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Abstract

For many fundamental problems and applications in biomechanics, biology, and robotics, an in-depth understanding
of animal locomotion is essential. To analyze the locomotion of animals, high-speed X-ray videos are recorded, in
which anatomical landmarks of the locomotor system are of main interest and must be located. To date, several
thousand sequences have been recorded, which makes a manual annotation of all landmarks practically impossible.
Therefore, an automatization of X-ray landmark tracking in locomotion scenarios is worthwhile. However, tracking all
landmarks of interest is a very challenging task, as severe self-occlusions of the animal and low contrast are present in
the images due to the X-ray modality. For this reason, existing approaches are currently only applicable for very
specific subsets of anatomical landmarks. In contrast, our goal is to present a holistic approach which models all
anatomical landmarks in one consistent, probabilistic framework. While active appearance models (AAMs) provide a
reasonable global modeling framework, they yield poor fitting results when applied on the full set of landmarks. In this
paper, we propose to augment the AAM fitting process by imposing constraints from various sources. We derive a
general probabilistic fitting approach and show how results of subset AAMs, local tracking, anatomical knowledge,
and epipolar constraints can be included. The evaluation of our approach is based on 32 real-world datasets of five
bird species which contain 175,942 ground-truth landmark positions provided by human experts. We show that our
method clearly outperforms standard AAM fitting and provides reasonable tracking results for all landmark types. In
addition, we show that the tracking accuracy of our approach is even sufficient to provide reliable three-dimensional
landmark estimates for calibrated datasets.
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1 Introduction
For many fundamental problems of ongoing research
in biomechanics, zoology, evolutionary biology, and
robotics, the key element is a thorough knowledge on ani-
mal locomotion [1-8]. Ideally, this knowledge is obtained
by analyzing skeletal movements of locomoting animals.
While many methods have been developed over time,
the state-of-the-art approach for obtaining noninvasive
in vivo measurements of the locomotor system is bipla-
nar X-ray videography. In contrast to reflective marker-
based methods, it allows for unobstructed observations
at an unrivaled accuracy [5]. In general, the animal to
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be analyzed is placed on a treadmill and filmed from a
side camera view (lateral camera) and a top camera view
(dorsoventral camera) at a very high frequency, usually
1,000 frames per second. A typical experimental setup is
shown in Figure 1.
For an evaluation of acquired data, anatomical land-

marks - usually skeletal joints of the locomotor system
such as hip joints, knee joints, intertarsal joints, and pha-
langeal joints [6,7] - have to be located in the images.
Most evaluations to date solely rely on human experts
(e.g., [5,6]), which is an extremely time-consuming pro-
cess and complicates the realization of large-scale studies.
An automation of this process would therefore greatly
benefit research in the aforementioned areas [9]. How-
ever, as almost all parts of an animal’s skeletal sys-
tem undergo severe self-occlusions during locomotion
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(a) AcquisitionSetup
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Figure 1 X-ray acquisition system. Biplanar X-ray acquisition system (I, treadmill; II, lateral X-ray detector; III, dorsoventral X-ray detector) used for
locomotion analysis (a). Example data of a quail with typical landmarks (1 to 8, torso; 9 and 16, hip joints; 10, 11, 17, and 18, knee joints; 12, 13, 19,
and 20, intertarsal joints; 14, 15, 21, and 22, feet) are shown in (b, c).

(cf. Figure 1), developing fully automatic tracking methods
for this application is a challenging task.
In this paper, we address the issue of landmark track-

ing in X-ray sequences of grounded locomotion of birds.
We present a novel method which, unlike previous
approaches, is able to track all landmarks used in locomo-
tion analysis and can overcomemany other practically rel-
evant drawbacks of existing methods (see Subsection 1.2)
using a unified, consistent, and probabilistic framework
that combines the complementing paradigms of model-
driven and data-driven tracking.

