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Abstract

Biologists often have to investigate large amounts of video in behavioral studies of animals. These videos are usually
not sufficiently indexed which makes the finding of objects of interest a time-consuming task. We propose a fully
automated method for the detection and tracking of elephants in wildlife video which has been collected by
biologists in the field. The method dynamically learns a color model of elephants from a few training images. Based on
the color model, we localize elephants in video sequences with different backgrounds and lighting conditions. We
exploit temporal clues from the video to improve the robustness of the approach and to obtain spatial and temporal
consistent detections. The proposed method detects elephants (and groups of elephants) of different sizes and poses
performing different activities. The method is robust to occlusions (e.g., by vegetation) and correctly handles camera
motion and different lighting conditions. Experiments show that both near- and far-distant elephants can be detected
and tracked reliably. The proposed method enables biologists efficient and direct access to their video collections
which facilitates further behavioral and ecological studies. The method does not make hard constraints on the species
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of elephants themselves and is thus easily adaptable to other animal species.
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1 Introduction

Many biologists study the behavior of free-ranging ani-
mals in the field. For this purpose they collect large
video corpora which include monitoring video, videos
from field trips, and personally recorded wildlife video
footage [1]. The result of this data collection is the large
amounts of video which sometimes span several hun-
dreds of hours. Unfortunately, the access to the videos
is limited because objects (e.g., the presence of a par-
ticular animal) and events of interest (e.g., particular
animal behaviors) are not indexed. In many cases only
(handwritten) field notes exist from the recording ses-
sions. For manual indexing biologists have to browse lin-
early through the videos to find and describe objects and
events of interest. This is a time-consuming and tedious
task for large amounts of videos [2]. Since indexing should
preferably be performed by domain experts, it quickly
becomes an expensive task. Visual analysis methods have
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the ability to significantly accelerate the process of video
indexing and enable novel ways to efficiently access and
search large video collections.

Wildlife recordings captured in the field represent a
challenging real-life scenario for automated visual anal-
ysis. While a lot of research has been performed on
the visual analysis of human beings and human-related
events, the automated analysis of animals has been widely
neglected in the past. Existing approaches on animal anal-
ysis frequently operate in highly controlled environments,
for example, with a fixed camera, in a well-defined loca-
tion, with static background, and without interfering envi-
ronmental factors, such as occlusions, different lighting
conditions, and interfering objects [3,4]. A typical exam-
ple for a controlled setting is the monitoring applications
where the camera is usually fixed and the background is
mostly static [5]. In such a scenario we can easily learn
a background model and identify objects of interest by
detecting changes to the background. The video mate-
rial we investigate in this work does not provide such a
well-defined setting.

© 2013 Zeppelzauer; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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We are provided with a large collection of wildlife videos
captured by biologists in the field. The videos have been
captured during different field trips and serve as a basis
for the investigation of the behavior and communication
of African elephants. The videos show a large number
of different locations, elephants and elephant groups of
different sizes, poses, and distances to the camera. In
many sequences elephants are partly or completely absent.
Assumptions and constraints of specialized approaches
(derived from controlled environments) do not hold for
such unconstrained video footage. The question arises as
to which degree visual analysis methods can facilitate the
access to such video collections.

Animals are among the most difficult objects for clas-
sification and recognition [6]. The detection of elephants
is especially hard because their skin does not exhibit a
salient texture pattern (like for example, the skin of zebras)
and thus lacks in distinctive visual features [7]. Figure 1
shows some images from our video collection that illus-
trate the typical factors that impede automated detection.
Elephants are often occluded by plants and trees, and thus
only the body parts are visible. Additionally, elephants are
visible in different poses and sizes and in groups or as
individuals. The contrast is partly low due to bad lighting
conditions, and the elephant skin covers a broad spectrum
of colors and shades and is often difficult to separate from
the background (e.g., sandy and earthy ground).
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We develop a method for the automated detection and
tracking of elephants in wildlife video. The method does
not make any assumptions about the environment and
the recording setting. In a first step we learn a color
model of the elephants from a small set of annotated
training images. Learning the model does not include
domain knowledge and explicitly specified constraints
about elephants and their environment. The trained
model is applied to individual frames of wildlife video
sequences to identify candidate detections. Next, we track
the candidate detections over time and join temporally
coherent detections in consecutive frames. As a result
we obtain spatiotemporally consistent detections which
provide additional (stronger) clues for the detection of
elephants. At the same time we obtain all information
necessary to track the elephants in space and time.

Experiments show that the proposed method yields high
performance on wildlife video. We are able to detect and
track elephants of different sizes, poses, and distances to
the camera. The method is robust to occlusions, camera
motion, different backgrounds, and lighting conditions.
Most elephants can be detected and tracked successfully
(above 90%), while the number of false detections is small
(below 5%).

The paper is organized as follows. In Section 2 we sur-
vey the related work on the automated visual analysis of
animals. Section 3 describes the proposed method for

(©)

trail. The elephant’s skin is partly covered by mud from the ground.

Figure 1 Challenges of detecting elephants in their natural habitat. (a) Two highly occluded elephants. This example shows that shape is not a
good indicator for elephant detection. (b) A group of elephants. Due to bad lighting conditions, the elephant labeled with an arrow has a very low
contrast and is thus difficult to detect, especially in front of the background (plants) which is dark as well. (€) Elephants at a water hole. The encircled
areas show regions on the ground and on the elephant’s skin which have similar color and are thus difficult to distinguish. (d) Elephants on a wet

(d)
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elephant detection, and Section 4 presents the employed
wildlife video collection and the experimental setup for
our evaluation. We show qualitative and quantitative
results of elephant detection in Section 5. Finally, we
draw conclusions and summarize our main findings in
Section 6.

2 Related work

The analysis of animals and animal behavior that is a com-
plex task for computer vision has been rarely addressed
so far [6]. Recently, methods related to the analysis of
animals have been introduced for different tasks such as
species classification [8], gait recognition [9], individual
animal recognition [10], and the detection of animal-
related events [11]. The basis for most tasks is the detec-
tion of animals in an image or video stream. In the
following discussion, we provide an overview of the dif-
ferent approaches for the detection of animals whereby
we follow a path from highly restricted approaches (e.g.,
semiautomatic approaches) to less-constrained methods
(e.g., methods building upon unsupervised learning).

Many approaches on automated animal analysis require
human interaction for the detection of animals. For exam-
ple in [12] the authors present a method for the identifica-
tion of salamanders by dorsal skin patterns. The method
requires that key points along the skeleton of the ani-
mal are labeled manually by the user. Similar user input
is required in [10] for the identification of elephants from
their ear profile. Authors in [13,14] rely on user-defined
regions of interest as a basis for the identification of
animals.

Other approaches restrict the recording setting or the
video material to reduce the complexity of animal detec-
tion. Authors in [3] classifies animals using a highly con-
strained setup with a static camera mounted at one side
of a corridor. This setup makes the detection of animals
passing the corridor trivial. Alternatively, some methods
require that animals take a specific pose towards the cam-
era and then apply, for example, face detection [15] or the
detection of other characteristic body parts [16].

A popular clue for the detection of animals is motion.
Methods that exploit motion often set hard constraints
on the recording setting and the environment. In [5] the
underlying assumption is that the background is static
and can easily be subtracted. All blobs that remain after
background subtraction are treated as candidate detec-
tions. While this works well in restricted domains, e.g.,
for underwater video [5], such assumptions do not hold
in more general settings. A method applicable to mov-
ing backgrounds (e.g., due to camera motion) is pre-
sented in [9] and [17]. The authors track sparse feature
points over time and apply RANSAC to separate fore-
ground and background motion. Thereby, the background
motion is assumed to be the dominant motion in the
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scene. The remaining motion is assumed to belong to
a single object which is the animal of interest. Other
moving objects would disturb the approach and may
be falsely detected as animals. Authors in [4] propose
a method for animal species detection and make simi-
lar constraints concerning the foreground objects in the
video: While the camera is static in the investigated set-
ting, the detector requires that the foreground objects
are in motion. If several moving foreground objects are
detected, the one with the largest motion component
is considered to be the animal of interest and all other
objects are rejected. This assumption is highly specific
to the particular setting and not valid in the context of
wildlife video where several animals may be present at the
same time.

