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Micro-crack detection of multicrystalline solar cells
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Abstract

This paper presents an algorithm for the detection of micro-crack defects in the multicrystalline solar cells. This
detection goal is very challenging due to the presence of various types of image anomalies like dislocation clusters,
grain boundaries, and other artifacts due to the spurious discontinuities in the gray levels. In this work, an algorithm
featuring an improved anisotropic diffusion filter and advanced image segmentation technique is proposed. The methods
and procedures are assessed using 600 electroluminescence images, comprising 313 intact and 287 defected samples.
Results indicate that the methods and procedures can accurately detect micro-crack in solar cells with sensitivity,
specificity, and accuracy averaging at 97%, 80%, and 88%, respectively.
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1. Introduction
The increasing demand for solar electrical energy has
multiplied the need for photovoltaic (PV) arrays. As the
major component of the PV array, the demand for solar
cells has also increased. This demand has translated into
an increased production of solar cells in recent years.
Depending on the materials used in manufacturing,
solar cells can be divided into two major types. They are
(i) monocrystalline and (ii) multicrystalline silicones. Due
to low manufacturing and processing cost of the multi-
crystalline silicon, this material is generally more preferred
in the production of the solar wafer or PV module. There
is great potential for the automation in solar cell industry
because millions of solar cells are manufactured daily
worldwide. According to recent statistics, the growth rate
of the solar PV module reached a record high in 2011,
generating more than US$93 billion in revenue with
multicrystalline cells constituting more than 50% of the
world production [1]. Although many operations in the
PV industry have been automated, the inspection and
grading processes continue to be based on manual or
semi-manual efforts.
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Finished solar cells are occasionally found to be defective
or faulty. The defects fall into two groups: (i) intrinsic and
(ii) extrinsic. Grain boundaries are an example of intrinsic
defect, while micro-cracks belong to the second category.
The former type of defects diminish the short-circuit
current of the cell, and this leads to loss in the efficiency.
The latter defects form a class of cracks that are entirely
invisible to the naked eye. With dimensions smaller than
30 μm [2], this type of defect can only be visualized elec-
tronically like using the electroluminescence (EL) technique
and high-resolution cameras.
In practice, there are various shapes and sizes of micro-

cracks in a solar cell depending on how they are formed.
For example a line-shaped micro-crack is caused by
scratches, and it generally occurs during cell fabrication
[3]. This type of defect can also be due to wafer sawing or
laser cutting, which propagates and causes the detachment
or internal breakage of the grainy materials within the solar
cells [4]. In contrast, star-shaped micro-crack is formed due
to a sharp point impact which induces several line cracks
with a tendency to cross each other [5]. There are other
types of micro-crack defects, but these two are the most
commonly found in solar cell production. Köntges et al. [6]
reported that there may be a risk of failure for PV modules
containing cells that have micro-cracks or other types of
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mmons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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Figure 1 Examples of multicrystalline solar cell images. (a)
Defected sample and (b) good sample. (i) Original image showing
the formation of other image components like fingers, dark areas,
and dislocation clusters. (ii) Close-up view of (i). The dashed circle in
Figure 1a (i) shows the location of the micro-crack.
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defects. Hence, it is important to have high-quality,
defect-free cells in the production of PV modules.
To date, few studies have highlighted the benefit of

computer inspection for defect detection in EL images
of solar cells. For example, multicrystalline solar cell
images have been categorized into three distinct classes
based on the features extracted from texture analysis [7].
An evaluation of crack formation in the PV module before
and after mechanical load testing using EL images has
been presented by Kajari-Schröder et al. [8]. Recently,
a defect detection scheme based on Fourier image re-
construction has also been reported [9]. These authors
presented a successful detection of a micro-crack which is
geometrically simple like straight lines. A micro-crack
detection scheme for a solar wafer based on an aniso-
tropic diffusion filter has also been documented [10]. As
reported by these authors, this filter is very efficient in
preserving important edges in the image while smoothing
other less important and connected regions. However,
correct implementation of this technique depends cru-
cially on the choice of an edge stopping threshold. In most
cases, this value has to be determined interactively, fre-
quently through trail-and-error method. Only under very
unusual circumstances can anisotropic diffusion filtering
be successful using a single threshold since images are
likely to be gray level variations in objects and background
due to non-uniform lighting and other factors. Clearly, a
more robust approach is needed in order to increase the
efficiency of this filtering strategy. In this paper, an en-
hanced version of the anisotropic diffusion filter featuring
an adaptive thresholding via a sigmoid transformation
function is presented. Meanwhile, pattern classification
is established using support vector machines (SVMs) with
supervised learning [11]. The methods and procedures are
tested using intact and defected solar cells, and results are
compared with other filters and artificial classifiers.

