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Abstract

We describe a technique that uses tractography to visualize neural pathways in human brains by extending an
existing framework that uses overlapping Gaussian tensors to model the signal. At each point on the fiber, an
unscented Kalman filter is used to find the most consistent direction as a mixture of previous estimates and of the
local model. In our previous framework, the diffusion ellipsoid had a cylindrical shape, i.e., the diffusion tensor’s
second and third eigenvalues were identical. In this paper, we extend the tensor representation so that the
diffusion tensor is represented by an arbitrary ellipsoid. Experiments on synthetic data show a reduction in the
angular error at fiber crossings and branchings. Tests on in vivo data demonstrate the ability to trace fibers in areas
containing crossings or branchings, and the tests also confirm the superiority of using a full tensor representation
over the simplified model.

1 Introduction
Diffusion-weighted magnetic resonance imaging has
provided the opportunity for non-invasive investigation
of neural architecture of the brain. Neuroscientists use
this imaging technique to find out how neurons origi-
nating from one region in the brain connect to other
regions and how well-defined those connections are.
The quality of the results of such studies relies heavily
on the chosen fiber representation and the reconstruc-
tion method, to trace neural pathways.
For studying the microstructure of fibers, we need a

model to interpret the diffusion-weighted signal. There
are two main categories for such models: parametric
and non-parametric models. The simplest parametric
model is the diffusion tensor describing a Gaussian esti-
mate of the diffusion orientation and its strength in
each voxel. Despite its robustness, this model is inade-
quate in cases where several fiber populations cross, join
or split in one voxel [1,2]. Several parametric models
have been introduced for handling more complex diffu-
sion patters such as mixtures of tensors [3-7], higher-
order tensors [8], diffusion orientation transforms [9]
and directional functions [10-12]. When fitting the data,
one must make certain assumptions about the model.
For example, the number of components present in a

particular voxel must be determined [13]. As seen in
this paper, incorporating information from neighboring
voxels helps in this process [14].
Usually non-parametric models contain more informa-

tion about the diffusion pattern. Instead of estimating a
discrete number of fibers as in parametric models, non-
parametric techniques estimate the orientation distribu-
tion function (ODF) describing arbitrary fiber configura-
tions. Q-ball imaging [15] was invented to compute the
ODF estimation numerically using the Funk-Radon
transform, and later on, the spherical harmonics would
simplify computations by providing an analytic form
[16-18]. An algorithm for online direct estimation of
single-tensor and harmonic coefficients using a linear
Kalman filter has recently been introduced by [19].
Assuming a model for the signal response of a single
fiber and using spherical deconvolution provides another
approach for obtaining an ODF [20-22,11,23]. Good
reviews of both parametric and non-parametric models
are found in [24,25].
Different techniques try to reconstruct neural path-

ways using the mentioned models. For example, deter-
ministic tractography methods directly follow the
diffusion pathways. In the case of a single-tensor model,
one continuously follows the principal diffusion direc-
tion [26]. Most multi-tensor techniques, on the other
hand, try to find the number of fibers present in a voxel
and to detect branching pathways [27,6,28]. Particle and
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Kalman filters have been used for path regularization in
single-tensor streamline tractography [29-31]. A further
approach for regularizing single-tensor tractography
uses a moving least squares estimate which is weighted
with the previous tensor [32]. Probabilistic tractography
is an alternative to deterministic path tracing methods.
Typically these methods form probabilistic notions of
the connectivity based on sampling individual paths; it
is an approach that quantifies the uncertainty of connec-
tions [33,34,13,35]. Based on these local models, a third
class of algorithms has started to develop which
attempts to optimize the fiber path instead of just the
local model [36-38].
While parametric methods directly describe the prin-

cipal diffusion directions, interpreting the ODFs from
model independent representations usually involves
finding the number and orientation of principal diffu-
sion directions present [39-41]. For example, one
approach is to deconvolve with a sharpening kernel
before extracting maxima [25], while another approach
decomposes a high-order tensor into several rank-1 ten-
sors [42].
Almost all of the listed approaches try to fit the model

at each voxel independent of other voxels, but tractogra-
phy is a causal process, the next position on the fiber is
always based on the diffusion found at the previous
position. Based on the unscented Kalman filter, Malcolm
et al. presented a filtering strategy that treats model esti-
mation and tractography as a causal process [43,44]. As
the signal is examined at every new position, the filter
recursively updates the underlying local model para-
meters. Thereby the filter provides the variance of that
estimate and the most consistent direction in which the
tractography is to be continued. Using causal estimation
in this way yields inherent path regularization and accu-
rate fiber resolution at crossing angles which is not
found in independent optimization approaches. The
work proposed in this paper uses this filtering strategy
as foundation.

1.1 Our contributions
We take the approach of Malcolm et al. but change the
underlying fiber model. The framework based on the
unscented Kalman filter is generic and can be applied to
arbitrary fiber models with a finite dimensional para-
meter space. The unscented Kalman filter is a good
choice for the filter since the signal reconstruction is
non-linear. Tractography works with the filter first find-
ing the estimates of the model parameters and then pro-
pagating in the most consistent direction.
The existing method of [44] models the diffusion sig-

nal with a subset of Gaussian tensors where the second
and third eigenvalues are identical, i.e., the diffusion
ellipsoids are cylindrical. In this work, we extend this

framework such that diffusion can be modeled by an
arbitrary ellipsoid (no assumption on the eigenvalues).
By transforming these parameters, it is possible to

describe the diffusion with three Euler angles and three
eigenvalues. In our experiments, we compare both
methods; in particular, we test the behavior in regions
where crossing fiber populations are present.
Our implementation can model the diffusion signal

with one, two or three Gaussian tensors. The method
also enables tractography directly from the raw signal
data without separate preprocessing or regularization
steps.