In real-life settings with unconstrained video material,
the detection of animals by specialized detectors becomes
unsuitable and does not work reliably due to the large
number of unpredictable environmental influences, like
occlusions, lighting variations, and background motion.
Only a limited number of approaches has been introduced
that faces the challenges of unconstrained wildlife video.
A method for the detection and tracking of animals in
wildlife video is proposed by Burghardt and Cali¢ [15].
The authors apply the face detector by Viola and Jones
[18] trained for a particular animal species. Once an ani-
mal face is detected, the authors try to track it over time.
Similar to our work, a tracking scheme is proposed that
allows gaps in tracking. Gaps in the context of [15] occur,
for example, when an animal turns its head away from the
camera. The approach can be applied to different animal
species by using adequately trained detectors. However,
the face detector of Viola and Jones requires a large train-
ing set to learn the dominant face characteristics of a given
species. For the detection of lion faces in [15], a training
set of 680 positive and 1,000 negative images is employed.
Our approach requires only a minimal training set of
10 to 20 images. This significantly reduces the efforts of
building a training set, makes the approach more conve-
nient for the actual users (e.g., biologists), and increases
the applicability of our approach to new video footage.
An advantage of using a well-trained face detector is that
the confidence of the resulting detections is relatively
high since faces represent particularly distinctive patterns.
However, face detection requires the animals to look into
the direction of the camera which is, in general, not
given in wildlife video.

The authors of [11] present a method for the detection
of hunt scenes in wildlife footage. Since hunt scenes are
characterized by a significant amount of motion, detec-
tion relies on the classification of moving regions. First,
color and texture features are extracted for each pixel.
Next, each pixel is classified by an artificial neural net-
work to either belong to the animal class or not. A moving
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region is classified as an animal if the majority of pixels
in the region are assigned to the animal class. Oper-
ating on individual pixels is computationally expensive
and introduces noise. We apply image segmentation as
a preprocessing step and perform detection at the seg-
ment level. The segmentation improves the robustness of
detection and obviates the need for a postprocessing of
noisy pixel-based detections. Furthermore, our approach
does not rely on motion clues, which additionally enables
the detection of animals which are resting or moving
slowly.

An interesting approach for the detection and tracking
of animals is proposed in [7]. The authors build mod-
els of animals in an unsupervised manner from candidate
segments detected consistently over successive frames.
The candidate segments are obtained from a rectangle
detector which uses Haar-like templates at different scales
and orientations. For each segment a feature vector is
constructed which consists of a color histogram and the
rectangle’s width and height. The authors cluster the seg-
ments and identify temporally consistent and visually
similar rectangles within each cluster. For the detection
of animals, the authors extract a texture descriptor from
the temporally consistent segments based on SIFT and
match it against a precomputed library of animal textures.
The authors of [7] report satisfactory results for animals
with textured skin, such as zebras, tigers, and giraffes.
The authors state that the detection of animals such as
elephants and rhinoceroses is hard because their hides
are homogeneous and they do not exhibit a distinct tex-
ture. The authors further state that their approach is only
applicable to videos with single animals and with little
background clutter. Both conditions are not met in wildlife
video.

We observe an explicit trend towards highly textured
animals from computer vision literature which focuses
on animals. The ‘favorite’ species are apparently zebras,
giraffes, and tigers; see for example [7,9,13,14]. One rea-
son for this bias is that animals with a distinct texture are
easier to discriminate from the background. The visual
detection of animals without a distinctive texture is hard
because only weak visual clues, such as color, exist that
can be exploited for detection (a more detailed discussion
of visual clues is provided in the following section).

There is rarely work on the visual analysis of species
with poorly textured skin such as elephants. The species
of elephants is addressed only marginally, e.g., for image
classification in [8]. To our knowledge no work on the
automated visual detection of elephants in wildlife video
has been performed so far. In this article we present a
novel approach for the detection of elephants in their nat-
ural habitat. The approach enables a more efficient access
to wildlife video collections and thus bears the potential to
support biologists in behavioral studies.
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3 Methodology

Knowledge about the environment and the recording
setup is an important factor for designing automated
visual detectors because it enables the derivation of con-
straints and visual clues that facilitate detection. In an
uncontrolled environment like wildlife video, as investi-
gated in this work, the identification of robust constraints
and clues is difficult. The video material we investigate
has been captured by different people with a hand camera.
Recordings were partly made in an ad hoc fashion. This
means that we cannot make assumptions about the envi-
ronment and the camera operation. As a consequence, we
have to rely on the very basic visual cues such as shape,
texture, motion, and color for the detection of elephants.
Prior to the design of our method, we have investigated
the suitability of the different visual cues.

A straightforward clue for the detection of elephants is
their shape. Elephants have a characteristic shape, espe-
cially due to their trunk. In practice however shape is
not applicable for the detection of elephants in the field
because elephants in different poses and viewed from
different directions may have diverse shapes. Addition-
ally in most cases, parts of the animals are occluded and
only certain body parts are visible which results in arbi-
trary shapes, as shown in the introductory examples in
Figure 1. Similar conclusions are also drawn in [11] for
animal detection.

Texture may be another useful clue, since elephant skin
has numerous fine wrinkles. However, the resulting tex-
ture has such a fine granularity that it is not detectable in
practice from a reasonable distance to the camera. While
texture is not directly applicable to the detection of ele-
phants, we show in Section 3.5 how texture information
can be exploited to make the detection of elephants more
robust.

Motion is another important visual clue for automated
detectors [11]. Even if we compensate for camera motion,
the remaining object motion of elephants provides only
weak clues since elephants move slowly and often remain
stationary for a long time. This is especially a problem
when the animals are far away from the camera. In such
cases motion can hardly be exploited.

A more promising visual clue is color. The skin color
of elephants covers different shades of brown and gray.
Additionally, the skin color is highly influenced by lighting
(highlights and backlight) resulting in shades of very light
and dark gray, respectively. However, color represents only
a weak and ambiguous clue since many objects in the
environment (e.g., different grounds and rocks) have sim-
ilar colors to elephants and easily provoke false-positive
detections. In our investigations we observe that color is
well-suited as an initial visual clue for the detection of ele-
phants. However, additional clues are necessary to make
the detection more robust.
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Since we work with video, temporal clues are another
important source of information. Elephants do not appear
and vanish abruptly in the course of time. We exploit
temporal relationships between detections in subsequent
frames to improve the robustness of detection.

An outline of the proposed approach is shown in
Figure 2. In a preprocessing step we perform color seg-
mentation of the input images to reduce the amount
of data to process and to obtain a higher abstraction
level for the following analyses. From manually labeled
ground-truth images, we first learn a color model of the
elephants. The color model is applied to an input image
sequence and detects segments which potentially rep-
resent elephants. Next, we track the positively detected
segments (candidates) across the image sequence and join
them into independent sets of spatiotemporally coherent
candidates. From these candidates we extract spatiotem-
poral features to validate the detections. Detections that
pass validation are input to postprocessing where tracking
errors are corrected.

3.1 Preprocessing

The goal of preprocessing is to reduce the amount of data
for processing and to obtain a more abstract representa-
tion of the input image sequence. We first downscale the
input images (full HD resolution) by a factor of 0.25 to
speed up subsequent operations. Next, we perform color
segmentation of the images by mean-shift clustering [19].
Prior to segmentation we transform the images to the
LUV color space. The LUV color space is a perceptu-
ally uniform space. It better approximates color similarity
perception than the RGB space and allows similarity judg-
ments using Euclidean distance [20]. After segmentation
for each segment, the mean color of all covered pixels is
computed and stored as a representative color for each
segment.