2. Methodology
2.1 Electroluminescence image
Micro-crack detection in the monocrystalline cell is rela-
tively straightforward because this type of cell is character-
ized by a uniform background. However, this is not the
case for the multicrystalline cell, which contains crystal
grains as well as dark areas formed from intrinsic struc-
tures like dislocation clusters and grain boundaries. Dis-
tinguishing micro-crack pixels from the background (i.e.,
the multicrystalline grains) is a very challenging procedure
because the gray scale values of these two areas are not
significantly different. The presence of other defects, such
as the dark area, darker grains, and broken fingers, com-
plicates the problem. In spite of these difficulties, the iden-
tification is still possible because the micro-cracks tend to
appear in the form of strong lines with a low intensity and
a high gradient. Figure 1a (i) shows an example EL image
of a defected solar cell, and its close-up view of the region
containing the micro-crack is displayed in Figure 1a (ii).
For comparison, the EL image of a good solar cell is
presented in Figure 1b (i), and its close-up view is shown
in Figure 1b (ii). Meanwhile, the scan-line profile of gray
level and gradient of the solar cell defected with a micro-
crack is shown in Figure 2b,c, respectively. These figures
highlight the unique textural characteristics of the micro-
crack pixels.
All EL images used in this study including those shown in

Figure 1 are 8-bit gray scale measuring 1,178 × 1,178 pixels
in size. Other examples of defected solar cells containing
various types and shapes of micro-cracks are shown in
Figure 3. The micro-crack pixels appear in the form of a
line or an intersection of lines forming a star-like artifact
as depicted in Figure 3a. For comparison, Figure 3b shows
examples of good solar cells highlighting the presence of
dark regions having arbitrary shapes and sizes. They are
formed by an aggregate of dislocation clusters or grainy
materials, resembling dark shaped areas when visualized
under the EL illumination. As seen from this figure, the
presence of many dark areas or regions in both good and
defected samples makes a micro-crack inspection an ex-
tremely difficult process. However, a close examination of
Figure 3a reveals that micro-crack pixels exhibit unique
shapes or patterns compared to dark regions even though
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Figure 2 Characteristics of micro-crack pixels. (a) Close-up view
of the region containing the micro-crack. (b) Gray level profile.
(c) Gradient profile. The dashed line in (a) marks the location of the
scan line.
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they have the same gray scale values. Thus, some form of
image analysis is needed in order to facilitate accurate de-
tection and efficient classification.
In this study, a series of image processing procedures

are performed, capitalizing the unique textural properties
and multicrystalline grain inhomogeneity of the solar cell.
The details are described in the next section.
(a

(b
Figure 3 Examples of micro-cracks and dark regions. (a) Solar cells wit
the formation of dark regions.
2.2 Image pre-processing
As seen in Figures 1 and 3, the EL images of the solar cell
contain various features, such as fingers (horizontal lines)
that are periodic in nature and perpendicular to the bus-
bar (thicker vertical lines in Figure 1a (i) and Figure 1b (i)).
A close inspection of these figures revealed that the inten-
sity distribution is not uniform both within the cell and
among the cells. The presence of the broken fingers and
non-uniform background luminescence directly affects the
micro-crack analysis, especially if a simple image segmenta-
tion technique is used. The solutions to these problems are
to remove the periodic interruption of fingers and minimize
the effect on background inhomogeneity on image process-
ing. This can be done by filtering in the frequency domain.
Let IO be the original EL image of size m × n, and Î O u; vð Þ

is its Fourier transform representation. Due to the orthog-
onal properties, the fingers in the spatial domain appear as a
straight vertical line located at the center of a spectrum.
This line is dominated by high-frequency components
because the contrast between fingers and background
is relatively higher compared to other inhomogeneities.
Meanwhile, the low-frequency regions contain other
important components such as the grain boundaries,
dislocation clusters, and micro-cracks. Hence, only the
high-frequency components located around the vertical line
needs to be removed while retaining the low-frequency
components. Therefore, a custom-made filter is constructed
to remove these artifacts. The filter function is given below:

V̂ u; vð Þ ¼
0; D̂ u; vð Þ ≥ d and

n
2
−w ≤ D̂ u; vð Þ≤ n

2
þ w
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−D̂2 u; vð Þ

2σ2

� �� �
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Parameters w, d, and σ in Equation 1 are chosen ex-
perimentally. The filtering is performed by pixel-to-pixel
multiplication between Î O u; vð Þ and V̂ u; vð Þ to produce
Î e u; vð Þ as shown in Figure 4a. The resulting image is
inverse Fourier transform, yielding Ie(x, y) in spatial space.
To minimize the error resulting from the inconsistency of
the gray level between cells, Ie(x, y) is normalized to 128.
This filtered image is shown in Figure 4c,d,e. It can be seen
from these figures that the fingers have been successfully
removed and the background inhomogeneity is reduced.
Also, the micro-crack pixels are not affected by this filtering
operation as evident from Figure 4d (ii). Therefore, this
local processing approach preserves the details in the
image while attenuating the slow varying components
such as the background irregularities.
2.3 Anisotropic diffusion filtering
This subsection presents an implementation of anisotropic
diffusion filtering for image enhancement. As can be seen
(a)  (b)  (c) 

d(i)   d(ii) 

e(i)   e(ii) 