2 Approach
Our approach traces neural fibers by using estimations
from previous positions to guide the estimation at the
current position. An unscented Kalman Filter is used in
a loop that estimates the model at the current position,
moves one step in the most consistent direction, and
then starts estimating again. Recursive estimation
improves the accuracy of resolving individual orienta-
tions and yields inherently smooth tracts despite the
presence of noise and uncertainty. Each iteration begins
with a near-optimal solution provided by the previous
position’s estimation, and therefore, the convergence of
model fitting is improved and many local minima are
naturally avoided.
First we explain in Section 2.1 how we model the sig-

nal with a mixture of tensors and how our fiber model
works. Then we show in Section 2.3 how this model can
be estimated using the unscented Kalman filter frame-
work introduced in [43,44].

2.1 Modeling local fiber orientations
In diffusion-weighted imaging, the contrast is connected
to the strength of water diffusion. Our goal is to relate
these signals to the underlying fiber model.
The water diffusion is measured in each voxel along a

set of gradients, u1, . . . ,un ∈ S2 (on the unit sphere).
For each gradient, we record the corresponding signal, s
= [s1, ..., sn]

T Î ℝn. For voxels containing several fiber
populations, the diffusion pattern can generically be
described by a mixture of several weighted Gaussian
tensors. The signal values can then be written as:

si = s0
∑
j

wje−buT
i Djui

(1)

where s0 is the baseline signal which is obtained with-
out applying any gradients, b is an acquisition-specific
constant known as b-value (which is a measurement of
the strength of the diffusion weighting), wj are convex
weights, and Dj is a tensor matrix characterizing the dif-
fusion pattern.
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Given the generic mixture model (1), we choose to
work with two tensors. Our implementation also sup-
ports one or three tensors but several studies have
shown that a two-fiber model performs best in our
environment with b = 1000 s mm-2[4,6,28,39,7,13]. Sec-
ond, we decided to weigh both tensors equally as sug-
gested in the study of [39]. At a first glance, this might
seem to limit flexibility, but the unscented Kalman filter
adjusts the eigenvalues to better fit the signal. This has
almost the same effect as scaling the tensors [44].
With those assumptions we end up with the following

formulation of the fiber model:

si = s0

(
1
2
e−buT

i D1ui +
1
2
e−buT

i D2ui

)
(2)

where D1, D2 can each be written as D = l1mmT +
l2ppT + l3qqT, with m,p,q ∈ S2 forming an orthonor-
mal basis aligned with the axes of the diffusion ellipsoid.
Our implementation restricts each l to be positive, and
without loss of generality, we assume the eigenvalues in
decreasing order, i.e., l1 ≥ l2 ≥ l3. m is the principal
diffusion direction since it corresponds to largest eigen-
value l1. The model parameters are m1, p1, q1, l11, l21,
l31, m2, p2, q2, l12, l22 and l32. Malcolm et al. use a
simplified model in [43,44] where the second and third
eigenvalues are equal, which yields the following formu-
lation: D = l1mmT + l2 (ppT + qqT). Our model over-
comes this simplification and allows for a better fit to
the signal. At first, it appears that the large number of
free parameters in our new model might be a drawback
(the simpler model only has the parameters m1, l11, l21,
m2, l12 and l22). But as we are about to show in Section
2.2 it is possible to represent the orientation of the dif-
fusion tensor with Euler angles. Then we end up with
six parameters per tensor, three Euler angles plus three
eigenvalues (the existing simpler model stores the prin-
cipal diffusion direction and two eigenvalues per tensor).
The formulation for the two-tensor model can directly

be extended to a three-tensor version:

si = s0
1
3

3∑
j=1

e−buT
i Djui (3)

which uses the additional parameters m3, p3, q3, l13,
l23, l33.

2.2 Tensor representation with Euler angles
We use singular value decomposition to rewrite the dif-
fusion tensor matrix D (in this special case it is identical
to using the eigenvalue decomposition since D is real,
symmetric and positive-definite) which yields:

D = Q�QT (4)

with Q being a rotation matrix whose columns are the
orthonormal eigenvectors of D and Λ being a diagonal
matrix containing the eigenvalues:

� =

⎛
⎝λ1 0 0

0 λ2 0
0 0 λ3

⎞
⎠ (5)

As in [45], we use the ZYZ Euler angle convention
that allows splitting Q up into three individual rotations
around the z-axis, the y-axis and around the z-axis
again. The amount of the rotations is given by the Euler
angles j, θ, ψ:

Q =

⎛
⎝Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

⎞
⎠ = Rz(φ)Ry(θ)Rz(ψ) (6)

where Ry, Rz are the rotation matrices around the y-
and the z-axis, respectively:

Ry(�) =

⎛
⎝ cos(�) 0 sin(�)