Color segmentation yields a more abstract representa-
tion of the input images in terms of coherent color seg-
ments. Additionally, segments usually represent adjacent
pixels that belong to the same object. Thus, the represen-
tation at the segment level is more expressive than the
original representation at the pixel level. Figure 3 shows
results of color segmentation for two example images.
All subsequent processing steps are performed on the
extracted color segments rather than on individual pixels.

3.2 Model generation

We learn a discriminative color model of elephant skin
from a small set of labeled training images. The model
represents foreground colors representing elephants as
well as background colors from the surrounding environ-
ment. The training images represent different environ-
ments and differently shaded elephants in varying lighting
situations.
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We first manually label all elephants in the training
images (see Figure 4a,b for an example image and the
corresponding labeling). Next we split the images into
foreground and background based on the manual label-
ing (see Figure 4c,d). Both the foreground image and the
background image are preprocessed and segmented as
described in Section 3.1 (see Figure 4e,f). For each fore-
ground and background segment, we take the mean color
and transform it to the LUV color space. Figure 4g,h shows
the respective colors before conversion to the LUV space.

The resulting lists of foreground and background colors
of all training images form the input to classifier training.
Figure 5 shows the extracted foreground and background
colors (in RGB for better visualization) over the entire
training set. The list of background colors is larger than
the list of foreground colors because the background con-
sists of more segments. From Figure 5 we observe that

image sequence

ground truth images

el

’ color segmentation ‘ ’ color segmentation ‘

(spatio-temp. candidates

consistency

)

spatio-temporal
feature extraction
J texture
’ validation ‘

!

’ postprocessing ‘

shape

!

final detections

Figure 2 Overview of automated elephant detection. First, a color
model is generated from labeled ground truth images. Next, image
segments are classified by the color model. Positively detected
segments (candidates) are tracked through the sequence resulting in
spatiotemporally coherent candidates. The final detections are
obtained by validating the spatiotemporal candidates by shape,
texture, and consistency constraints. Finally, postprocessing fills gaps
in tracking for each detection.
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Figure 3 Results of image segmentation for two example images. Top: original images, bottom: color segmentation. The color segmentation
abstracts from fine details in the images while it preserves object boundaries well.

the colors of the foreground are frequently contained also
in the background (but more seldom vice versa) result-
ing in an asymmetry between both classes. The reason is
that the background frequently contains colors similar to
that of the elephants due to its large diversity (e.g., rocks,
sandy grounds). From this observation it follows that color
is a necessary but not a sufficient indicator for elephant
detection.

We generate a discriminative color model by training a
support vector machine (SVM) with a radial basis func-
tion (RBF) kernel from the foreground and background
colors. Due to the asymmetry between the two sets of
color, we assign the foreground class higher misclassifica-
tion costs than the background class. This reduces the risk
that the SVM misses a true elephant detection and at the
same time, it increases the chance of false detections. The
preferential treatment of the foreground class is intended
at this stage of processing to keep the detection rate high.
We handle false detections at a later stage of processing
(see Section 3.6).

We observe that the RBF kernel separates both classes
well. We set parameter gamma of the RBF kernel in a
way that the number of support vectors is minimized.
This assures a low complex decision boundary which
increases the generalization ability of the classifier. The
training error (estimated by fivefold cross-validation) is
92.83%. Experiments on test images show that the classi-
fier detects segments that correspond to elephants with
high accuracy. At the same time the number of false-
positive detections is moderate. More results on the test
data are presented in Section 5.1.

From the two sets of colors (see Figure 5), we observe
that both sets occasionally contain very dark (near-black)

and very bright (near-white) colors. For such colors a
reasonable decision cannot be made by the classifier
resulting in unreliable predictions. We apply a lumi-
nance filter to avoid these cases. Colors with near-black
and near-white luminance are removed from the list of
foreground colors. This assures that segments with col-
ors near white or near black are rejected in elephant
detection. We investigate the effect of luminance filtering
in Section 5.4.

The color model presented in this section is completely
adaptive to the provided training images. It does not make
any assumptions about the underlying video material and
is generally applicable to different objects of interest.

3.3 Color classification

The goal of color classification is to detect segments in the
images of a sequence that are likely to belong to an ele-
phant according to the trained color model. The emphasis
of the color detector (as mentioned in Section 3.2) is pri-
marily to maintain a high detection rate (no elephants
should be missed), while a few false-positive detections
are tolerated.

Each input image sequence is first preprocessed (resized
and segmented) as described in Section 3.1. Next, we take
the color (in LUV space) of each segment and classify
the segments with the color model (without luminance
filtering). We reject all segments that are predicted to
belong to the background class and keep only segments
predicted to be members of the foreground class. We
refer to this approach as one-stage classification since
classification is performed in one step.

Results of color classification are shown in Figures 6b,c
and 7b,c. From the detection results, we observe that
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(2

background segments.

Figure 4 Color model generation from labeled training images. (a) The input image. (b) The manually created labels. () The foreground
image. (d) The background image. (e,f) The color segmentations of foreground and background image. (g,h) The colors of the foreground and

(b)

(h)

the elephants are detected with high accuracy. At the
same time many false-positive detections are generated,
e.g., the ground in Figure 6c and the bushes in the
background in Figure 7c. A closer look at the falsely
detected segments reveals that their representative col-
ors (mean color over the entire segment) resemble
colors of elephants while the individual pixel colors
have different characteristics. The mean color seems
to be a suboptimal representation that removes too
much information about the color distribution in the
segments.

To compensate for this limitation, we propose a more
fine-grained two-stage classification that operates on the
individual pixels of a segment. First, we classify each pixel
by the classifier used in one-stage classification. In a sec-
ond step we apply a voting to the individual predictions. If
the percentage of positively classified pixels is above two
thirds, we classify the segment as positively detected; oth-
erwise, we reject the entire segment. Results show that the
two-stage classification is more robust in false detections
while it detects elephants equally well. See Figures 6d,e
and 7d,e for an illustration.
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Figure 5 Foreground and background colors in the color model. (a) Foreground colors representing elephant skin. (b) Background colors. Since
the background has a larger diversity, the foreground colors are partly included in the set of background colors (arrows mark examples of such colors).
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The result of color classification is a set of segments
(candidate detections) that are likely to represent ele-
phants in the scene. At this processing stage temporal
relationships between the individual detections are not
available. Another important clue for detection is tem-
poral continuity. In the next step, we track the detected
segments over time in order to temporally connect corre-
sponding detections in different frames.

3.4 Tracking

The goal of tracking is to robustly detect elephants
over longer time spans in a video sequence. For this
purpose we have to establish temporal relationships
between corresponding candidate detections in successive
frames. The basis for tracking are the positively detected
segments from Section 3.3. Tracking the segments
is challenging since the frame-wise segmentation per-
formed in preprocessing is temporally not always con-
sistent. Reasons for temporal inconsistencies in the
segmentations are differences in lighting, variations in
the exposure of the camera, and object motions. Due
to inconsistencies, a segment in one frame may be split
into several segments in a following frame and vice versa
(several segments in one frame may be merged in a
following frame). Figure 8 shows inconsistencies in the
segmentation of two successive frames. We propose a
tracking scheme that handles these inconsistencies in a
unified way. The proposed tracking scheme consists of
four stages: (a) segment tracing, (b) trace intersection,
(c) connectivity graph construction, and (d) subgraph
extraction.

3.4.1 Segment tracing

The first processing step consists of tracing a given input
segment through the image sequence. Therefore, we solely
rely on motion information and neglect the segmenta-
tions of the neighboring frames. The traced position and
extent of a given segment in the next (or previous) frame
is obtained by the optical flow of the segment’s pixels
in the current frame [21]. We define a temporal analy-
sis window of size w to limit the trace in time. Tracing
is performed +w frames in forward direction and —w
frames in backward direction. Tracing is iteratively per-
formed from frame to frame. From tracing we obtain
estimates of a segment’s position and extent in the sur-
rounding frames. We call the set of all estimates the trace
of the segment. Figure 9 illustrates the process of tracing.
Tracing considers camera motion as well as deformations
of the segments due to object motion. We apply tracing
for all segments that are positively detected during color
classification.