Micro-crack

Figure 4 Pre-processing by filtering in the frequency domain.
(a) Original EL image. (b) Fourier spectrum after filtering with
w = 6, d = 10, and σ = 12. (c) Filtered image after inverse Fourier
transformation. (d-e) Results after pre-processing corresponding to
images in Figure 1.
in Figure 4d (ii), the micro-crack pixels are characterized
with low gray scale values but high gradients. The convo-
lution of Ie(x, y) with a simple edge detector (e.g., Sobel
kernel) will yield high and low gradients at the edges and
micro-crack pixels, respectively. Consequently, the result
is that the produced image contains two lines, correspond-
ing to regions with high and low intensity gradients. This
will give rise to the difficulty in the detection leading to
many false negatives. We solved this problem by means of
the anisotropic diffusion filtering, which produces equal
response to any pixels, including the micro-crack areas. In
order to achieve this, the diffusion filter is programmed to
take into account not only the intensity of the gradient
but also the intensity of the gray level of each pixel. The
details are explained below.
The anisotropic diffusion filtering can be defined in

terms of the diffused image Id(x, y, t) at iteration t [12].
Mathematically,

Id x; y; tð Þ ¼ Id x; y; t−1ð Þ þ 1
4

X4
i¼1

c ∇Iid
		 		
 �

∇Iid; t > 0

ð3Þ

where ∇ is a gradient and c is a diffusion coefficient that is
a non-negative function of the magnitude of the gradient of
four Laplacian neighbors, i = {1, 2,…, 4}. Letting s = |∇Id|,
then the diffusion coefficient in Equation 3 is given as

c sð Þ ¼ exp −
s
K

� �2
� �

ð4Þ

or

c sð Þ ¼ 1þ s
K

� �2
� �−1

ð5Þ

These diffusion coefficients exhibit a low value at high
gradient purposely to preserve the corresponding edges.
On the other hand, these coefficients produce high value
at low gradient indicating a strong smoothing effect on
the pixels involved. Thus, the anisotropic diffusion filter-
ing will produce a smoothed image while the important
edges are preserved. Parameter K appearing in Equations 4
and 5 is an edge stopping threshold, and it needs to be
correctly specified in order to ensure a successful appli-
cation of this filtering strategy. If K is too small, then
the diffusion process will be terminated earlier, resulting
in Id(x, y, t) which is approximately equal to Id(x, y, 0). In
contrast, fixing K too large will significantly diffuse the
image, resulting in image blurring. Therefore, the choice
of the parameter K is important for producing a diffused
image that retains the important edges while smoothing
the other regions of the image.
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In this study, a conventional anisotropic diffusion filter-
ing technique is modified to produce the opposite effect.
In doing so, the smoothing effect will now take place at
the strong edges (high gradient) while the region with low
gradient are preserved. This is achieved by inverting the
original diffusion coefficient yielding

c sð Þ ¼ 1− 1þ s
K

� �2
� �−1

ð6Þ

Theoretically, the function in Equation 5 privileges wide
regions over smaller ones. Therefore, with modification in
Equation 6, this trend is reversed to satisfy the charac-
teristics of the micro-crack. Figure 5 shows a response
of Equations 4, 5, and 6 with respect to gradient. As
shown in this figure, the modified diffusion coefficient
increases with the increasing gradient while the responses
of the original coefficients are in the opposite sense.
Most of the approach reported in the literature used

trial-and-error experiments in determining K. In contrast,
this study used a diffusion coefficient function that elimi-
nates the need to use this parameter. Referring to the
micro-crack pixels defined in the previous section, we are
interested in every pixel with a high gradient but a low
intensity value. For this reason, the gradient threshold
does not have to be rigidly fixed. In order to achieve this,
parameter, K is replaced with the function that adaptively
generates a unique threshold for each pixel using the in-
put image gray values. The proposed diffusion coefficient
is as follows:

c sð Þ ¼ 1− 1þ s2

g2

� �−1
ð7Þ
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0
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Figure 5 Diffusion coefficient comparing original and proposed
equations. All responses are plotted with K = 64.
where g is a mapping of the image intensity of Id(x, y, 0)
through the sigmoid transfer function given by

g x; yð Þ ¼ 255
1þ exp −b Id x; y; 0ð Þ−εð Þ½ � ð8Þ

where b determines the gradient of ramp in the transfer
function and ε is a threshold value where the intensity of
Id(x, y, 0) is mapped to the center of the gray scale range.
Equation 8 is defined as an edge stopping threshold matrix,
and it has the same dimension as Ie(x, y). Every element in
g(x, y) is the edge stopping threshold value for the corre-
sponding pixel in Ie(x, y). Equation 7 is plotted for different
s and g values, and the result is graphically shown in
Figure 6.
As seen in Figure 6, the response of the diffusion co-

efficient varies with the different threshold values. The
response is more sensitive when the threshold value is
low with respect to the same gradient s. High value of the
coefficient yields a high diffusivity for the corresponding
pixel in the image which leads to blurring effect. As men-
tioned earlier, existing techniques only used a single edge
stopping threshold value for the whole image. In this
study, an adaptive edge stopping threshold function given
in Equation 8 is used. This resulted in different threshold
values for different pixels depending on their gray scale
values through a mapping process.
The proposed anisotropic diffusion method described

above was tested using a synthetic image of size 256 ×
256 pixels. As shown in Figure 7a, this image simulates a
gradient profile comprising 16 discrete steps. Figure 7b
shows the horizontal line scan of Figure 7a. The dif-
fused image using the standard diffusion filter is shown
in Figure 7c, while Figure 7d shows the result using the
proposed algorithm. Clearly, image processing using stand-
ard diffusion filter produced a very blurred image, resulting
56
120