0 1 0
− sin(�) 0 cos(�)

⎞
⎠ Rz(�) =

⎛
⎝cos(�) − sin(�) 0
sin(�) cos(�) 0

0 0 1

⎞
⎠ (7)

Fully written out, Q looks as follows:
⎛
⎝Q11

Q21

Q31

⎞
⎠ =

⎛
⎝cos(φ) cos(θ) cos(ψ) − sin(φ) sin(ψ)

sin(φ) cos(θ) cos(ψ) + cos(φ) sin(ψ)
− sin(θ) cos(ψ)

⎞
⎠ (8)

⎛
⎝Q12

Q22

Q33

⎞
⎠ =

⎛
⎝− cos(φ) cos(θ) sin(ψ) − sin(φ) cos(ψ)

sin(φ) cos(θ) sin(ψ) + cos(φ) cos(ψ)
sin(θ) cos(ψ)

⎞
⎠ (9)

⎛
⎝Q13

Q23

Q33

⎞
⎠ =

⎛
⎝cos(φ) sin(θ)
sin(φ) sin(θ)

cos(θ)

⎞
⎠ (10)

Extracting the Euler angles from Q can be carried out
as explained in [45]. θ = cos-1(Q33) is trivial, and then, if
θ ≠ 0 the other two angles can be obtained through j =
atan2(Q23, Q13) and ψ = atan2(Q32, Q31), where atan2 is
a function commonly defined in programming lan-
guages. Otherwise if θ = 0, j and ψ are not uniquely
determined. One solution is ψ = 0, and j = atan2(-Q12,
Q22) [45].

2.3 Estimating the fiber model
Given the scanned signal at a particular voxel, we want
to estimate the underlying model parameters that best
explain this signal. Every fiber is treated as a trajectory
of a particle. At each step, we examine the measured
signal, estimate the underlying model parameters, and
propagate forward in the most consistent direction,
which is the principal diffusion direction most aligned
with the incoming vector.
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Following we define the components used by the
unscented Kalman filter:
1. The system state x: the model parameters
2. The state transition function f[·]: how the model

changes as we trace the fiber
3. The observation function h[·]: how the signal

appears given a particular state
4. The measurement y: the actual signal obtained from

the scanner
The state vector is given by:

x = [φ1 θ1 ψ1 λ11 λ21 λ31 φ2 θ2 ψ2 λ12 λ22 λ32]
T (11)

where j, θ, ψ, Î ℝ and l Î ℝ+. Since the local fiber
configuration does not drastically change from one posi-
tion to the next, we assume identity dynamics for the
state transition function f [·]. Our observation h[·] is the
signal reconstruction, s = [s1, ..., sn]

T which is given as
the left hand side of (2). Using (6) and (4) allows to cal-
culate the diffusion tensor matrix D from the Euler
angles, which is then plugged into (2). The measure-
ment y is the actual signal from the diffusion-weighted
images. At subvoxel positions, we interpolate directly on
the signal.
The signal reconstruction is a non-linear process, and

therefore, we use an unscented Kalman filter. A Kalman
filter tries to reconcile the predicted state of the system
with the measured state. The prediction and measure-
ment processes can be non-linear in the unscented ver-
sion, whereas they are only linear in the classic Kalman
filter. The extended Kalman filter would have been an
alternative. However, the extended Kalman filter is only
a first-order approximation whereas the unscented ver-
sion is accurate up to the second-order moment of the
state distribution. See [46,47] for more details about the
unscented Kalman filter, particularly [23] shows the
superiority of the unscented Kalman filter over the
extended Kalman filter.
Particle filters would be another approach for non-lin-

ear estimation, but their number of particles used is
exponential to the state dimension n. In contrast, the
unscented Kalman filter requires a linear number of par-
ticles (2n + 1 sigma points) and is therefore computa-
tionally less complex [43,44] (especially in the three-
tensor case). Further, the distribution of the state is not
likely to be highly complex (which would warrant the
use of a particle filter), and therefore, it can be suffi-
ciently captured by the unscented Kalman filter.
The system of interest is at time t, and we have a

Gaussian estimate of its current state with mean, xt Î
ℝn, and covariance, Pt Î ℝn × n. Prediction begins with
the formation of a set sample states called sigma points,
Xt = {ci} ⊂ ℝn of 2n + 1. Each of these states has an
associated convex weight, wi Î ℝ. The covariance, Pt, is

used to deterministically distribute the sigma points
around the current state:

χ0 = xt w0 = κ/(n + κ) wi = wi+n = 1
2(n+κ)