1.1 Related work
For very simple scenarios of locomotion analysis, straight-
forward tracking approaches such as template matching
can be applied [9]. Due to severe occlusions, however,
template matching and a variety of other standard meth-
ods such as optical flow/KLT and its extensions [10-12],
region tracking [13,14], and SIFT-based tracking [15]
were proven to be unsuited for X-ray analyses in the
challenging scenario at hand [16,17]. A more advanced
approach for skeletal tracking is based on image registra-
tion between recorded X-ray images and backprojected
CT scans [3,18,19]. However, in most cases this method is
only feasible for medical applications, as a full CT scan is
necessary for each subject to be analyzed.
An alternative, completely data-driven approach for

robust template tracking in X-ray sequences was recently
proposed in [16]. As standard template tracking fails due
to the severe occlusions, the idea is to divide the tem-
plate to be tracked into certain sub-templates. For each
frame, all sub-templates are matched to the target image
individually, and the results of these sub-templates are
then merged to obtain one consistent parameter trans-
formation for the whole template. The important dif-
ference between [16] and existing sub-template-based
approaches such as [20-22] lies in the fusion of sub-
template results. While previous approaches employ a

hard decision between occluded and non-occluded sub-
templates, the authors in [16] use a soft decision which
exploits special properties of X-ray images. It has proven
to be well suited for X-ray bone tracking under moder-
ate occlusions (e.g., for the lower leg landmarks in the side
view) [16]. However, due to its data-driven nature, land-
marks undergoing severe occlusions (landmarks occluded
by the torso, e.g., knee landmarks of the side view or feet
landmarks of the top view, cf. Figure 1) cannot be handled.
To overcome such problems of data-driven approaches,

model-drivenmethods generally are able to estimate land-
mark positions - even for total occlusions - by using global
context. One prominent example of global models are
active appearance models (AAMs) [23-25]. Besides many
applications for human face modeling (e.g., [24,26,27])
and medical image analysis (e.g., [28,29]), AAMs have also
been successfully applied to landmark tracking in X-ray
locomotion scenarios [17,30]. One major problem in our
scenario, however, is that the movement of the animals
often is very complex. As a result, especially for the lower
legs, landmark configurations during locomotion substan-
tially differ from the mean landmark configuration, i.e.,
the motions are non-stationary [31,32]. As discussed in
[31] and [33], this situation drastically complicates the
fitting of AAM-like models. Besides the non-stationary
motion, another major problem is the non-discriminative
texture information of the lower leg landmarks (cf. land-
marks 12 to 15 and 19 to 22 in Figure 1b), which addition-
ally complicates the fitting process of AAMs. Thus, the
aforementioned standard AAM-based approaches only
work when neglecting the set of non-stationary land-
marks, as in [17,30,34].
To combine the benefits of data-driven and model-

driven methods, several hybrid models were developed
over time. One straightforward example are combined
local models [35], where the shape is modeled globally,
as for AAMs, but the texture is modeled locally around
each landmark. A recently proposed probabilistic example
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of this approach are discriminative Bayesian active shape
models [36], where many local detectors are used to esti-
mate a global landmark configuration. Both approaches,
however, model landmark motions similarly to AAMs and
are thus very likely to suffer from the same problems as
well.

1.2 Motivation
As mentioned in the last subsection, data-driven [16] as
well as model-driven approaches [17,30] exist for land-
mark tracking in X-ray locomotion analysis. However, all
previously published works in this field suffer from at least
one of the following shortcomings, which is a major draw-
back for the usage of these methods for actual zoological
and biomechanical studies:

• Only very specific anatomical landmark subsets can
be tracked, e.g., the torso landmarks [17,30] or the
lower leg landmarks [16]. In addition, certain
landmarks exist which are covered by neither of the
current approaches, e.g., the lower leg landmarks of
the top camera view (cf. landmarks 12 to 15 and 19 to
22 in Figure 1b).

• Although model-driven and data-driven approaches
can generally complement each other (e.g., [36]), only
one paradigm is used at a time [16,17,30,34].

• For data-driven approaches, merely landmarks of the
side camera view are considered due to severe
self-occlusions in the top camera view [16].

• Modeling, tracking, and evaluation are performed
solely using two-dimensional (2D) approaches,
although an accurate camera calibration can be
obtained for newly recorded datasets [16,17,30,34].

• The validation of the tracking methods is performed
only on very few real-world datasets, as obtaining
ground-truth landmarks is a tedious and
time-consuming task [17,30,34].