184
248

184
120

56
0
0

1

s
g

c(s)

Figure 6 Plot of diffusion coefficient with different values of
s and g.
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Figure 7 Image filtering comparing conventional and proposed
anisotropic diffusion filters. (a) Synthetic image. (b) Horizontal
scan line of (a). (c) Diffused image using Equation 6 with K = 2 and
t = 100; (d) Diffused image using Equation 7 with b = 0.1, ε = 128,
and t = 100.
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in incomplete or missing edges. In contrast, the proposed
technique affects low gray scale edges only, while the high
gray scale edges remain relatively intact. Processing the
micro-crack using the proposed technique would result in
blurred response in the diffused image since this type of
defect is characterized by low gray scale and high gradient.
Theoretically, subtracting this image from the original
undiffused background would enhance the defect by re-
moving some of the background components.
In this study, the proposed anisotropic diffusion filtering

is performed in three steps. First, the filtered image, Ie(x, y),
is smoothed using a 2-D Gaussian filter of size 5 × 5 yield-
ing Id(x, y, 0). Second, the smoothed image is then proc-
essed using Equation 8 to produce the edge stopping
threshold matrix, g(x, y), which in turn is used to calculate
the diffusion coefficient function given by Equation 7.
Third, Equation 3 is invoked and the calculation is ter-
minated after a few iterations. In this case, the iteration
number is determined heuristically and is usually less
than 10 in most cases.
The resulting diffused image has a blurred response due

to the low-pass filtering effect of the diffusion process.
The smoothing effect varies between pixels, and the extent
of this depends on the edge stopping threshold value in
g(x, y). For a pixel with a low threshold value, the smooth-
ing is significant and yields a very blurred response. In
contrast, this image processing technique produces image
which is approximately equal to the original image if the
smoothing effect is weak. As previously explained, the
resulting image is obtained by subtracting Id(x, y, t) from
Id(x, y, 0) to produce the new, enhanced image denoted
as IΔ(x, y). Figure 8 illustrates the images produced by
these enhancement procedures using Figure 4d (ii) and
Figure 4e (ii) as input images. Referring to Figure 8a (iii),
the micro-crack line is enhanced and clearly visible after
subtraction.

2.4 Post-processing
This section presents a post-processing involved in the
segmentation of the IΔ(x, y). It consists of two thresholding
stages: (i) binary image reconstruction using double thresh-
olding and (ii) the intensity tracing and thresholding. All
threshold values are calculated using an adaptive thresh-
olding technique [13]. The general expression of adaptive
thresholding is given by

τ ¼ μ−ασ ð9Þ

where μ and σ are the mean and the standard deviation
of the gray level intensity of the input image, respectively,
and α is a scaling factor.
In the first stage, we adopted a similar approach based

on double thresholding technique described in Nashat
et al. [14]. This method requires IΔ(x, y) to be segmented
twice, first using a high threshold value τS and second
using a low threshold value τT. Equation 9 is used to
compute τS and τT using scaling factors αS and αT,
respectively. This segmentation technique produces two
binary images referred herein as the seed image BS and
the target image BT. In this case BS consists of mainly
incomplete but noise-free edges, whereas BT contains
complete edges and noise. The next step in the segmen-
tation involves reconstructing the final binary image BF

from BS and BT followed by dilation and closing. In this
case, BF contains {S1, S2,…, SN} where S represents the
shape in the form of binary connected components and N
is the number of shapes following the first stage thresh-
olding step. The resulting binary images are presented in
Figure 9 using Figure 8a (iii) and Figure 8b (iii) as input
images.
Next, the intensity tracing and thresholding are per-

formed on BF using Ie(x, y) as the reference image. The
purpose of this procedure is to further reduce the noise
or the unwanted shapes, such as scratches, dislocation
clusters, or grain boundaries. The gray values of these
artifacts are relatively higher compared to those of the
micro-crack pixels. This procedure helps to improve
the feature extraction because it significantly reduces
the number of shapes.
For each binary shape S in BF, the value of the gray

intensity composed of pixels at the same location and
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Figure 8 Image filtering using the proposed anisotropic diffusion technique. (a) Defected sample and (b) good sample: (i) image processing of
Id(x, y, 0) using Equation 8 with b = 1 and ε ¼ μIe , (ii) Id(x, y, t) for t = 4, and (iii) IΔ(x, y).

a(i)   a(ii)   a(iii) 

b(i)   b(ii)   b(iii) 
Figure 9 Results after image segmentation using double thresholding technique. (a) Defected sample and (b) good sample: (i) BS with
αS = 0, (ii) BT with αT = −4, and (iii) BF.
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bounded by the same contour S is traced and extracted
from the normalized image after pre-processing. The
mean value of the gray intensity for each extracted
pixels group is computed. Any shape that has a mean
value which is less than the specific threshold is retained
in BF. Otherwise, it is treated as noise and hence elimi-
nated. Again, the adaptive thresholding given in Equation 9
is used with αtr fixed experimentally while μ and σ are
obtained from Ie(x, y). These procedures generate a new
set of shapes S1; S2;…; SNFf g whose number is less than
the ones contained in the original set (i.e., NF ≤N). An
example of the intensity tracing and thresholding is
shown in Figure 10 using Figure 9a (iii) as an input
image. In this example, the number of shapes is reduced
from 3 to 1.