χi = xt +
[√

(n + κ)Pt

]
i

χi+n = xt −
[√

(n + κ)Pt

]
i

(12)

with [A]i denoting the ith column of matrix A and � is
an adjustable scaling parameter (we use � = 0.01 in all
our experiments). In a next step the sigma points are
propagated through the state transition function,
χ̂ = f [χ] ∈ Rn, and a new set of predicted sigma points
is obtained: Xt+1|t = {f [χi]} = {χ̂i}.
As mentioned, we assume that the fiber configuration

does not change abruptly from one voxel to the next.
This is modeled with an identity transition function: xt
+1|t = f [xt] = xt. Next, the predicted system mean state
and covariance are predicted:

x̄t+1|t =
∑
i

wiχ̂i

Pxx =
∑
i

wi
(
χ̂i − x̄t+1|t

) (
χ̂i − x̄t+1|t

)T
+Q

(13)

where Q is the Kalman filter’s process noise which
ensures a non-null spread of sigma points and a posi-
tive-definite covariance. The explained sampling techni-
que is known as the unscented transform, and it is used
to estimate the behavior of a non-linear function. The
sigma points are spread based on the current uncer-
tainty, propagated and then their spread is measured.
The predicted observation is obtained by applying the

unscented transform again, this time using the predicted
states, Xt+1|t, to estimate what we expect to observe
from the hypothetical measurement of each state:
γ = h[χ̂] ∈ Rm. Since the observation is the recon-
structed signal, this step estimates the diffusion-
weighted signal. Then, we calculate the predicted set of
observations, Yt+1|t = {h[χ̂i]} = {γi}, and we obtain their
mean and covariance,

ȳt+1|t =
∑
i

wiγ̂i

Pyy =
∑
i

wi
(
γ̂i − ȳt+1|t

) (
γ̂i − ȳt+1|t

)T
+ R

(14)

where R is the observation noise of the Kalman filter.
The cross-correlation between the estimated state and
observation are calculated as:

Pxy =
∑
i

wi
(
χ̂i − x̄t+1|t

) (
γ̂i − ȳt+1|t

)T
(15)

As in the classic linear Kalman filter, the final step
uses the Kalman gain, K = PxyP−1

yy , to correct the predic-
tion and provide the final estimated system mean and
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covariance,

xt+1 = x̄t+1|t + K(yt − ȳt+1|t) (16)

Pt+1 = Pxx − KPyyKT (17)

where yt Î ℝm is the actual signal measurement taken
at this time.
In a few cases erroneous estimation of the reconstruc-

tion signal may result in fibers which do not exist in
reality. A solution for detecting and removing such false
positives was introduced in [48].

2.4 The algorithm
In summary we use the unscented Kalman filter to
estimate the local model parameters as we trace each
fiber. For each fiber, we store the position at which we
are currently tracing it and the current estimate of its
model parameters (mean and covariance). Each itera-
tion of the algorithm predicts the new state (which is
identity in our case): xt+1|t = xt. The observation yt in
(16) is the diffusion-weighted signal coming from the
scanner, s. With these, we use the above equations to
find the new estimated model parameters, xt+1. Last,
we use first-order forward Euler integration to move a
small step in the most consistent principal diffusion
direction, m, which is given as the first column of the
rotation matrix Q, see (6). Afterward, the same is
repeated for the new position. Fractional anisotropy
(FA) [49] is a measurment of a diffusion tensor’s aniso-
tropy, and it is used as break condition for the tracto-
graphy. A fiber is followed until the FA falls below a
certain level (in our experiments meaning full FA
thresholds lay in [0.1, 0.15]). The full procedure is pre-
sented in Algorithm (1).
Algorithm 1 Main tractography loop repeated for

each fiber
1. Initialize x0 and P0

2. repeat
3. Form the sigma points Xt around xt
4. Predict the new sigma points Xt+1|t and observa-

tions Yt+1|t

5. Compute weighted means and covariances, e.g.
x̄t+1|t,Pxy

6. Update estimate (xt+1, Pt+1) using scanner mea-
surement yt
7. Obtain the tensors’ principal diffusion directions

from the state by putting the Euler angles into (8)
8. Use the principal diffusion direction mj most

aligned to the incoming vector to proceed
9. until estimated model appears isotropic
For initializing x0 before the main loop of the algo-

rithm is started, we use a one-tensor model which is
easily derived from (1):

si = s0e−buT
i Dui (18)

This is an overdetermined system (assuming s0 is
known and that more than 6 gradients are used, what
commonly is the case), and the diffusion tensor matrix
D can be obtained by using a least squares method. No
matter how many tensors are used, the initial state of
each tensor is the same. P0 is initialized as a diagonal
matrix with small values (0.01I in our experiments, with
I being the identity matrix).

3 Experiments
First, we use synthetically generated diffusion-weighted
images to validate our technique against ground truth.
We perform tractography through crossing fiber fields
of different angles and examine the resulting orienta-
tions and branchings. Our new full two-tensor algorithm
is compared with the existing simpler model of Malcolm
et al. [43,44] on the same synthetic crossings. For the
comparison we measure several statistics to show that
the full model performs better. Lastly in Section 3.3, we
examine a real data set to demonstrate that our full
model works on in vivo data too and that it finds fibers
that do not appear with the simpler model (but are
known to exist anatomically).
Note the importance of the matrices that inject pro-

cess noise Q and observation noise R (see (13) and
(14)). Their magnitude can be determined by the data
itself by running our synthetic experiments with differ-
ent values and choosing those that yield the best results.
Usually the noise matrices are diagonal matrices. The
process noise determines how much variance is allowed
in the model: high values allow for more variation but if
it gets too high the estimation could become inaccurate.
We found that the best results are obtained with qj,θ,
ψ, Î [0.001, 0.002] and with ql1,2,3 ≈ 100 (those values
are placed on Q’s diagonal in the same order as the
variables appear in the state x). These values allow an
appropriate amount of angular and diffusive flexibility.
The injected observation noise governs how much var-
iance is expected in the measurement: higher values
mean we expect more variance and hence trust our
measurement less. For our experiments, we found rs Î
[0.01, 0.03] to work quite well (R is also a diagonal
matrix and all the values on the diagonal are rs) but
experimentation might be necessary since this value
depends on the amount of physical noise present, which
again varies depending on the scanner, protocol or pre-
processing.