As a consequence, while model-driven as well as
data-driven approaches exist for very specific landmark
subsets, neither of them alone is applicable for the full
tracking problem. The trivial option of simply merging
their results is not an option, because on the one hand
the landmark subsets would be tracked independently of
another and hence would not be consistent. On the other
hand, not all landmarks would be covered by these meth-
ods, as for instance the lower leg landmarks in the top view
(cf. Figure 1b). Our goal in this work is to overcome all
drawbacks mentioned above and to present an approach
which is holistic in the sense that all landmarks of the ani-
mal are modeled in one consistent framework. We base
the approach on the fact that existing methods [16,30] are
complementary, i.e., the first methodworks well on a land-
mark subset the second method is unsuited for and vice

versa. Our main idea is to unify these ‘subset approaches’
within a probabilistic framework to obtain consistent esti-
mates for all landmarks. While AAMs applied on the full
set of locomotion landmarks yield poor fitting results,
they are still well suited for modeling interrelationships
between landmarks. Therefore, we use AAMs as base
model for our approach. However, in contrast to stan-
dard AAMs, we augment the fitting process by imposing
constraints obtained from sources such as subset meth-
ods [16,30]. We first derive a probabilistic framework that
allows AAM fitting under arbitrary types of constraints.
While similar approaches such as [36] and [37] only utilize
positional priors, we aim to include additional constraints,
e.g., the anatomical context or the epipolar geometry
of the camera setup. As opposed to existing works in
this field, this framework allows to consistently incor-
porate all landmarks of both camera views while com-
bining the advantages of data-driven and model-driven
approaches. In addition, we evaluate our approach based
on 32 real-world datasets from three zoological studies
[6,7,34], including 175, 942manually labeled ground-truth
landmarks and birds of different morphology and locomo-
tion characteristics, which by far exceeds the amount of
data used in recent studies. An outline of our approach is
shown in Figure 2.
The remainder of this paper is structured as follows.

First, an overview of standard AAMs is given in Section 2,
as AAMs form the baseline of our method. In Section 3,
we present augmented AAMs as our approach for land-
mark tracking in X-ray locomotion sequences. After
deriving a general fitting framework, we describe the con-
straints used in our specific case. The validation of our
approach is presented and discussed in Section 4.

2 Active appearancemodels
This section gives an overview of standard AAMs [23-25],
which form the baseline of our augmented approach
presented in Section 3. AAMs are parametric sta-
tistical models which describe the visual appearance
of arbitrary object classes. The variation in object
appearance is modeled by a shape component (rep-
resented by image landmarks) and a shape-free tex-
ture component. AAMs are trained from sample images
with annotated landmark positions. Once learned, a
trained model can be fit to unseen images automat-
ically. In the following subsections, the basic train-
ing and fitting procedure of standard AAMs will be
described.

2.1 AAM training
AAM training is based on annotated sample images,
i.e., N images I1, . . . , IN with M corresponding land-
marks ln = (xn,1, yn,1, . . . , xn,M, yn,M), 1 ≤ n ≤ N . As
first step, the shape model is built by aligning the given
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Figure 2 Overview of augmented AAMs. Our holistic approach for landmark tracking in X-ray locomotion sequences. The fitting process of
standard AAMs is augmented by imposing constraints from methods that only perform well on a subset of landmarks (‘subset AAM’ and ‘local
tracking’). Additionally, further knowledge such as anatomical constraints and epipolar priors are included.

shape samples l1, . . . , lN with respect to translation, rota-
tion, and scale via Procrustes analysis [38,39], resulting in
shapes s1, . . . , sN . The shape variations are then parame-
terized by applying principal component analysis (PCA) to
the matrix S = (s1 − s, . . . , sN − s), where s = 1

N
∑N

n=1 sn
is the mean shape. The result is a linear model which
describes an arbitrary shape s based on its shape parame-
ters bs, the shape eigenvectors Ps, and the mean shape s of
all samples via

s = s + Psbs. (1)

An example of an AAM shape model is shown in Figure 3
for an animal locomotion dataset used in this paper. It
demonstrates that the movements of the lower legs are
very complex in both camera views and thus cannot be
handled well in the fitting process of standard AAMs.
The second step of AAM training consists of building

a texture model. Firstly, each image I1, . . . , IN is warped
into a common reference frame - usually themean shape s.

The shape-normalized images are then vectorized, result-
ing in the texture vectors g1, . . . , gN . Afterwards, the very
same PCA-based procedure as for the shape model is
employed, which results in the linear texture model

g = g + Pgbg, (2)

where g is an arbitrary shape-normalized texture with tex-
ture parameters bg, Pg are the texture eigenvectors, and
g = 1

N
∑N

n=1 gn is themean texture of the samples.
To obtain a combined representation of both shape and

texture, the third - albeit optional - step of AAM training
is to merge shape and texture parameters into one param-
eter set. This is achieved by concatenating the variance-
normalized shape and texture parameter vectors for each
training sample and again applying PCA. Therefore, each
object instance can then be represented by its combined
parameters bc. The final parameter count, i.e., the dimen-
sion of bc, is then reduced by discarding parameters which
explain only a small fraction of the total variance.