2.5 Shape analysis
The image processing procedures described in the above
paragraph have successfully enhanced micro-cracks as
well as other objects while suppressing most of the noise
pixels. As seen from previous section, the resulted binary
image contains several binary connected components that
represent crack and other artifacts. Figure 11 displays some
of the objects detected by the algorithm. From this figure,
the pixels that represent micro-crack can be distinguished
from other artifacts because the former is characterized by
some unique shapes and sizes. Therefore, shape analysis is
used in order to distinguish between micro-cracks and
other objects. This analysis produced features from shape
descriptors which are later used in machine learning and
classification.
In performing shape analysis, the region-based descrip-

tor known as angular radial transform (ART) [15,16] is
investigated. The standard number of orders of ART is
used to represent all binary shapes. The transform has
36 coefficients, and they are used as shape descriptors.
Figure 12 shows examples of the ART spectrum for the
micro-crack and arbitrary shapes. As seen in Figure 12,
(a)   (b) 

108 108
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Figure 10 Results from intensity tracing and thresholding. (a)
Before and (b) After with αtr = 1.5. Each numeral in the image
corresponds to the average gray intensity value of each shape.
a normalized ART spectrum for the micro-crack shape
has more distinct fluctuation compared to the arbitrary
shape. This translated into an increased average distance
between the two spectrums and will result to a better dis-
crimination of the shapes.
The features extracted are used to train the artificial

classifier. In this study, support vector machines (SVMs)
are used in machine learning and artificial intelligence. It
is a supervised learning algorithm originally developed
for two-class classification problems [11]. Therefore, this
classifier is suitable for this type of application. Micro-crack
shape features are assigned as positive class, while arbitrary
shape features are assigned as negative class. Preliminary
experiment suggested that the number of micro-crack
shapes is far less than that of arbitrary shapes. Due to
the unbalanced number of shapes between classes, the
SVM classification may result in a bias toward the class
having the most number of samples. This problem is
addressed by utilizing a soft margin or penalty parameter
which was set to different values for each class [17].
This approach is similar to the implementation of a fuzzy
membership associated with the penalty parameter [18].
In this case, the optimal values of the penalty parameter
for the positive and the negative classes are chosen experi-
mentally. Also in this study, the SVM is trained using a
kernel based on the Gaussian radial basis function (RBF).
In summary, the methods and procedures implemented
for micro-crack detection of solar cells are summarized in
a block diagram shown in Figure 13.

3. Result and discussion
In this section, the experimental results from the methods
and procedures described in the above sections are
presented. This includes the image segmentation and
classification. All experiments are performed on a desktop
computer equipped with a dual core 2.80 GHz processor,
2 GB of RAM, and an installed MATLAB software pack-
age. The results obtained in this section are based on 600
samples of which 313 are good samples and the remaining
are defected or cracked cells.

3.1 Image processing
Examples of the segmentation results for defected and
good cells are shown in Figure 14. It can be seen from
Figure 14a (i-iv) and the corresponding segmented images
in Figure 14a (v-viii) that the integrity of the binary
connected components (shapes) that represent the
micro-crack pixels is well preserved. Referring to these
figures, the micro-crack shapes can be easily distinguished
from the arbitrary shapes visually. For comparison, the
segmentation results of good or intact cells are shown in
Figure 14b (v-viii).
For the thoroughness of analysis, the proposed segmen-

tation technique is compared with standard methods such
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Figure 11 Results after image segmentation of Figure 3. (a) Micro-crack shapes. (b) Arbitrary shapes.
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as Otsu's thresholding, the Canny hysteresis, the Sobel
edge detector, and the Laplacian of Gaussian (LoG) filter.
In addition, a recent method based on Fourier image
reconstruction (FIR) [9] is also implemented. Figure 15
shows the close-up view of the results of these different
segmentation techniques using images in Figure 14a (i-iv)
as input images. In this case, the ground truth images are
plotted manually by an expert human inspector. It can be
seen from Figure 15b that the segmentation using Otsu's
global thresholding technique is able to detect micro-crack
as well as other pixels. Meanwhile, both the Sobel detector
and Canny hysteresis thresholding resulted in incomplete
or disjointed micro-crack pixels. On the other hand, the
LoG is only effective in detecting a limited number of
micro-crack pixels, particularly the large ones as evident
(a)   (b) 
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(c)   (d) 
Figure 12 Example of the ART spectrums for different types of
shapes. (a) Micro-crack, (b) arbitrary, and (c, d) normalized ART
spectrums corresponding to shapes in (a) and (b), respectively.
from Figure 15e. In contrast, the FIR method is accurate
when detecting well-defined micro-crack pixels especially
the ones appearing like straight lines. This method failed
to completely detect star-shaped micro-crack pixels as
evident from Figure 15f. In contrast, the results from the
proposed segmentation technique are shown in Figure 15g.
Clearly, the proposed method is able to detect all shapes
and sizes of micro-crack pixels in the image. Close exam-
ination of this figures revealed that some unwanted pixels
also appeared in the segmented images. They are mostly
due to the presence of dark regions in the solar cell. Since
their appearance are distinctly different from micro-crack
pixels, the use of the ART shape descriptor helped reduce
the error resulting from misdetection.
In order to quantitatively evaluate the accuracy of the