3.4.2 Traceintersection

The traces are the basis for the establishment of tem-
poral relationships between segments. For each frame in
the temporal window of size w, we intersect the cor-
responding traced segment with the positively detected
segments in the frame. For each segment we compute
the area of intersection with the traced segment. The
amount of intersection serves as a confidence measure
for the establishment of temporal relationships. The con-
fidence is computed as ¢ = [T NS|/|T US|, where T is
the set containing all pixels covered by the traced seg-
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" (b)

(d)
Figure 6 Color classification of an input image using two different classification schemes. (a) Input image. (b,c) Results of one-stage
classification. (d,e) Results of two-stage classification. Positively detected regions are highlighted by red contours in (b) and (d). Panels (c) and (e)
show the remaining segments in the image. The two-stage classification detects segments of elephants equally good as the one-stage approach
but generates less false-positive detections.

(e)

ment and S is the set containing all pixels covered by
the segment. The confidence corresponds to the por-
tion of overlap between the trace and the segment. If the
confidence between a segment and the trace is above a
threshold C, we establish a temporal relationship (a link)
between the intersecting segment and the source segment
of the trace.

Tracking segments by the intersections of their traces
has several advantages: (a) it implicitly handles cases
where segments split and merge; (b) when temporal win-
dow sizes of w > 1 are used, temporal relationships over
several frames (maximum w) can be established (in each
direction). This enables the tracking of a segment even
when it is missed for a few frames and then reappears;
(c) from the temporal relationships established by trace
intersection, we can derive spatial relationships between
segments in the same frame (see Section 3.4.4).

Figure 10 illustrates the process of trace intersection.
First, a segment s is traced through the temporal window
(w = 2 in this example) resulting in a trace consisting
of traced segments s_y, s_1, s+1, and s42. For each frame
of the temporal window, we intersect the traced segment
with the positively detected segments in that frame. In
frame t + 1, for example, the traced segment s, is inter-
sected by two segments u and v. For both segments the
confidence c of intersection is computed. Since the condi-
tion ¢ > C is fulfilled for segment u, a link is established.
For segment v the intersection is too small (¢ < C) and
consequently no link is established. In frame ¢ + 2 the seg-
ments u and v are merged into one segment w. Since the
confidence of intersection is high, we establish a link from
segment s to w. Links are also established in backward
direction. For frame ¢ — 1 no segment exists that intersects
with the trace of segment s so no link can be established.
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Figure 7 Color classification of an input image using two different classification schemes. (a) Input image. (b,c) Results of one-stage
classification. (d,e) Results of two-stage classification. Positively detected regions are highlighted by red contours in (b) and (d). Panels (c) and (e)
show the remaining segments in the image. Again two-stage classification is more robust than one-stage classification.

However, in frame £ —2 segment k intersects with the trace
and a link is established between s and k. The link between
s and k extends over the gap in frame ¢ — 1. In this way the
gap in frame ¢ — 1 can be detected and handled correctly.
We handle such gaps in tracking in a postprocessing step
(see Section 3.7).

3.4.3 Connectivity graph construction

Trace intersection is performed for all segments detected
by color classification. The temporal relationships gener-
ated by trace intersection can be considered as a graph.
Nodes in the graph are segments which are associated
with a particular frame, and the edges in the graph

can be observed from the highlighted contours.

Figure 8 Segmentations of two consecutive frames (a,b). The segmentation in both frames is not consistent. Segments split and merge which
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Figure 9 The process of region tracing. A segment s is traced through a temporal window of +w = 2 frames by optical flow (orange arrows). The
resulting trace (shaded violet area) of segment s contains the traced segments s_p, s_1, 541, and s45.

are temporal relationships (links) between segments. The
graph is directed since tracing generates forward- and
backward-directed links. However, for the subsequent
processing the direction of the edges is not important
and thus we neglect their orientation. Due to splitting
and merging of segments the graph may contain cycles.
The density of the graph is dependent on the thresh-
old C used in trace intersection (see Section 3.4.2).
A higher (more stricter) threshold C impedes the cre-
ation of links and increases the sparsity of the graph,
while a lower value of C facilitates the establishment of
temporal relationships and increases the density of the
graph.

An example graph for a sequence of frames is illustrated
in Figure 11. The graph can be arranged along the time
axis since each node resides in a particular frame. The
graph has edges that span one or more frames. Cycles
indicate cases of splitting and merging. Two nodes in the
graph have no connected edges. In practice such nodes

correspond to unsteady segments with a short lifetime
which are usually false detections from color classifica-
tion.

3.4.4 Subgraph extraction

The graph constructed in the previous section is sparse
and consists of a number of disjoint subgraphs. The graph
shown, for example, in Figure 11 consists of four disjoint
subgraphs. Each subgraph represents the spatiotempo-
ral track of a group of segments which are assumed to
represent the same object.

We extract all subgraphs from the graph by a recursive
procedure. For a given starting node (this can be an arbi-
trary node of the graph), we recursively traverse the entire
graph and search for all nodes which are connected to this
node. The resulting subgraph is removed from the original
graph and the recursive search for the next subgraph in the
remaining graph is performed. The procedure terminates
when the remaining graph becomes empty.

c>C

c>C

al

K

{ne

‘® gap

Figure 10 The process of trace intersection. The trace of segment s is intersected with the segments k, u, v, and w in the neighboring frames.
Gray regions represent the area of intersection with the trace. A temporal relationship (link) is established if the confidence c is higher than a
threshold C. The trace intersection handles cases of splitting and merging as well as gaps in the temporal succession of segments.
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Figure 11 A connectivity graph constructed from temporal relationships. Time progresses along the horizontal axis. Vertical lines represent
frames and black dots are nodes of the graph (segments). Label A shows an edge that spans two frames, label B marks a case where segments are
split. At the location of label C the segments merge again. Label D marks nodes that have no connected edges.

Figure 12 shows an example of a subgraph from one
of our test sequences. The subgraph represents an indi-
vidual elephant which is split into several segments. The
segments are unsteady over time and frequently split and
merge. The proposed tracking method (segment trac-
ing and trace intersection) is able to compensate for the
unsteady segmentation and correctly connects temporally
coherent segments into one subgraph.

The subgraph provides useful information for detection
and tracking. From the temporal relationships provided
by the subgraph, we can infer spatial coherences between
segments in the same frame. If for two segments from the
same frame a connection exists somewhere in the sub-
graph (e.g., because the two segments are merged in a
neighboring frame), this is a strong indicator that these
two segments belong together and describe the same
object.

We exploit the implicit spatial coherences in the sub-
graphs to refine the segmentation to obtain more robust
detections. We spatially merge all segments in a frame
which are connected by the same subgraph. The result
is larger and more expressive segments representing the
detected objects (see Figure 13). After merging, the sub-
graph represents a sequence of coherent segments. We
regard such sequences in the following as spatiotemporal
segments.

3.5 Spatiotemporal feature extraction
In Section 3.3 we point out that color is only a
weak clue for the detection of elephants and that
many false-positive detections are generated during color
classification. The spatiotemporal segments obtained
from tracking are spatially more meaningful than
the original segments and additionally contain tem-
poral information. They provide spatiotemporal clues
which were not available during color classification
and thus bear the potential to improve the quality of
detection.

Each spatiotemporal segment represents a separate
detection in the video sequence. The task is to decide
whether a spatiotemporal segment is a false-positive

detection or a true-positive detection. We extract spa-
tiotemporal features from the segments to support this
decision. We extract three different types of features:
consistency, shape, and texture.