3.1 Synthetic fiber crossings
We generated synthetic MR signals according to (2)
using {1700, 500, 300}μm2 msec-1 (FA = 0.73) as the
tensor’s eigenvalues to form an anisotropic tensor at b =
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1000 s mm-2. The used eigenvalues are typical for brain
white matter. We use 81 gradient directions uniformly
spread on the hemisphere. We assume s0 = 1, and we
perform each experiment with two different levels of
Rician noise (SNR ≈ 5 dB for low noise and SNR ≈
20dB for high). We also ran all the experiments with b
= 3000 s mm -2.
Since the algorithm depends on previous estimations,

it is not enough to inspect individual voxels for testing.
We construct a 2D field with crossings which the fiber
has to navigate through. Figure 1a depicts a schematic
of one such field with a 60° crossing. The fibers start on
the left in a region with only one true fiber population
present, and they try to find their way to the right side.
In the middle the fibers encounter a region with cross-
ing fibers at a fixed angle. Figure 1b shows the resulting
fibers. In blue we present the simpler model and in red
our new full model. The simpler model drifts off shortly
after entering the crossing region while our full model
maintains a straight path for longer. Outside the cross-
ing region, where only one fiber exists, the second com-
ponent is aligned with the first. The filter begins
estimating a single-tensor until it hits the crossing
region where the two components start to point in dif-
ferent directions. After the crossing both components
will realign again. We generated a set of similar fields
for crossings angles of [0°, 5°, ..., 90°].

In Figure 1c we take a closer look at several points
along the fibers as they enter the crossing region (the
close-up area is marked with a yellow frame in Figure
1b). At every fiber point the principal diffusion direc-
tions of both tensors are shown. Again the simpler
model is in blue and the full one in red. The principal
diffusion directions adapt stepwise, until they are aligned
60° angle in the crossing region. Our full model adapts
quicker than the simple model.

3.2 Measurements
Having verified the underlying behavior, we then began
a more comprehensive evaluation. We measured the fol-
lowing three different statistics: the average angular
error in the non-crossing regions, the average angular
error in the crossing region, and the average absolute
FA error. With angular error we mean the difference in
angle between the principal diffusion directions of the
tensors. The estimated values of each fiber point in a
certain region (crossing or non-crossing) are compared
to the ground truth, the difference is calculated, and the
average is taken. The FA error is calculated over both
regions at once.
Figure 2 shows the angular error in the non-crossing

regions, Figure 3 depicts the angular error in the cross-
ing region and Figure 4 displays the absolute FA error.
Each graph plots the crossing angle, from 0° to 90°, ver-
sus the error. As mentioned we ran every experiment
for two different noise levels and for b = 1000 s mm-2

and b = 3000 s mm-2. We seeded from 18 different vox-
els in each test scenario, and also, our crossing region is
quite large as you can see in Figure 1. This guarantees a
fair number of used tensors for averaging. In each graph
the trendlines indicate the mean error while the bars
indicate the standard deviation.
The graphs for the angular errors show that our new

full model generally performs better. In the non-crossing
region our model is more stable, especially for the cases
with higher crossing angles of 60°-90°. For these angles
the simpler model’s error raises quickly while our full
model is almost constant. In the crossing region the full
model performs better for lower angles 0°-45°. Working
with different b-values or with a different noise levels
does not significantly change the errors. The absolute
FA error is lower and yields a lower variance with our
new full tensor algorithm (see Figure 4). This is the
expected result of having independent second and third
eigenvalues. In the simpler model the second and third
eigenvalues have to be identical, which makes it more
difficult to match the signal.

3.3 In vivo tractography
We tested our approach also on a real human brain
scan which was weighted with 51 gradients directions.

Figure 1 Synthetic tractography experiment testing the
behavior of fibers crossing at a 60° angle. As can be seen, our
full tensor model performs better. The background in (b) and (c)
displays the FA from a single-tensor estimation. The crossing
region’s FA is lower and therefore darker. a Sketch of our synthetic
testing scenario. Tractography is started on the left side in a one
tensor region, and the fiber has to go through a crossing region in
the middle. b Results of the tractography: The existing simpler
model is displayed in blue and our proposed full model is seen in
red. c Close-up of the area where the fibers enter the crossing
region [yellow rectangle in (b)]. The principal diffusion directions of
both tensors are displayed.
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The diffusion-weighted images have a voxel size of
1.66 × 1.66 × 1.7 mm2 and b = 900 s mm-2. Figure 5
shows the results from a tractography started in the
right Thalamus of the human brain. The blue fibers
were obtained with the simpler fiber model whereas
the red fibers were traced with our new full model. At
a first glance both methods seem similar but the sepa-
rated close-ups in Figure 5b, c show that our approach
finds fibers in certain areas where the simpler model
stops.