proposed segmentation technique, the merit based on the
F-measure is used [19]. Mathematically,

F ¼ 2
cpt� crt
cptþ crt

ð10Þ

where cpt and crt are the completeness and correctness
indices given by the following equations:

cpt ¼ ℓr
ℓGT

ð11Þ

and

crt ¼ ℓr
ℓN

ð12Þ

where ℓGT is the number of micro-crack pixels in the
corresponding ground truth image, ℓr is the number of
pixels in the segmented image which matches the ground
truth micro-crack pixels, and ℓN is the total number of
extracted pixels in the segmented image. Examples of
ground truth images corresponding to defected cells in
Figure 15a (i-iv) are shown in Figure 15h (i-iv), respectively.
On the other hand, the cpt index indicates the com-
pleteness of the segmentation technique in detecting
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Figure 14 Segmentation results. (a) Defected and (b) good solar cells: (i-iv) original images and (v-viii) segmented images of (i-iv), respectively.
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Figure 15 Image segmentation results comparing the proposed and standard segmentation techniques. (a) Original image, (b) Otsu's
thresholding, (c) Sobel edge detector, (d) Canny's hysteresis, (e) LoG filter, (f) FIR, (g) the proposed method, and (h) ground truth images.
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micro-crack pixels in the defected solar cells. Clearly, from
Equation 11, cpt is equal to 1 if ℓr = ℓGT, indicating the
perfect match between the number of micro-crack pixels
detected by the algorithm and the ground truth image. In
contrast, cpt is equal to 0 if there is no match. Meanwhile,
the crt index measures the correctness of the segmented
image produced. Similarly, this index is equal to 1 if the
segmented image matches the ground truth. Practically,
ℓr ≤ ℓN since micro-crack as well as noise pixels are also
detected. Hence crt also ranges from 0 to 1. Calculating
cpt and crt enables the F-measure to be computed using
Equation 10. In this case, the higher the F-measure, the
better the image segmentation.
The cpt and crt indices calculated from defected cell

images in Figure 15 are tabulated in Table 1. These indices
are also calculated for the remaining 110 defected cells
which are not shown in this paper. The average values
are listed in the last column of Table 1. Referring to this
table, the completeness of Otsu's method is the highest
compared to other algorithms. But this is not the case
for correctness as the crt index for this algorithm is the
second lowest. Consequently, Otsu's method reconstructs
many micro-crack pixels as well as noise as evident visu-
ally in the examples in Figure 15. As expected, the Sobel
edge detection and Canny hysteresis methods produce
only average results for both completeness and correct-
ness. The same trend is observed for the FIR method. In
contrast, the LoG filter produces the lowest cpt and crt
scores, suggesting that this method does not correctly or
completely detect micro-crack pixels. Meanwhile, the pro-
posed segmentation technique yields the highest crt and
the second highest cpt scores. This result suggests that
this method has the ability to completely and correctly
characterize micro-crack with small amount of noise.
Meanwhile, the results of F-measure are shown graphic-

ally in Figure 16. It can be seen from this figure that the
Table 1 Completeness and correctness measures of the segm

Measure Method Figure 15a (i) Figure 15a (ii)

cpt Otsu 0.9747 0.9706

Sobel 0.2686 0.4029

Canny 0.1248 0.1751

LoG 0.0316 0.0472

FIR 0.4976 0.3668

Proposed 0.9368 0.8873

crt Otsu 0.0026 0.0089

Sobel 0.0064 0.0248

Canny 0.0086 0.0290

LoG 0.0004 0.0016

FIR 0.0156 0.0302

Proposed 0.0195 0.0843
F-measure score produced by the proposed segmentation
algorithm is consistently higher compared to other tech-
niques. Overall, the proposed algorithm results in F-meas-
ure averaging at 0.0821 compared to 0.0216 FIR, 0.0028
LoG, 0.0258 Canny, 0.02288 Sobel, and 0.0153 Otsu. This
again proves that the proposed method is more efficient
in detecting micro-cracks in solar cells.
In the anisotropic diffusion filtering technique proposed

