pi(PiTi�TTi Pi)†PiTi = Vi�iUT
i Ui�

−1
i (VT

i �Vi)−1�−1
i UT

i Ui�iVT
i

= Vi(VT
i �Vi)−1VT

i

= (ViVT
i �ViVT

i )
†,

(72)

where ViVT
i is the projection onto R(U) .

Appendix 4 CRB derivation for localization based
on TOA measurements
We analyze the CRB for jointly estimating x and b based
on (1), and assume ni is Gaussian distributed. The FIM I1
(θ) is employed, where θ = [xT, b]T, with entries defined as:

I1(θ) = −E
[

∂2 ln p(u; θ)

∂θ∂θT

]
=

[
∂ν

∂θ

]T

C−1
[

∂ν

∂θ

]
,

(73)

where

ν = d + b1M, (74)

C = diag([σ 2
1 , σ

2
2 , . . . , σ

2
M]

T),

=
3c2

Nπ2κ2SNR
diag([d21, d

2
2, . . . , d

2
M]

T),
(75)

∂ν

∂b
= 1M, (76)

[
∂v
∂xl

]
j
=

xl − xl,j∥∥x − xj
∥∥ . (77)

Appendix 5 CRB derivation for localization based
on TDOA measurements
We analyze the CRB for estimating x based on (40), and
assume ni,j is Gaussian distributed. The FIM I2(x) for
the nonredundant set of TDOA measurements is
employed, with entries defined as:

I2(x) = −E
[

∂2lnp(ri; x)
∂x∂xT

]
=

[
∂μi

∂x

]T

C−1
i

[
∂μi

∂x

]
,

(78)

Where

μi = Ti1d − di1M−1, (79)

[Ci]k,l =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

3c2

Nπ2κ2

(
d2i
SNR

+
d2k
SNR

+
d2i d

2
k

SNR2

)
k = l and k < i

3c2

Nπ2κ2

(
d2i
SNR

+
d2k+1
SNR

+
d2i d

2
k+1

SNR2

)
k = l and k ≥ i

3c2

Nπ2κ2

d2i
SNR

else

, (80)

[
∂μi

∂xj

]
k

=

⎧⎪⎨⎪⎩
xj − xj,k
‖x − xk‖ − xj − xj,i

‖x − xi‖ , k < i

xj − xj,k+1
‖x − xk+1‖ − xj − xj,i

‖x − xi‖ , k ≥ i
. (81)

Furthermore, let us define
μ = [μT

1, [μ
T
2]2:M, . . . , [μ

T
M−1]M−1]T , where μi = [ μi,1,...,

μi,i-1, μi,i+1,..., μi,M]
T, and C as the covariance matrix of

this full set of TDOA measurements. Then the FIM I3
(x) for the full set can also be derived based on (78) by
replacing μi and Ci with μ and C, respectively. We can
obtain [μ]k = μi,j, where k = (i -1)M-i2/2-i/2 + j, k Î
{1,2,...,M(M-1)/2}, i Î {1, 2,..., M-1}, j Î {2, 3,..., M} and
j >i.
Consequently, we achieve[

∂μ

∂xl

]
k
=

xl − xl,j∥∥x − xj
∥∥ − xl − xl,i

‖x − xi‖ . (82)

In the same way, [C]k,l = cov(ni,j, np,q), where l = (p -
1)M -p2/2 - p/2 + q, l Î {1,2,..., M(M -1)/2}, p Î {1,2,...,
M - 1}, q Î {2, 3,..., M} and q >p.

Endnotes
aThe sensor elements of a passive sensor array are
equivalent to the anchor nodes here. bGiven the matrix
C of size n × r and the matrix D of size r × m both of
rank r, then if A = CD, it holds that A† = D†C† [35].
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