3.5.1 Consistency features

Consistency features measure how long and how reliable a
detection can be tracked. We extract two features: (a) the
temporal duration (lifetime) of a spatiotemporal segment
(the number of frames the segment can be tracked) and
(b) the instability which is the portion of frames where
a detection cannot be tracked during its lifetime (the
portion of gaps that occur during tracking). The consis-
tency features help to remove unreliable detections (with
numerous gaps and short lifetimes) which often represent
false positives.

3.5.2 Shape features

The shape of elephants does usually not change abruptly.
Slow changes in shape indicate correctly detected ele-
phants while abrupt and fast changes rather suggest a
false-positive detection. We design a feature that repre-
sents the variation of shape over time (shape change).
First, we compute the area of a spatiotemporal seg-
ment at each frame which results in a series of areas
a = ai,ay,as,..,d,, where n is the number of frames
spanned by a spatiotemporal segment. Next, we compute
the difference between the maximum and the minimum
of the areas and normalize this value by the maximum
area: fsc = (max(a) — min(a))/ max(a). The result is
a value between 0 and 1, where 0 means that the area
remains constant over time and higher values indicate
strong temporal variations of the area.

3.5.3 Texture features

The skin of elephants is poorly textured. Regions with
strong texture and quickly changing texture are more
likely to represent objects from the environment rather
than elephant skin. We first compute the MPEG-7 edge
histogram at each frame of a spatiotemporal segment. The
edge histogram represents the distribution of differently
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Figure 12 A subgraph extracted from a connectivity graph. Individual segments have red contours. The green lines represent the edges
(temporal relationships) in the subgraph. Temporal relationships that span several frames exist as well but are not shown to improve readability.

oriented edges in a segment. It contains five bins: four bins
for different orientations (horizontal, vertical, and two
diagonal orientations) and an additional bin for nondirec-
tional edges. For a spatiotemporal segment we obtain a
series of edge histograms: e = e, ey, €3, ...e, where each
histogram has five components, written as e;1,€;2, . .., €5
for a histogram e; with 1 < i < n. Next, we derive two
texture features from the edge histograms: (a) a measure
for the edgeness [22] of a texture (edge density) and (b)
a measure for the variation of texture over time (texture
variation). The edge density foq is the mean of the summed
histograms:

1 n 5
Jed = - Z Zei,j' (1)

i=1 j=1

The sum over an individual edge histogram corresponds
to the portion of pixels in a segment that represent edges.
Edge density represents the mean portion of pixels that
represent edges over the entire spatiotemporal segment.
The higher the edge density, the more textured is the
corresponding spatiotemporal segment.

Texture variation f;y is the mean over the value ranges of
each individual histogram bin over time:

5

Jo= % > (Iéllx(ei,j) - rpji{l(ei,j)> : )

j=1

First, the value range for each single bin of the his-
tograms is computed. The mean over all bins provides
an aggregated estimate of the temporal variation which is
representative for the entire spatiotemporal segment.

3.6 Candidate validation

The goal of candidate validation is the improvement of
detector robustness by the confirmation of correct detec-
tions and the rejection of false detections. This decision
is based on the spatiotemporal features which allow for a
temporal consistency analysis of the candidate detections.
Note, that this consistency analysis does not require that
the elephants actually move. The consistency analysis is
applied to both, moving and static objects.

Each spatiotemporal segment represents one candidate
detection. A spatiotemporal segment is either confirmed
in its entirety or rejected in its entirety. Deciding over
entire spatiotemporal segments exploits temporal infor-
mation and thus is more robust than validating sin-
gle (temporally disconnected) detections in a frame-wise
manner. Candidate validation is based on the spatiotem-
poral features introduced in the previous section. First,
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Figure 13 Spatial merging of a subgraph. The resulting segments are more robust and more expressive than the original segments. All
unnecessary edges in the graph are pruned. The result is a coherent spatiotemporal segment. The green lines represent the remaining edges

(temporal relationships) in the subgraph.
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individual decisions are made by thresholding each fea-
ture. Next, the individual decisions are combined into an
overall decision for a candidate detection.

The determination of thresholds for automated analy-
sis methods is a problematic issue for two reasons: First,
thresholds increase the dependency on the input data and
thus increase the risk of overfitting. Second, thresholds
often depend on each other, e.g., when the decision by one
threshold is the basis for a decision by a second threshold.
Robust values for dependent thresholds cannot be deter-
mined separately from each other which in turn impedes
model fitting and the evaluation of the method.

The proposed validation scheme takes both issues into
account. The thresholds for the features are determined
independently from each other in a way that reduces the
dependency on the data. Each threshold is set to a safe
value that minimizes the risk of rejecting correct detec-
tions. This ‘safe’ value can be determined in a straightfor-
ward way: The threshold is initialized with the minimum
value of the corresponding feature (lower limit of value
range). Next, the threshold is increased subsequently by
a constant step size. The threshold splits the value range
of the feature into two subsets. The threshold value is
fixed at the value which assures that (a) all true elephant
detections remain in the same subset and (b) the size of
this subset becomes minimal. Figure 14a illustrates the
process of threshold estimation for a single feature. Each
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threshold value can easily be estimated in this way inde-
pendently from the other thresholds using a few labeled
ground-truth sequences.

For a given candidate detection, each feature is com-
pared to its threshold. The resulting decisions are then
combined using logical AND. This means that a spa-
tiotemporal segment is confirmed as a positive detection
if it passes all validations; otherwise, it is rejected. The
logical AND combination assures that thresholds remain
independent from each other and we do not have to
investigate any interdependencies. The features capture
different visual aspects (e.g., texture and shape) and thus
complement each other for the rejection of false positives.
The principle is illustrated in Figure 14. In Figure 14a
three false detections (circles) pass the validation using f;
and threshold #;. Adding a second feature f, as shown in
Figure 14b, enables the correct rejection of an additional
false detection due to the synergy of the two features.

The proposed validation scheme has several advan-
tages: (a) each threshold value can be estimated separately,
(b) the estimation of the thresholds using safe values is
straightforward and reduces the dependency from the
data, and (c) the logical AND combination of the sin-
gle decisions exploits the complementary nature of the
features.

In addition to the proposed validation scheme, we apply
an SVM to the spatiotemporal features to reject false
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Figure 14 Threshold estimation and validation. (a) The estimation of safe threshold value for a feature f;. True positives are represented as green
diamonds, false positives are represented as red circles. The threshold t; is increased (starting with 0) until all true positives are on one side (left) of
the threshold. (b) The extension of (a) into two dimensions using an additional feature f, with a corresponding threshold t,. Detections which are
located in the rectangle bounded by both thresholds pass the validation (corresponding to a logical AND); all other detections are rejected.
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detections. The SVM is trained on a subset of video
sequences using a cross-validation protocol. The trained
classifier is then applied in the validation step instead of
the proposed scheme. Since the required complexity of the
decision boundary is not known during the design phase,
we evaluate different kernels.

3.7 Postprocessing

The detections that remain after candidate validation are
considered to be positive detections of elephants. Due
to noise, partial occlusions, and tracking failures, some
detections cannot be tracked continuously over time and
contain gaps (see Figure 15a). However, tracking pro-
posed in Section 3.4 supports the establishment of tem-
poral relationships over several frames. We exploit these
long-time relationships to interpolate missing detections
(see Figure 15b). For interpolation we employ the already
available optical flow from segment tracing. New tem-
poral relationships between the interpolated segments
replace the original long-time relationships. Closing the
gaps enables detection and tracking even if elephants are
occluded for some time.

4 Experimental setup

In this section we introduce the video collection for
the evaluation, the employed performance measures for
quantitative evaluation, and the setup of the experiments.

4.1 Data

The analyzed data set is a corpus of videos captured by
biologists during different field trips. The videos have
been recorded during numerous field sessions in the
Addo Elephant National Park (South Africa) in 2011
and 2012. During the recording sessions only handwrit-
ten field notes have been made which provide notes on
selected events of interest and important observations.
The generation of additional (more complete and sys-
tematic) descriptions during field sessions is out of scope
due to temporal constraints. Consequently, the video data
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which are inputs to our method is temporally and spatially
not indexed. It is unknown if and where elephants can be
observed.