P ar. Shape (top view/side view)
− 2σ − 1σ Mean shap e +1 σ +2 σ

1st

2nd

3rd

Figure 3 Shape components of an AAM trained on a bird sequence. In this example, variations of the first three shape parameters for the top
view (left) and the side view (right) are shown. The movements of the lower legs are very complex in both camera views and cannot be handled
well in the fitting process of standard AAMs.
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2.2 AAM fitting
The goal of AAM fitting is to find the model parameter
vector b̂c that best fits an object instance shown in a given
input image. Technically, the optimization criterion is to
minimize the squared difference δg = ( gimage − gmodel)
between the given image and the synthesized appearance
of the AAM instance, i.e.,

b̂c = argmin
bc

δg�δg. (3)

In its original formulation [23-25], this problem was
solved in an iterative manner by assuming a linear
relationship δbc = Aδg between the necessary model
parameter changes δbc and the current image difference
δg, where A can be learned in advance. In general, how-
ever, such a simple constant relationship between δbc
and δg does not exist, which can lead to suboptimal fit-
ting results [40]. An alternative optimization approach for
Equation 3 is the inverse compositional/project-out algo-
rithm [40]. By decoupling shape and texture parameters, it
allows for a very efficient alignment that eliminates many
drawbacks of the original AAM fitting method.
Note, however, that our augmented AAM approach

presented in Section 3 is independent of the actual opti-
mization scheme - it is possible to base it on both the
additive as well as the inverse compositional methods
(cf. Subsection 3.1).

2.3 Multi-view extension
While standard AAMs can only be used for a single cam-
era view, possible extensions are available for scenarios
which contain more than one camera, e.g., [41] or [42].
In our case, a biplanar image acquisition is usual, albeit
also monocular sequences exist. In addition, for many
previously recorded datasets from biological studies such
as [7], a calibration of the camera setup is not available.
Therefore, in our locomotion scenario, it is generally not
possible to apply any of the methods mentioned above, as
they rely on certain assumptions about the scene. How-
ever, it is still possible to exploit relationships between
multiple camera views using multi-view AAMs [43,44], as
shown in [30].
The construction of multi-view AAMs is closely related

to standard AAMs. Let K denote the number of cam-
era views. As first step, the aligned landmark vectors
s(1)n , . . . , s(K)

n of all camera views are concatenated into
one vector s′n. Afterwards, PCA is applied to obtain the
multi-view shape model in the same manner as for stan-
dard AAMs. As for the multi-view landmarks, for each
training sample the texture vectors of all views are con-
catenated to form the vector g′

n and PCA is applied. Note
that this multi-view extension is used in exactly the same
manner for augmented AAMs, which are presented in the
following section.

3 Augmented AAM approach
In the following augmented AAMs, our extension of
standard AAMs are presented. As stated in the motivation
(cf. Subsection 1.2), the goal is to overcome poor fit-
ting results in cases of non-stationary shape activi-
ties [31,32] and non-discriminative texture information,
which is particularly true for the locomotion analysis sce-
nario presented in this paper. We achieve this goal by
augmenting the fitting process of standard AAMs by
including various types of constraints. A general overview
of augmented AAMs is shown in Figure 2. It depicts the
different components which contribute to the final sys-
tem, whereas most parts are directly based on the given
training data. An AAM trained on all landmarks of the
training data forms the baseline of our augmented AAM
(‘full AAM training’ in Figure 2). The fitting step of this
AAM is then augmented using constraints derived from
(1) a standard AAM trained only on the subset of sta-
tionary (i.e., torso and upper leg) landmarks, (2) local
tracking methods for lower leg landmarks, (3) anatomical
knowledge, and (4) the epipolar geometry of the scene.
In Subsection 3.1, we first derive a general framework

for the inclusion of AAM fitting constraints. The remain-
der of this section gives a detailed description of the par-
ticular constraints used for the application on locomotion
sequences. In Subsection 3.6, the necessary conditions
of our approach and the generalization ability to other
scenarios is discussed.