4 Conclusions
We used the tractography framework of Malcolm et al.
[43,44] which is built on an unscented Kalman filter and
extended the used fiber model. By changing the fiber
model and allowing it to have three different,

independent eigenvalues, the tractography procedure
was improved and the angular and FA errors were mini-
mized. By representing the orientation of the diffusion
ellipsoid with Euler angles, the Kalman filter’s state only
contains one variable more per tensor than the simpler
model. The small increase in calculation time due to
this additional variable is negligible. We confirm that
using a causal filter for tractography performs much
better than independent alternatives. We believe that
exploring more alternative fiber models and plugging
them into the filtering framework will provide new
insights into neural pathways and that they, ultimately,
will enhance non-invasive diagnosis of human brains.
Furthermore, exploring filtering techniques other than
the unscented Kalman filter might yield promising
results.

Figure 2 These graphs depict the average angular error between the principal diffusion directions of all tensors and the ground truth
in non-crossing regions. The simpler model’s values are displayed in blue while our new full model is in red. Our full model yields a smaller
error. a Angular error in non-crossing region with low noise on the left and high noise on the right, b = 1000 s mm-2. b Angular error in non-
crossing region with low noise on the left and high noise on the right, b = 3000 s mm-2.
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Figure 3 These graphs depict the average angular error between the principal diffusion directions of all tensors and the ground truth
in crossing region. The simpler model’s values are displayed in blue while our new full model is in red. Our full model yields a smaller error. a
Angular error in crossing region with low noise on the left and high noise on the right, b = 1000 s mm-2. b Angular error in crossing region
with low noise on the left, and high noise on the right, b = 3000 s mm-2.

Figure 4 Here we present average absolute FA error of all tensors. The FA obtained from the estimated eigenvalues are compared the
constant ground truth ({1700, 500, 300}μm2 msec-1 as eigenvalues which yields FA = 0.73). The simpler model’s values are displayed in blue
while our new full model is in red. Our model’s estimated FA values are more constant and precise than those of the simpler model. a Absolute
FA error with low noise on the left, and high noise on the right, b = 1000 s mm-2. b Absolute FA error with low noise on the left, and high
noise on the right, b = 3000 s mm-2.

Lienhard et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:77
http://asp.eurasipjournals.com/content/2011/1/77

Page 8 of 10



Author details
1Computer Vision Laboratory, ETH Zürich, 8092 Zürich, Switzerland
2Psychiatry Neuroimaging Laboratory, Harvard Medical School, Boston, MA,
USA 3Laboratory of Mathematics in Imaging, Harvard Medical School,
Boston, MA, USA

Competing interests
The authors declare that they have no competing interests.

Received: 1 December 2010 Accepted: 27 September 2011
Published: 27 September 2011

References
1. DC Alexander, G Barker, S Arridge, Detection and modeling of non-Gaussian

apparent diffusion coefficient profiles in human brain data. Magn Reson
Med. 48, 331–340 (2002). doi:10.1002/mrm.10209

2. L Frank, Characterization of anisotropy in high angular resolution diffusion-
weighted MRI. Magn Reson Med. 47, 1083–1099 (2002). doi:10.1002/
mrm.10156

3. A Alexander, K Hasan, J Tsuruda, D Parker, Analysis of partial volume effects
in diffusion-tensor MRI. Magn Reson Med. 45, 770–780 (2001). doi:10.1002/
mrm.1105

4. D Tuch, T Reese, M Wiegell, N Makris, J Belliveau, V Wedeen, High angular
resolution diffusion imaging reveals intravoxel white matter fiber
heterogeneity. Magn Reson Med. 48, 577–582 (2002). doi:10.1002/
mrm.10268

5. G Parker, DC Alexander, Probabilistic anatomical connectivity derived from
the microscopic persistent angular structure of cerebral tissue. Phil Trans R
Soc B. 360, 893–902 (2005). doi:10.1098/rstb.2005.1639

6. B Kreher, J Schneider, I Mader, E Martin, J Hennig, K Il’yasov, Multi-tensor
approach for analysis and tracking of complex fiber configurations. Magn
Reson Med. 54, 1216–1225 (2005). doi:10.1002/mrm.20670

7. S Peled, O Friman, F Jolesz, CF Westin, Geometrically constrained two-
tensor model for crossing tracts in DWI. Magn Reson Med. 24(9),
1263–1270 (2006)

8. M Hlawitschka, G Scheuermann, HOT-lines: tracking lines in higher order
tensor fields, in Visualization, 27–34 (2005)

9. E Özarslan, T Shepherd, B Vemuri, S Blackband, T Mareci, Resolution of
complex tissue microarchitecture using the diffusion orientation transform.
NeuroImage. 31(3), 1086–1103 (2006). doi:10.1016/j.neuroimage.2006.01.024

10. T McGraw, B Vemuri, B Yezierski, T Mareci, Von Mises-Fisher mixture model
of the diffusion ODF, in International Symposium on Biomedical Imaging,
65–68 (2006)

11. E Kaden, T Knøsche, A Anwander, Parametric spherical deconvolution:
inferring anatomical connectivity using diffusion MR imaging. NeuroImage.
37, 474–488 (2007). doi:10.1016/j.neuroimage.2007.05.012

12. Y Rathi, O Michailovich, ME Shenton, S Bouix, Directional functions for
orientation distribution estimation. Med Image Anal. 13, 432–444 (2009).
doi:10.1016/j.media.2009.01.004