The videos are captured in high-definition format
(1,920 x 1,080 pixels) at a rate of 25 frames per second.
The entire data set contains about 150 GB of video files
which corresponds to approximately 22 h of video and
2 million frames. For the evaluation of the approach we
select a subset of the video collection. The main reason
not to evaluate on the entire data set is that no ground
truth is available for the data and the manual ground truth
generation is extremely time-consuming.

We manually select a heterogeneous data set for eval-
uation that consists of 26 video sequences. The selected
subset is representative for the data collection which in
turn enables an objective evaluation of the approach. Dur-
ing selection we reject sequences which are too similar
to the already selected ones to increase the heterogene-
ity in the data set. Figure 1 in Section 1 shows frames
from selected sequences in the data set. The sequences
contain elephants (groups and individual elephants) of dif-
ferent sizes (from far distance and intermediate distance
to near distance). Elephants are visible in arbitrary poses
and ages performing different activities, such as eating,
drinking, running, and different bonding behaviors. The
sequences show different locations, such as elephants at a
water hole, elephants passing a trail, and highly occluded
elephants in bushes. Sequences have been captured at dif-
ferent times of the day, in different lighting and weather
conditions. Recording settings vary across the sequences
from almost static camera (mounted on a tripod) to shak-
ing handheld camera with pans and zooms. Additionally,
there are sequences which contain no elephants at all and
sequences where elephants enter and leave the scene.

For the quantitative evaluation of our approach, a
ground truth of the data set is required. For elephant
detection, a purely temporal ground truth, which pro-
vides only begin and end frame numbers of relevant
time spans, would be sufficient in general. However, with
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Figure 15 Closing gaps in tracking and interpolated segments. Closing gaps in tracking for two frames where tracking was not successful (a).
Since tracking establishes temporal relationships over several frames, the gaps can be closed (b). The segments (red contour) are interpolated using
optical flow. The original link (dashed, gray) is replaced by new temporal links (solid, red). Green lines represent temporal relationships obtained by
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Figure 16 Ground truth for different sequences. Left: original image, middle: labeled image, and right: ground truth mask.

a temporal ground truth, we are not able to evaluate
whether or not a detection does actually spatially match
an elephant. This impedes the objective computation of
the false-positive detection rate. In order to compensate
for this weakness, we create a spatiotemporal ground
truth for each sequence in the data set. Each frame in a
sequence is manually labeled and a ground truth mask
is generated. Figure 16 shows ground truth masks for
different sequences. The entire ground truth covers 715
frames and 1,751 manually labeled segments covering
elephants. The ground truth contains moving elephants
as well as resting elephants. Elephants whose image
regions overlap are regarded as one ground truth segment.
The accurate spatiotemporal ground truth enables the
comprehensive evaluation of the detection performance
of the approach.

The ground truth data are not only used for eval-
uation but also for training the color model intro-
duced in Section 3.2. We exclude 16 randomly chosen
images from the data set (this corresponds to 2% of
the entire data set) and use them to train the color
model. From the training images only individual pixel
colors are used for training. Higher-level information
such as spatial information is not used. This mini-
mizes the dependency of the evaluation from the train-
ing data. Naturally, the training images for the color
model are not used in the evaluation of the proposed
method.

4.2 Evaluation measures

We evaluate the performance of the proposed approach
for the detection of elephants. Note that this is differ-
ent from evaluating the performance for the segmentation
of elephants which is not the focus of our investigation.

For elephant detection an elephant does not necessar-
ily have to be segmented correctly to be successfully
detected. We evaluate the detection performance spa-
tially and temporally using the ground truth labels. We
declare a detection to be successful if it coincides with
a labeled ground truth region and thus with an image
region covered by one or several (spatially overlapping)
elephants. For performance estimation we compute the
detection rate and the false-positive rate over the entire
data set.

The detection rate is computed as the number of labeled
ground truth (GT) regions hit by a detection divided by
the total number of ground truth regions.

}{GT regions hit}|

|{GT regions}| ®)

detection rate =

Ground truth regions which are detected several times
are counted only once. False detections are detections that
contain background segments. The false-positive rate is
the number of false detections divided by the total number
of detections:

|{false detections}|

false positive rate = . 4
P |{detections}| @)

4.3 Experiments
We systematically investigate the different components of
the proposed approach. While we have presented inter-
mediate qualitative results already in Section 3, a quan-
titative investigation of the components’ performance is
necessary for an objective and comprehensive evaluation.
First, we investigate the performance of the approach
using color classification only in Section 5.1. For this pur-
pose we neglect temporal analysis and detect elephants



Zeppelzauer EURASIP Journal on Image and Video Processing 2013, 2013:46

http://jivp.eurasipjournals.com/content/2013/1/46

using the color model introduced in Section 3.2. We inves-
tigate the discriminatory capabilities of the color model
and compare the robustness of one-stage and two-stage
classifications (see Section 3.3). For two-stage classifi-
cation we further investigate the influence of different
decision thresholds. The comparison of both classification
schemes allows us to evaluate whether or not the addi-
tional processing costs of the two-stage classification are
justified.

Second, we investigate how the robustness of the detec-
tor can be improved by temporal analysis in Section 5.2.
We apply motion tracking and candidate validation by
spatiotemporal features. We evaluate different combina-
tions of spatiotemporal features to demonstrate the ben-
eficial effect of their complementary nature. Additionally,
we apply an SVM for candidate validation. The SVM
is trained on the spatiotemporal features by using dif-
ferent kernels to discriminate positive and false-positive
candidate detections. We perform cross-validation to
evaluate the performance independently from the selec-
tion of the training data. Finally, we report the mean
detection rate and mean false-positive rate over all
cross-validation sets.

Third, we investigate the overall performance of the
approach using different classifiers in Section 5.3. For this
purpose, we apply SVMs with different kernels and com-
pare the SVMs with nearest neighbor (NN), k-nearest
neighbor (KNN), and linear discriminant analysis (LDA).
We show that the ability of the classifiers to build robust
color models varies significantly.

Fourth, the influence of different luminance filters (see
Section 3.2) on the overall performance is evaluated in
Section 5.4. We expect that luminance filtering improves
the robustness of the approach, since it removes colors
with particularly low and high luminance components
which are often unreliably classified.

After systematic evaluation we present results for two
different use cases which are provided by biologists. In
both use cases automated elephant detection forms the
basis for further investigations by the biologists. The first
use case addresses the detection of elephants to assist biol-
ogists in detailed behavioral studies. Objects of interest in
this use case are elephants at intermediate and near dis-
tance to the camera. Elephants far apart from the camera
are not of interest since the individuals are too small for a
detailed investigation of their behavior.

The second use case focuses on the detection of distant
elephants in wide open areas. Biologists are interested in
the presence of (groups of) elephants over wide surveyed
areas. The detection of far-distant elephants should sup-
port biologists in the investigation of elephant groups,
their sizes, and their migration routes. The objects of
interest in this use case are significantly smaller than in
the first use case which makes this task especially hard.
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5 Results

We present evaluation results for different components
of the proposed approach. Performance is measured in
terms of detection rate (D) and false-positive rate (FP). We
first present results for pure color classification. Next, we
add temporal information and demonstrate the influence
on performance. Additionally, we provide the overall per-
formance using different classifiers and luminance filters.
Finally, we present results for the investigated use cases
(case 1 and case 2) presented in Section 4.3.