3.1 AAM fitting with constraints
For standard AAMs, it is not possible to include further
knowledge - i.e., constraints - into the fitting process.
We therefore reformulate AAM fitting within a maxi-
mum a posteriori (MAP) framework, which includes the
approach of [37] as a special case. By definition, the
MAP estimate b̂c,MAP of the combined AAM parame-
ter vector maximizes the posterior probability given the
observations, in our case the input image I and the fitting
constraints π , i.e.,

b̂c,MAP = argmax
bc

p(bc|I,π). (4)

By assuming conditional independence of the image data I
and the provided constraints π given the parameter vector
bc, we can rewrite Equation 4 as

b̂c,MAP = argmax
bc

p(I|bc) · p(π |bc) · p(bc). (5)

For the first likelihood term p(I|bc), not the whole input
image I is relevant, but only its sampled version gimage
which is based on the AAM shape configuration speci-
fied by bc, i.e., p(I|bc) = p( gimage|bc). As for standard
AAMs, we assume the fitting process to be initialized
at a parameter combination close to the optimal value.



Haase and Denzler EURASIP Journal on Image and Video Processing 2013, 2013:45 Page 6 of 13
http://jivp.eurasipjournals.com/content/2013/1/45

The likelihood can then be modeled as a Gaussian dis-
tribution gimage|bc ∼ N (gmodel,�gimage−gmodel) or equiv-
alently p(gimage|bc) = p(δg) with δg ∼ N (0,�δg). The
covariance matrix �δg of the texture errors can be esti-
mated in the training step of the AAM and is usually
assumed to be diagonal due to its large dimensionality
(cf. Subsection 2.2).
The likelihood term p(π |bc) of Equation 5 integrates

constraints into the fitting process. Here, π is a vec-
tor which contains the differences between given target
values (constraints) and the actual values based on the
current AAM parameters bc. We again assume a Gaussian
distribution, i.e., π |bc ∼ N (0,�π ). Concrete configura-
tions of π for different types of priors will be presented in
the following subsections. Note that if multiple prior types
are used, as is the case in our scenario, Equation 5 contains
one likelihood term for each prior type.
The prior term p(bc) of Equation 5 can be modeled in

various ways, e.g., using a uniform distribution (resulting
in a maximum likelihood estimation) or a zero-mean
Gaussian distribution [37]. To favor model configurations
with a low complexity, in this work we prefer the latter
method.
As a result of the above considerations, maximizing

Equation 5 is equivalent to minimizing its negative log
likelihood, thus

b̂c,MAP = argmin
bc

δg��−1
δg δg+π��−1

π π +bc��−1
bc bc. (6)

As mentioned above, Equation 6 can be optimized using
arbitrary methods. One possible approach is based on
the standard additive AAM parameter update scheme
[25], which is derived in [37] and is used in this work.
However, it is also possible to reformulate Equation 6 -
i.e., AAM fitting with constraints - for the inverse
composition/project-out approach [40], which in detail is
described in [45].

3.2 Anchor AAM
The first type of constraints we use for fitting the full-
body AAM are the results of an ‘anchor AAM’ or ‘subset
AAM,’ which is an AAM applied on the subset of sta-
tionary landmarks, i.e., the torso and upper leg landmarks
(cf. Figure 1). We include the results using the tracked
landmark locations as positional constraints. Therefore,
πanchor is the difference vector between target and cur-
rent landmark positions. To estimate the reliability of the
constrained positions and thus�πanchor , robust confidence
measures derived from the AAM fitting process (e.g., [46]
or [47]) can be applied.

3.3 Robust local tracking constraints
While standard AAMs have problems with landmarks
located at distal limb segments such as the lower legs,

the data-driven approach in [16] was specifically designed
for tracking in X-ray sequences containing occlusions. In
former studies, the method was proven to be well-suited
for tracking the subset of lower leg landmarks of the side
camera view, but it is inapplicable for landmarks with
more severe occlusions such as the knee landmarks of the
side view or feet landmarks of the top view. We include
the tracking results for the lower leg landmarks as addi-
tional constraints π local into the augmented AAM. As for
πanchor, the vector π local is the difference between target
and current landmark positions. For the estimation of the
corresponding covariance matrix�π local , the same options
as for the local detector used in [36] apply. In our case,
due to the high accuracy of the local method [16], it is
sufficient to use an isotropic covariance.