13. T Behrens, H Johansen-Berg, S Jbabdi, M Rushworth, M Woolrich,
Probabilistic diffusion tractography with multiple fibre orientations: what
can we gain?. NeuroImage. 34, 144–155 (2007). doi:10.1016/j.
neuroimage.2006.09.018

14. MD King, DG Gadian, CA Clark, A random effects modelling approach to
the crossing-fibre problem in tractography. NeuroImage. 44, 753–768
(2009). doi:10.1016/j.neuroimage.2008.09.058

15. D Tuch, Q-ball imaging. Magn Reson Med. 52, 1358–1372 (2004).
doi:10.1002/mrm.20279

16. A Anderson, Measurement of fiber orientation distributions using high
angular resolution diffusion imaging. Magn Reson Med. 54(5), 1194–1206
(2005). doi:10.1002/mrm.20667

17. C Hess, P Mukherjee, E Han, D Xu, D Vigneron, Q-ball reconstruction of
multimodal fiber orientations using the spherical harmonic basis. Magn
Reson Med. 56, 104–117 (2006). doi:10.1002/mrm.20931

18. M Descoteaux, E Angelino, S Fitzgibbons, R Deriche, Regularized, fast, and
robust analytical Q-ball imaging. Magn Reson Med. 58, 497–510 (2007).
doi:10.1002/mrm.21277

19. C Poupon, A Roche, J Dubois, JF Mangin, F Poupon, Real-time MR diffusion
tensor and Q-ball imaging using Kalman filtering. Med Image Anal. 12(5),
527–534 (2008). doi:10.1016/j.media.2008.06.004

20. B Jian, B Vemuri, A unified computational framework for deconvolution to
reconstruct multiple fibers from diffusion weighted MRI. Trans Med Imag.
26(11), 1464–1471 (2007)

21. K Jansons, DC Alexander, Persistent angular structure: new insights from
diffusion MRI data. Inverse Probl. 19, 1031–1046 (2003). doi:10.1088/0266-
5611/19/5/303

22. JD Tournier, F Calamante, D Gadian, A Connelly, Direct estimation of the
fiber orientation density function from diffusion-weighted MRI data using
spherical deconvolution. NeuroImage. 23, 1176–1185 (2004). doi:10.1016/j.
neuroimage.2004.07.037

23. R Kumar, A Barmpoutis, BC Vemuri, PR Carney, TH Mareci, Multi-fiber
reconstruction from DW-MRI using a continuous mixture of von Mises-
Fisher distributions, in Mathematical Methods in Biomedical Image Analysis
(MMBIA), 1–8 (2008)

24. DC Alexander, Multiple-fiber reconstruction algorithms for diffusion MRI.
Annal NY Acad Sci. 1046(1), 113–133 (2005)

25. M Descoteaux, R Deriche, T Knoesche, A Anwander, Deterministic and
probabilistic tractography based on complex fiber orientation distributions.
Trans Med Imag. 28(2), 269–286 (2009)

26. PJ Basser, S Pajevic, C Pierpaoli, J Duda, A Aldroubi: in vivo fiber
tractography using DT-MRI data. Magn Reson Med. 44, 625–632 (2000).
doi:10.1002/1522-2594(200010)44:43.0.CO;2-O

27. P Hagmann, T Reese, WY Tseng, R Meuli, JP Thiran, VJ Wedeen, Diffusion
spectrum imaging tractography in complex cerebral white matter: an
investigation of the centrum semiovale, in International Symposium on
Magnetic Resonance in Medicine (ISMRM), 623 (2004)

Figure 5 This is an example of the fiber bundles obtained from
an in vivo data set. The tractography was seeded in the right
Thalamus in the brain. a The result of the tractography. The simpler
model is displayed in blue and the new model in red. Close-ups of
the marked area are shown in (b) and (c). b Close-up of the simpler
model of the marked region. c Close-up of the full model of the
marked region.

Lienhard et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:77
http://asp.eurasipjournals.com/content/2011/1/77

Page 9 of 10

http://www.ncbi.nlm.nih.gov/pubmed/12210942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12210942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12111955?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12111955?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11323803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11323803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12353272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12353272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12353272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16087434?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16087434?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16200554?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16200554?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16546404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16546404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17596967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17596967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19269242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19269242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17070705?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17070705?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19007890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19007890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15562495?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16161109?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16161109?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16755539?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16755539?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17763358?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17763358?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18664412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18664412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15528117?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15528117?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15528117?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11025519?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11025519?dopt=Abstract


28. W Guo, Q Zeng, Y Chen, Y Liu, Using multiple tensor deflection to
reconstruct white matter fiber traces with branching, in International
Symposium on Biomedical Imaging, 69–72 (2006)

29. C Gössl, L Fahrmeir, BP utz, L Auer, D Auer, Fiber tracking from DTI using
linear state space models: detectability of the pyramidal tract. NeuroImage.
16, 378–388 (2002). doi:10.1006/nimg.2002.1055

30. M Björnemo, A Brun, R Kikinis, CF Westin, Regularized stochastic white
matter tractography using diffusion tensor MRI, in Medical Image Computing
and Computer Assisted Intervention (MICCAI), 435–442 (2002)