5.1 Pure color classification

Color classification is performed frame-by-frame and
does not exploit temporal relationships between the
segments. We compare the performance of one-stage
classification and two-stage classification using the same
classifier (an SVM with RBF kernel, trained as described
in Section 3.2). Table 1 shows the results of color clas-
sification. For all evaluated configurations the detection
rate is very high (between 94% and 97%). The SVM with
RBF kernel is able to model the class of elephants well,
although the positive training samples partly overlap with
the samples of the background class (see Section 3.2).
The false-positive rate shows larger variation across the
different configurations than the detection rate. While
one-stage classification yields a false-positive rate of 42%,
in two-stage classification the false-positive rate drops by
10% to 32% at nearly the same detection rate. Two-stage
classification clearly outperforms one-stage classification.
This confirms our observations from Figures 6 and 7 in
Section 3.3. We conclude that the additional computa-
tional effort of two-stage classification is justified.

In the two-stage classification, a segment is positively
classified if more than two thirds of its area supports this
decision. In the following, we investigate the robustness of
this decision rule. We compute results for different deci-
sion thresholds (0.5, 0.6, 0.7, and 0.8) and estimate the
robustness of detection. We plot the decision rate versus
the false-positive rate (similar to a receiver operating char-
acteristic curve) for all evaluated decision thresholds in

Table 1 Performance of different color classification
schemes (one-stage classification vs. two-stage
classification with different decision rules)

Scheme Rule D(%) FP(%)
One-stage - 96.9 420
Two-stage 2/3 96.4 320
Two-stage 0.5 96.9 422
Two-stage 0.6 96.4 36.1
Two-stage 0.7 96.0 30.1
Two-stage 0.8 94.3 24.7
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Figure 17 Performance of two-stage color classification for different decision thresholds. The gray curve shows the relationship between
false-positive rate and detection rate similar to a ROC curve. The graph shows that a decision threshold of two thirds (highlighted by a diamond)
yields a robust trade-off between false-positive rate and detection rate compared to other thresholds (highlighted by circles).
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Figure 17. The dashed line illustrates the (inverse) rela-
tionship between detection rate and false-positive rate.
Good results in this graph are expected to be located in
the upper left quarter of the graph. This is the case for
the decision threshold of two thirds which yields a good
trade-off between false-positive rate and detection rate.

From the results in Table 1, we observe that the false-
positive rate is generally high. For the proposed two-stage
classification, approximately each third detection is a false
detection. This shows that color alone is a weak clue for
elephant detection. Similar to [7] we observe that it is
hard to build robust detectors from low-level information.
An additional clue for detection is temporal continuity. In
the following discussion, we investigate the potential of
temporal analysis for automated detection.

Table 2 The effect of temporal information on the overall
performance

Spatiotemporal features D (%) FP (%)
None 9.4 320
Consistency 94.7 293
Consistency + shape 93.0 214
Consistency + shape + texture 93.0 6.6

The combination of different spatiotemporal features improves results
significantly which shows that the features complement each other.

5.2 Incorporation of temporal information

Temporal information is integrated into the detection
process by the spatiotemporal features presented in
Section 3.5. Table 2 shows results for different selections
of spatiotemporal features. The first row shows the base-
line without spatiotemporal features which is equivalent
to two-stage color classification (see Table 1). First, we
add the consistency features and observe a slight decrease
of the false-positive rate by 2.7%. The consistency fea-
tures remove unstable detections (noise) which cannot be
tracked over larger time spans. Next, the shape feature
(shape change) is added which reduces the false-positive
rate significantly (by 7.9%). The shape feature removes
detections in image regions where the underlying segmen-
tation strongly varies over time which is, for example, the
case in regions with smooth lighting transitions, such as
sandy ground and trails. Finally, we add the texture fea-
tures (texture variation and edge density) and observe a
significant reduction of the false-positive rate by 14.8% to
only 6.6% in total. The texture features remove false detec-
tions in highly textured background regions covered by
bushes, trees, and plants.

The results in Table 2 show that the spatiotemporal
features significantly increase the robustness of the detec-
tor. The false-positive rate is reduced in total by 25.4%
to only 6.6%, while the detection rate remains relatively
stable (96.4% versus 93.0%). Especially, the texture fea-
tures are remarkable since they keep the detection rate
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constant and at the same time significantly reduce the
false-positive rate. From Table 2 we further observe that
the combination of different spatiotemporal features is
highly beneficial for detector performance. The features
are sensitive to different types of false detections since
they represent complementary information.

We compare the proposed validation scheme with an
alternative method based on an SVM as described in
Section 4.3. We evaluate different kernels (linear, RBF, and
polynomial) and optimize the respective hyperparameters
using model selection. Additionally, we evaluate different
subsets of the spatiotemporal features.

Results show that a linear SVM clearly outperforms the
other kernels. The linear SVM vyields a detection rate of
93% at a false-positive rate of 23%. The best result for the
RBF kernel is obtained with a gamma of 1. The detec-
tion rate is 58% and the false-positive rate is 22%. The
SVM with polynomial kernel performs suboptimal as well
and yields a detection rate of 85% at a false-positive rate
of 36%. In sum, the SVM-based method produces similar
detection rates as the proposed validation scheme, how-
ever, the false-positive rate is significantly higher (22%
versus 6.6%). Additionally, we evaluate different selections
of spatiotemporal features. We observe that removing one
or more features from the selection leads to a decreased
performance. Optimal results are only obtained when all
features are employed.

5.3 Robustness of classifiers

For color classification so far we have employed an SVM
with RBF kernel. The RBF is able to model the com-
plex decision boundary between the two input classes
well and generates robust color models. The complex
boundary is a result of the overlap between the two color
classes mentioned in Section 3.2. We compare the per-
formance to five alternative classifiers, namely, an SVM
with a linear kernel, NN, KNN, LDA with a linear bound-
ary, and LDA with a quadratic decision boundary. Table 3
provides the results for all classifiers. The overall per-
formance of the linear SVM is below that of the SVM

Table 3 The effect of different classifiers on detection
performance

Classifier D(%) FP (%)
SVM RBF 93.0 6.6
Linear SYM 82.7 55
NN 934 104
KNN 84.9 56
LDA (linear) 91.2 10.6
LDA (quadratic) 88.9 13.9

The SVM with RBF kernel outperforms all other evaluated classifiers.
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with RBF kernel. The linear SVM is not able to sepa-
rate the overlapping distributions of the two classes. We
observe less sparsity for the linear SVM, which means
that more support vectors are required than for the RBF
kernel. This indicates that the linear SVM is not able to
model the decision boundary well and is prone to under-
fitting. The RBF kernel provides more flexibility which
allows for better modeling the boundary between the
two classes.

The nearest neighbor classifier obtains a comparable
detection rate as the SVM with RBF kernel. Unfortunately,
the false-positive rate is higher (by 3.8%). Nevertheless,
the result is impressive regarding the fact that the nearest
neighbor classifier (in contrast to SVM) actually does not
abstract from the training data. The KNN (with K = 5)
performs similar to the linear SVM. The two versions of
LDA perform suboptimally compared to SVM with RBF
kernel. Similar to the linear SVM, the linear and quadratic
boundaries of LDA are not able to model the complex
boundary between the classes.

5.4 Filtering luminance

In Section 3.2 we point out that reasonable decisions can-
not be made by the classifier for very dark and very bright
colors. We propose to filter near-black and near-white col-
ors during model generation to obtain more robust pre-
dictions. Table 4 provides detection results for different
luminance filters. The first row shows the performance
of the approach without luminance filtering (baseline). A
medium luminance filter which removes samples below
10% of the minimum luminance and above 90% of the
maximum luminance improves the false-positive rate by
1.4% (compared to the baseline) and keeps the detec-
tion rate constant. With an even stronger luminance filter
we are able to halve the false-positive rate (from 5.2% to
2.5%) and still obtain a satisfactory detection rate of 91.7%.
The luminance filter improves the robustness of the color
model and thus positively influences the entire detection
process.