3.4 Anatomical constraints
For the challenging tracking scenario at hand, the inclu-
sion of anatomical context knowledge is an important
point to consider. As demonstrated in [16,48], one pos-
sibility is to perform a segmentation of the images into
relevant anatomical parts - in our case, the torso, left leg,
and right leg. For the side view of the bird locomotion sce-
nario at hand, this segmentation can be obtained in three
simple steps:

1. Global thresholding and contour finding −→
whole-body segment

2. Iterative ellipse fitting on the whole body −→ torso
segment

3. Removing the torso segment from the whole-body
segment −→ leg segments

Here, the main problem is to find the correct correspon-
dence between the two leg segments in the images and
their anatomical counterparts. We propose to use the
anchor AAM’s training data to train a regression model
which can predict the correct correspondence for the
entire sequence based on the AAM’s model parameters.
To include the results of the anatomical image segmen-

tation into the fitting process, we define πanatomical to
be the vector which for each landmark pm = (xm, ym)�
contains the minimum Euclidean distance to its corre-
sponding segment S(m), i.e.,

πanatomical,m = min
q∈S(m)

d( pm, q). (7)

To quickly obtain values for Equation 7 during the fitting
process, we precompute distance transformed images for
each segment using the algorithm presented in [49,50].
However, also, faster approximations for the distance
transform such as [51] can be used, as small errors in the
computed distances do not affect the overall result.
Because anatomical region constraints can only pro-

vide a coarse estimate for individual landmark positions,
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for the covariance matrix �πanatomical , we assume a scaled
identity matrix σ 2I, where σ 2 is chosen to be substan-
tially smaller than the covariances of other priors. This
has the effect that the fitting process at first is completely
driven by the anatomical constraints. When, as a result,
each landmark ln is aligned to its corresponding anatom-
ical segment S(m), i.e., pm ∈ S(m), the vector πanatomical
becomes zero and the fitting procedure is governed by
other constraints.

3.5 Epipolar priors
Although a camera calibration is not available for all
datasets, it is still possible to include knowledge about the
camera geometry into the fitting process. We can esti-
mate the fundamental matrix F by exploiting the fact that
point correspondences for the two camera views are avail-
able from the anchor AAM’s training data. For each pair
(vn,un) of homogenous landmarks from the top and side
view, we then add the additional constraint πepipolar with

πepipolar,n = v�
n Fun. (8)

Equation 8 becomes zero if vn is located on the epipolar
line Fun and vice versa. The covariance matrix �πepipolar
can be estimated by applying the points used for the
estimation of F on Equation 8.

3.6 Generalization to other scenarios
The presented method was specifically designed for the
skeletal locomotion tracking scenario at hand. For this
particular case, X-ray acquisition is a necessity, as all
skeletal landmarks of interest must be observable. In addi-
tion, all parts of interest of an animal must remain in
the field of view during the whole sequence, which gen-
erally implies the use of a treadmill. As the appearance
of the animal is modeled using multi-view AAMs [43,44]
(cf. Subsection 2.3), the camera setup must remain static
during a recording. Similarly, if a trained model is to be
reused for another sequence, the recordings must share
an identical camera setup. However, as for standardmulti-
view AAMs, the number of cameras used for a sequence is
flexible - in fact, the validation of our approach presented
in Section 4 includes datasets with one camera view as
well as datasets with two camera views.
More generally, the main characteristics of the data

which led to our approach are non-stationary landmark
movements and non-discriminative local texture informa-
tion of certain landmarks (cf. Subsection 1.2). Therefore,
the idea of augmented active appearance models should
be applicable for all scenarios (1) in which landmarks
and texture can be modeled by active appearance models,
(2) which suffer from the data characteristics mentioned
above, and (3) for which sufficient fitting constraints can
be obtained. One possible example might be a medical

scenario, in which certain anatomical structures are to be
tracked in an image sequence.