31. F Zhang, E Hancock, C Goodlett, G Gerig, Probabilistic white matter fiber
tracking using particle filtering and von Mises-Fisher sampling. Med Image
Anal. 13, 5–18 (2009). doi:10.1016/j.media.2008.05.001

32. L Zhukov, A Barr, Oriented tensor reconstruction: tracing neural pathways
from diffusion tensor MRI, in Visualization, 387–394 (2002)

33. G Parker, DC Alexander, Probabilistic Monte Carlo based mapping of
cerebral connections utilizing whole-brain crossing fiber information, in
Information Processing in Medical Imaging (IPMI), 684–696 (2003)

34. T Hosey, R Ansorge, Inference of multiple fiber orientations in high angular
resolution diffusion imaging. Magn Reson Med. 54, 1480–1489 (2005).
doi:10.1002/mrm.20723

35. Y Iturria-Medina, EJ Canales-Rodríguez, L Melie-García, PA Valdés-Hernández,
E Martńez-Montes, Y Alemán-Gómez, JM Sánchez-Bornot, Characterizing
brain anatomical connections using diffusion weighted MRI and graph
theory. NeuroImage. 36, 645–660 (2007). doi:10.1016/j.
neuroimage.2007.02.012

36. P Fillard, C Poupon, JF Mangin, A novel global tractography algorithm
based on an adaptive spin glass model, in Medical Image Computing and
Computer Assisted Intervention (MICCAI), 927–934 (2009)

37. S Jbabdi, M Woolrich, J Andersson, T Behrens, A bayesian framework for
global tractography. NeuroImage. 37, 116–129 (2007). doi:10.1016/j.
neuroimage.2007.04.039

38. B Kreher, I Madeer, V Kiselev, Gibbs tracking: a novel approach for the
reconstruction of neuronal pathways. Magn Reson Med. 60, 953–963 (2008).
doi:10.1002/mrm.21749

39. W Zhan, Y Yang, How accurately can the diffusion profiles indicate multiple
fiber orientations? A study on general fiber crossings in diffusion MRI. J
Magn Reson. 183, 193–202 (2006). doi:10.1016/j.jmr.2006.08.005

40. K Seunarine, P Cook, M Hall, K Embleton, G Parker, DC Alexander, Exploiting
peak anisotropy for tracking through complex structures, in Mathematical
Methods in Biomedical Image Analysis (MMBIA), 1–8 (2007)

41. B Jian, B Vemuri, E Özarslan, PR Carney, TH Mareci, A novel tensor
distribution model for the diffusion -weighted MR signal. NeuroImage.
37(1), 164–176 (2007). doi:10.1016/j.neuroimage.2007.03.074

42. T Schultz, H Seidel, Estimating crossing fibers: a tensor decomposition
approach. Trans Vis Comput Graph. 14(6), 1635–1642 (2008)

43. JG Malcolm, ME Shenton, Y Rathi, Neural tractography using an unscented
kalman filter. Inf Process Med Imaging (IPMI). 21, 126–138 (2009)

44. JG Malcolm, ME Shenton, Y Rathi, Filtered multi-tensor tractography. IEEE
Trans Med Imaging. 29, 1664–1675 (2010)

45. CG Koay, LC Chang, C Pierpaoli, PJ Basser, Error propagation framework for
diffusion tensor imaging via diffusion tensor representations. IEEE Trans
Med Imaging. 26(8), 1017–1034 (2007)

46. S Julier, J Uhlmann, Unscented filtering and nonlinear estimation. IEEE.
92(3), 401–422 (2004). doi:10.1109/JPROC.2003.823141

47. R van der Merwe, E Wan, Sigma-point Kalman filters for probabilistic
inference in dynamic state-space models, in Workshop on Advances in
Machine Learning (2003)

48. Y Rathi, JG Malcolm, S Bouix, CF Westin, ME Shenton, False positive
detection using filtered tractography, in International Symposium on
Magnetic Resonance in Medicine (ISMRM) (2010)

49. PJ Basser, C Pierpaoli, Toward a quantitative assessment of diffusion
anisotropy. Magn Reson Med. 36(6), 893–906 (1996). doi:10.1002/
mrm.1910360612

doi:10.1186/1687-6180-2011-77
Cite this article as: Lienhard et al.: A full bi-tensor neural tractography
algorithm using the unscented Kalman filter. EURASIP Journal on
Advances in Signal Processing 2011 2011:77.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Lienhard et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:77
http://asp.eurasipjournals.com/content/2011/1/77

Page 10 of 10

http://www.ncbi.nlm.nih.gov/pubmed/12030823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12030823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18602332?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18602332?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16265642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16265642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17466539?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17466539?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17466539?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17543543?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17543543?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18816816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18816816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16963296?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16963296?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17570683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17570683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20805043?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17695123?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17695123?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8946355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8946355?dopt=Abstract
http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1 Introduction
	1.1 Our contributions

	2 Approach
	2.1 Modeling local fiber orientations
	2.2 Tensor representation with Euler angles
	2.3 Estimating the fiber model
	2.4 The algorithm

	3 Experiments
	3.1 Synthetic fiber crossings
	3.2 Measurements
	3.3 In vivo tractography

	4 Conclusions
	Author details
	Competing interests
	References