5.5 Case 1: detection of elephants at intermediate and
near distances

The first investigated use case focuses on the detec-

tion of elephants at intermediate and near distances. For

quantitative results, we refer the reader to the previous

Table 4 The potential of luminance filtering

Luminance filter Lower limit(%) Upperlimit(%) D(%) FP(%)
Off 0 100 93.0 6.6
Medium 10 90 93.0 52
Strong 20 80 91.7 2.5

Luminance filtering reduces the number of false detections and thus improves
the robustness of detection.
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Figure 18 Results of elephant detection at intermediate and near distances to the camera. True positive detections are labeled in orange and
false-positive detections in yellow. (@) Group of elephants near a road. (b) Two elephants walking on a sandy trail. (¢,d) Frames from sequences
showing highly occluded individuals. (e) A group of elephants which is correctly detected several times. (f) A sequence with a false-detection
(yellow) in the background that originates from a region that has a similar color to elephant skin.

(b)

sections. In the following we present qualitative results
and point out strengths and weaknesses of the approach.
Figure 18a shows a group of elephants near a road. The
sequence is hard for detection because the color of the
road resembles the skin color of elephants in our color
model. Additionally, the windshield of a microphone is
visible in the top right corner. Both, the road and the
windshield are predicted positively by color classification.
However, we are able to remove these false detections
during candidate validation since they have a significantly
coarser texture than the elephants. Four out of five ele-
phants can be detected successfully. One distant elephant
is missed. While this elephant could be detected in some
frames, the temporal coherence is too weak for a reliable
detection.

Figure 18b shows two elephants walking on a sandy trail.
The elephants do not set themselves apart from the back-
ground well (especially from the trail). While the color

model produces false-positive detections on the trail, we
are able to reject the entire trail during the candidate vali-
dation. The two elephants can be tracked reliably through
the sequence. Note that we consider both elephants as
one object to detect since they cover overlapping image
regions.

Figure 18c,d shows frames from sequences where the
elephants are relatively near to the camera. The pro-
posed method robustly detects and tracks the animals
over time. Figure 18c shows that the approach is able to
detect elephants even if they are partly occluded: The
calf in the lower left quarter of the image is widely
occluded by grass and vegetation but can be detected and
tracked successfully. Figure 18d shows a backlight scene
where the elephant skin exhibits particularly low con-
trast. While the elephants are detected remarkably well,
no false detections are made in similar dark background
regions (labeled by arrows). The grass in the foreground of
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Figure 18d is likely to produce false detections because the
color resembles that of sunlit elephant skin. This becomes
evident when we compare the colors surrounding label
‘A’ in Figure 18c¢,d. False detections in such areas can-
not be distinguished by color. However, additional texture
and shape clues enable the rejection of false positives
in this area.

Figure 18e shows a group of elephants which has pre-
viously been shown in Figure 7 in Section 3.3. From
Figure 7d,e we observe numerous false detections of color
classification in the background. Figure 18e shows the
result after temporal analysis. The false detections in the
background are temporally not stable and are removed
by consistency constraints, while the detection of the
elephant group remains stable.

Figure 18f shows an image with a false detection in the
background (yellow). The false detection originates from
the earthy area around the detection (labeled with arrows)
and cannot be removed during candidate validation. The
three elephants in the sequence are tracked consistently
through the sequence.

From motion analysis we obtain all information
necessary to track elephants over time. For most
sequences tracking is successful. Potential tracking fail-
ures are eliminated by interpolation during postprocess-
ing (Section 3.7). Figure 19 shows tracking results for a
sequence showing a group of elephants at a water hole
which has been shot by a handheld camera. While the
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camera slowly pans to the left, the elephants are tracked
consistently.

5.6 Case 2: detection of elephants at far distances

The detection of far-distant elephants is challenging for
two reasons. First, due to the small size of the ele-
phants, the image must be segmented at a finer scale
during preprocessing to assure that each elephant is rep-
resented by at least one segment. However, due to this
fine-grained segmentation, the number of segments grows
significantly. At the same time the portion of segments
related to elephants decreases drastically due to the small
size of the elephants. Thus, detecting elephants becomes
significantly harder and the probability of false detec-
tions increases. Second, small image segments are less
expressive and exhibit less distinctive features then larger
segments which impedes the automated detection.

For the detection of distant elephants, we decrease the
minimum size of an image segment to 20 pixels during
segmentation. Note that for experiments on intermediate
and near-distant elephants, a minimum size of 150 pixels
is adequate (at the employed video resolution). In quan-
titative experiments we obtain a detection rate of 88% at
a false-positive rate of 39%. While the detection rate is
satisfactory, the false-positive rate is high compared to
previous experiments. This is a result of the finer segmen-
tation which significantly increases the complexity of the
task.

Figure 19 Tracking elephants through an image sequence. The orange lines connect the matched detections across two frames. Note the
camera pan to the left which is best recognized from the horizontal shift of the background. We skip intermediate frames for better visibility.
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(a)

(©

(b)

(d)
Figure 20 Results for the detection of elephants which are far apart from the camera. True positive detections are labeled in orange and

false-positive detections in yellow. (a) A group of seven far-distant elephants. (b) Small group of partly occluded elephants in the field. (c) Highly
occluded elephants. (d) False detections in an image region which has a high similarity to elephant skin color.

Results for different sequences contained in the quanti-
tative evaluation are shown in Figure 20. Figure 20a shows
a group of seven elephants. Five of the elephants can be
detected and tracked successfully. Two elephants at the
left side of the group are too small for detection (at least
at the employed video resolution).

Figure 20b shows a small group of elephants in the
field. All regions covered by elephants are detected cor-
rectly. Note that no false positives are generated in regions
(labeled with arrows) which have nearly the same color as
the elephants.

In Figure 20c, a scene with large occlusions is shown.
The depicted scene demonstrates well that shape is not
a valid cue for the detection of elephants. Although the
elephants are mostly occluded (especially the right one,
labeled with an arrow), we are able to robustly detect and
track them through the sequence.

An example where the detector generates inaccurate
results is provided in Figure 20d. Additionally, to correct
elephant detections, a number of false-positive detections
are returned. One false-positive detection is located in a
darker area in the grassland. The other false positives are
located in the upper right corner which is covered by the
windshield of a microphone that extends into the view of
the camera. In the detection process the fine-grained seg-
mentation splits the area covered by the windshield into
numerous small segments. The small segments exhibit
only weak texture clues. As a consequence, they are not
rejected during candidate validation.

The presented results demonstrate both the capabili-
ties and the limitations of the proposed approach. We
are able to robustly detect elephants with high accu-
racy, which shows that the approach is well-suited to
support biologists in their investigations. We yield a
low false-positive rate for the detection of elephants at
intermediate and near distances. The detection of far-
distant elephants demonstrates the limitations of the
approach. Due to the fine granularity of the analy-
sis, the number of false positives increases. However,
most false positives are reasonable and occur in areas
where they would be expected. Aside from false pos-
itives, we are able to detect and track most elephants
even if they are occluded or represented only by a small
image area.

6 Conclusions

The contribution of this work is a reliable method for
the detection and tracking of elephants applicable to
unconstrained wildlife video. Unlike related approaches,
we do not make strong assumptions about the video
material and the environment, such as the number of ani-
mals present, their poses to the camera, the amount of
background clutter, and the camera operation. As a conse-
quence, we are able to detect and track elephants of differ-
ent sizes and poses in their natural habitat. The approach
robustly handles occlusions and detects elephants even if
most of their bodies are hidden, e.g., behind vegetation.
Experiments show that robust and accurate detection is
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possible in heterogeneous scenarios at a remarkable small
false-positive rate of only 2.5%. We reach the limits of the
approach by the detection of far-distant elephants. While
the detection rate in this case is still high, the sensitivity
to false positives grows. We conclude that this use case
requires the integration of additional constraints related
to the shape and size of far-distant elephants.

The major benefit of this work is a novel approach that
enables the automated indexing of unconstrained wildlife
video. As an additional information, our approach pro-
vides the spatial location and complete tracking informa-
tion for each detection. This makes the approach a sound
basis for higher-level analysis tasks, from the automated
estimation of group sizes, to the identification of animals,
and to the automated recognition of different activities
and behaviors.
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