4 Experiments and results
The evaluation of our holistic approach for anatomi-
cal landmark tracking is performed on 32 real-world
X-ray bird locomotion sequences. The datasets were
recorded in the course of three large-scale zoological
studies - namely [7], [6], and [34] - and comprise five
species (quails, jackdaws, tinamous, bantams, and lap-
wings) which differ in morphology and locomotion char-
acteristics. The acquisition of all sequences was carried
out using a state-of-the-art biplanar high-speed X-ray sys-
tem, based on the Neurostar� X-ray device (Siemens
AG, Munich, Germany). All images have a resolution of
1,536× 1,024 pixels and were recorded at 1,000 frames
per second. A total of 42,909 frames (approximately
125 GB of raw image data) was used in the course of
this evaluation. Except for lapwings, all datasets have
a biplanar camera setup and use the multi-view ver-
sion of AAMs and augmented AAMs. Camera calibration
allowing three-dimensional (3D) triangulation and eval-
uation of the tracking results is available for exactly one
dataset. For each dataset, landmark positions manually
located by human experts (biologists) are available, usu-
ally for every tenth frame of a sequence. Typical land-
marks used for these datasets are depicted in Figure 1.
A total of 175, 942 ground-truth landmark positions were
used for the comparisons presented in this paper. The
actual number of ground-truth landmarks defined for
each image varies per dataset and ranges from 14 to
24, with typical values being 20 landmarks per image.
An overview of the employed datasets is shown in
Figure 4.
We evaluate our approach based on the point-to-point

error [52], i.e., the Euclidean error (in pixels for the 2D
case and in millimeters for the 3D case) between man-
ually located and automatically tracked landmark posi-
tions. For each sequence, an AAM was trained based on
exactly one stride, using the provided landmark data. In
any case, at most ten frames of a sequence were used
for AAM training. Afterwards, all frames of the sequence
were tracked using our presented augmented AAM
approach.

4.1 Comparison to standard AAMs
As a proof of concept, we first compare our augmented
AAMs to the results obtained by standard AAMs. For
both methods, identical experimental setups were used -
they only differ in the fitting method. The quantita-
tive and qualitative comparisons for the real-world bird
locomotion datasets are shown in Figure 5, grouped by
camera view and bird species. For a better overview,
landmarks are grouped into anatomical subsets: the torso
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Figure 4 Dataset overview. Overview of the 32 real-world bird locomotion datasets used for the evaluation of our approach. The datasets
originate from three zoological studies [6,7,34], including birds of different morphology and locomotion characteristics.

(e.g., pelvis, furcula, and neck), upper legs (hip joints and
knee joints), and lower legs (intertarsal joints and feet).
From the quantitative results presented in Figure 5a, it

can be seen that augmented AAMs substantially outper-
form standard AAMs in terms of fitting accuracy in any
case. This is particularly apparent for lower leg landmarks,
where median errors of up to 150 pixels are constantly
reduced to below 25 pixels for image sizes of 1,536× 1,024
pixels. As a typical example, for all 15 quail sequences,
the median point-to-point error of lower leg landmarks
of the side camera view is about 110 pixels for standard
AAMs and only about 20 pixels for augmented AAMs.
The reason for this result is that especially lower leg land-
marks are prone to non-stationary shape movements and
non-discriminative texture information, which drastically
complicates standard AAM fitting but can be handled
well by augmented AAMs. For other landmark groups,
augmented AAMs are also clearly superior to their stan-
dard AAM counterparts: for the example of the 15 quail
datasets, the median point-to-point error of torso land-
marks of the top camera view is about 25 pixels for stan-
dard AAMs and about 15 pixels for augmented AAMs.
The general performance disparity between the five bird
species can be explained by different locomotion charac-
teristics. For birds such as tinamous, the movement of the
lower leg landmarks is less dominant compared to species
such as jackdaws (cf. images in Figure 4).
In Figure 5b, qualitative tracking results for standard

AAMs and augmented AAMs are presented for the lower
leg landmarks of a jackdaw. It can be stated that the land-
marks located by standard AAMs are clearly inaccurate in
most cases, while augmented AAMs give reliable results.
An example video showing tracking results of standard
AAMs and augmented AAMs is provided in Additional
file 1.
The above comparison clearly shows that our aug-

mented AAM approach, as opposed to standard AAMs,
is well suited for tracking the entire set of anatomical

landmarks in this challenging scenario. Based on a large-
scale study which analyzes the accuracy of manually
located landmarks in X-ray locomotion scenarios [34],
it can be stated that the accuracy of our approach is
comparable to the performance of human experts.