in this study, there are few parameters that need to be
tuned. These parameters are b and ε for the sigmoid map-
ping function and t which is the number of iterations for
anisotropic diffusion. Meanwhile, ε corresponds to the
average intensity of the input image μIe . This simplified
the computation of the mapping function as the target
micro-crack pixels have the intensity below this average
value. Meanwhile, parameter b represents the gradient
of the sigmoid mapping function. Higher value of this
parameter resulted in steeper gradient for the mapping
function. Figure 17 demonstrates the effect of changes
in the value of b on IΔ(x, y) using Figure 15a as input
images. Clearly from this figure, the best result is obtained
for b = 1. Hence, this value was used to process all images
reported in this paper.
Another important parameter in the anisotropic diffusion

filtering is the number of iterations t in which the image
needs to be diffused. This parameter must be properly
chosen to ensure successful enhancement of the micro-
crack pixels at a minimal computational cost. The higher
the number of the iteration, the longer the computational
time. Figure 18 shows the normalized values of cpt, crt,
and F-measure for the different numbers of iteration.
These indices are averaged from 114 defected cells. As can
be seen from Figure 18, the highest value of F-measure
occurred at t = 1. However, the cpt index corresponding
to first iteration is significantly low, indicating the image
that it produces is incomplete. Hence, the image needs
entation results

Figure 15a (iii) Figure 15a (iv) Overall average
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Figure 16 F-measures comparing standard and proposed segmentation techniques.
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Figure 17 Effect of parameter b on anisotropic diffusion filtering. (a) 0.01, (b) 0.1, (c) 1, and (d) 10. All images are filtered using ε ¼ μIe and
t = 4 for all images.
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to be iterated further in order to improve the cpt index.
Close examination of Figure 18 revealed that the second
highest F-measure occurs at the fourth iteration. Even
though the cpt decreases slightly at this iteration, the
image is more complete and less noisy compared to the
first iteration. A further increase in the number of iteration
would result in the decrease of the F-measure as well as the
cpt and crt indices. Therefore, the diffusion process of
a(i) a(ii)

b(i) b(ii)

c(i) c(ii)
Figure 19 Image subtraction results comparing the proposed and exi
[20] with K0 = 2, (b) filter proposed in [21] with K0 = 80, and (c) filter propo
obtained after t = 4.
all images shown in this paper is terminated after the
fourth iteration (t = 4).
The performance of the proposed algorithm is also

compared with the existing adaptive anisotropic diffusion
techniques. Respectively, the images in Figure 19a,b are
the results of improved diffusion filters [20,21], while
Figure 19c is the image produced by the proposed algorithm.
Clearly from this figure, the existing adaptive diffusion
a(iii) a(iv)

b(iii) b(iv)

c(iii) c(iv)
sting adaptive anisotropic diffusion filters. (a) Filter proposed in
sed in this study. All diffused images used in the subtraction are
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filters contain many spurious responses and noisy pixels.
Visually, the defect, particularly in Figure 19b, appears to
be completely buried in noise, causing the difficulty in
extracting features from this image. In contrast, the image
produced by the proposed algorithm is less noisy, and
the defect can clearly be seen as evident from Figure 19c.
Therefore, these results suggest that the existing adaptive
anisotropic diffusion filters are not effective in processing
micro-crack defects in solar cell images. Moreover, the al-
gorithms can be very time-consuming since the diffusion
coefficients are computed locally compared to the global
technique employed in the proposed method.

3.2 Shape classification
Shape analysis is performed in order to primarily distin-
guish between micro-crack and other arbitrary pixels. This
is due to the fact that the micro-crack pixels form shapes
which are visually distinct like line or star patterns. On
the other hand, shapes formed by the spurious intensity
variation or gray level discontinuities produce arbitrarily
patterns which are also detected by the proposed image
processing algorithm. In doing so, the ART shape descrip-
tor discussed earlier in Section 2.4 is implemented. The
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Figure 20 Principal component analysis of shape features comparing
GFD, and (d) RCF. Here, the filled circle represents arbitrary shapes, the plu
the centroid of each group.
algorithm is evaluated using 114 defected and 126 intact
cells. Altogether, 5,598 shapes have been detected of
which 218 belong to the micro-crack category and the
remaining are arbitrary patterns. The ART is applied to
these shapes, and the results are visualized in principal
component plots in Figure 20a. In this case, only the
first two dominant components, i.e., first and second
components, are used in the visualization.
For comparison purpose, the scattered plots of shape

features produced by the well-known methods like (i)
the Fourier descriptor (FD) [22], (ii) the generic Fourier
descriptor (GFD) [23], and (iii) the projection-based Radon
composite features (RCF) [24] are also included in this
figure. A close examination of Figure 20 shows that the
overlap between micro-crack and other arbitrary shapes
is more prominent in Figure 20b,c,d than in Figure 20a.
All micro-crack shapes in Figure 20b,c,d occupy the regions
that are enclosed within other arbitrary shapes. Clearly,
there is no unique demarcation between these two groups
in the PCA space. Hence, any attempt to use FD, GFD, or
RCF as features in the classification scheme would result in
many samples being misclassified. In contrast, the overlap
between the groups is less prominent for ART features, as
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Table 2 Distribution of intact and defected cells in the
dataset

Dataset Defected Intact Total

Training 114 126 240

Testing 173 187 360
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shown in Figure 20a. It can be seen that the other arbitrary
shapes are skewed to the right, whereas the micro-crack
shapes are skewed to the left. Therefore, it is hypothesized
that the features extracted using ART are more separable
compared to those extracted using FD, GFD, and RCF.
This hypothesis is validated quantitatively using the sep-

arability measure. This measure reflects the discriminative
capability in the features of each class; the higher the
separability, the higher the discrimination between the
groups. Figure 21 shows a comparison of the separability
measure between ART, FD, GFD, and RCF. In this case,
the separability measure for ART is the highest, registering
a value of 12 compared to less than 9 for FD, GFD, and
RCF. This result confirms that the features obtained using
ART have more discriminative power compared to features
obtained using FD, GFD, and RCF.
In this study, altogether 600 randomly selected solar

cells have been evaluated from which 240 cells belong to
the training set and the remaining 360 cells constitute
the test set. Table 2 tabulates the distribution of cells in
the training and testing sets. During testing, the classifier
produced a positive output when the cell is defected
with micro-crack and a negative output when it is intact.
For the training set, there are 5,598 shapes, of which

218 belong to micro-crack shapes and the remaining
5,380 are arbitrary patterns. These features are used to
train the SVM. For the sake of completeness, the classifi-
cations are repeated using a linear discriminant analysis
(LDA), quadratic discriminant analysis (QDA), and k-
nearest neighbor algorithm (k-NN), from which the
results are compared with SVM. Furthermore, the per-
formance of each algorithm is quantitatively evaluated
in terms of three measurable metrics: (i) sensitivity, (ii)
specificity, and (iii) accuracy. These metrics are based
on a simple measure of the true positive TP, the true
ART FD GFD RCF
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Figure 21 The separability measures comparing the ART, FD,
GFD, and RCF shape descriptors.
negative TN, the false positive FP, and the false negative
FN. Mathematically, they are defined as follows:

Sensitivity ¼ TP
TPþ FN

ð13Þ

Specificity ¼ TN
TNþ FP

ð14Þ

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

ð15Þ

Additionally, the geometric mean is also used in the
evaluation. The value of the geometric mean will be high
when both the sensitivity and the specificity are high,
and the difference between them is small [25]. The use of a
geometric mean is an important measure when evaluating
the classifier performance, especially for the unbalanced
class sizes. The geometric mean is calculated as follows:

G‐Mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity � Specificity

p
ð16Þ

The results using the testing set are shown in Table 3.
In this table, the SVM is trained with the following
parameters: σRBF = 27, C+ = 390, and C− = 19. Clearly,
from Table 3, the SVM classifier outperformed LDA, QDA,
and k-NN in term of sensitivity, accuracy, and G-Mean
assessment metrics. Overall, less than 3% of defected
cells are misclassified, and more than 80% of good cells
are correctly classified. However, the k-NN classifier per-
formed best in the classification of good cells with 88%
specificity. Nevertheless, the SVM produces the highest
G-Mean, indicating that the error in misclassification
of this algorithm is consistently low. Therefore, SVM is
overall the best classifier for this type of application.
For completeness, SVM experiments were repeated using

FD, GFD, and RCF shape descriptors, and the results
Table 3 The classification results of the testing set

Classifier Descriptor Sensitivity Specificity Accuracy G-Mean

LDA ART 0.9306 0.7594 0.8417 0.8406

QDA ART 0.9711 0.7166 0.8389 0.8342

k-NN ART 0.8266 0.8824 0.8556 0.8540

SVM ART 0.9769 0.8021 0.8861 0.8852

FD 0.9711 0.4332 0.6917 0.6486

GFD 0.9595 0.4973 0.7194 0.6908

RCF 0.9653 0.5936 0.7722 0.7570
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are also given in Table 3. Clearly, ART outperformed other
shape descriptors in all assessment metrics. This again
demonstrated that ART gives the best discriminating ability
when dealing with this type of shape classification problem
compared to other shape descriptors. In addition, the aver-
age processing time for each EL image is approximately
4.1 s which is comparable to the semi-manual inspection
by a human expert. Meanwhile, the smallest micro-crack
detected by the proposed algorithm is 47 pixels in size
which physically corresponds to 6.22 mm in length.
4. Conclusions
The early detection of micro-cracks in solar cells is im-
portant in the production of PV modules. In this study,
an image processing scheme composed of segmentation
procedures based on anisotropic diffusion and shape classi-
fication is presented. The results show that the segmenta-
tion procedures can detect and identify micro-crack pixels
efficiently in the presence of various forms of noise. The
anisotropic diffusion filtering with gray level-based diffusion
coefficient proposed in this study produced excellent en-
hancement and improved segmentation. The advantage of
this filtering technique is its ability to enhance the pixels
with low gray scale and high gradient such as the micro-
crack defects in solar cell. Trained with SVM using 240
samples, this artificial classifier produced a correct classifi-
cation rate of consistently higher than 88% with average
sensitivity and specificity of 97.7% and 80.2%, respectively.
These results are very promising as it demonstrates a
first attempt of integrated image processing and ma-
chine learning platform toward its eventual application
of micro-crack inspection of solar cells.
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