4.2 Comparison to non-holistic approaches
While our augmented AAM approach is holistic in the
sense that all landmarks are modeled in one consis-
tent framework, it uses constraints obtained from meth-
ods which only perform well on very specific landmark
subsets (cf. Section 3).
The question that we therefore would like to address

is how an augmented AAM performs in direct compari-
son to each of the non-holistic approaches which provide
its constraints. Quantitative results of this comparison
are shown in Figure 6 for the two non-holistic tracking
methods:

1. Subset AAM: standard multi-view AAM for the
subset of torso and upper leg landmarks only [30]

2. Local tracking: robust local template tracking for
lower leg landmarks of the side view only [16]

It is important to note that for both cases, the evaluation
is performed only on the specific landmark subset of the
respective non-holistic method.
As can be seen in the top row of Figure 6, the median

error of the subset AAM is between 2 pixels (tinamous,
top view) and 5 pixels (quails, side view) smaller than
for corresponding landmarks of the augmented AAM.
For the example of quails, the median error of the side
view landmarks is about 10 pixels for subset AAMs,
and about 15 pixels for augmented AAMs. This effect
can be explained by the fact that the subset AAM is
optimized for these specific landmarks, while the aug-
mented AAM mediates between various fitting con-
straints for all landmarks - even those not covered in

http://www.biomedcentral.com/content/supplementary/1687-5281-2013-45-S4.1.avi
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(a)

(b)

Figure 5 Comparison of our augmented AAM approach to standard AAMs. The evaluation is based on 32 real-world bird locomotion datasets
comprising five species. In (a), the Euclidean point-to-point errors between tracked and ground-truth landmarks are shown as Tukey boxplots
grouped by trackingmethod, bird species, camera view, and landmark group. In (b), qualitative tracking results are shown for the example of a typical
jackdaw sequence. Our presented approach clearly outperforms standard AAMs in terms of fitting accuracy. Especially the lower leg landmarks
benefit drastically from the augmented method, as the median error is constantly reduced to below 25 pixels for image sizes of 1,536× 1,024 pixels.

this comparison. In addition, the shape and texture mod-
els of the augmented AAM are more complex due to
the increased scope and thus are harder to optimize.
The results of the second non-holistic method, robust
template tracking, are presented in the bottom row of
Figure 6 and show the same tendency. While local track-
ing is even more accurate than the subset AAM, the
performance of the augmented AAM is similar for both
comparisons. Here, the very same explanations as before
apply.
As a result, we can state that both non-holistic methods

are more accurate on their specific landmark subsets than
our holistic approach. However, the holistic approach
has the essential advantage that it also can reliably and
consistently track landmarks which are covered by neither
of the non-holistic approaches, as for instance the lower
leg landmarks of the top camera view (cf. Figure 5).

4.3 Influence of constraints
As our approach combines several fitting constraints, an
important aspect is the practical relevance of individual
constraint types. It is to be expected that positional
constraints such as local tracking priors will have a
larger benefit on fitting accuracy than, e.g., anatomical
constraints. However, the question is whether a com-
bination of several constraints can improve the fitting
results. We therefore compare the performance of aug-
mented AAMs using different combinations of con-
straints described in Section 3.
In Figure 7, quantitative results of this analysis are

depicted. Due to the large amount of comparisons, results
are exemplarily shown for jackdaws and tinamous, which
according to Figure 5 have the worst and best tracking per-
formance, respectively. It can be seen that torso and upper
leg landmarks behave similarly for either case. Whenever
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Figure 6 Comparison of augmented AAMs to non-holistic methods. Subset AAM corresponds to non-holistic method of standard AAMs
applied on its subset of well-trackable landmarks (torso and upper leg, cf. Subsection 3.2), as presented in [17,30,34]. Local tracking denotes the
non-holistic data-driven tracking approach of [16] applied on its subset of well-trackable landmarks (lower leg, cf. Subsection 3.3). On their specific
landmark subsets, non-holistic methods are superior to augmented AAMs. However, augmented AAMs incorporate all landmarks in a consistent
framework and also provide reliable positions for landmarks which are not covered by any of the non-holistic approaches.

constraints of the anchor AAM are provided for these
landmarks, the holistic model seems to reach its maxi-
mum accuracy and no other constraints are beneficial.
Similarly, for lower leg landmarks, it is sufficient

to use local template tracking constraints in easy
scenarios (tinamous). However, in more challenging

scenarios (jackdaws), all constraints contribute to the
final fitting performance. In both scenarios, epipolar
constraints primarily improve the results of the top
view. This is mainly due to the fact that the lower
leg landmarks have no positional constraints for the
top view and thus have a larger inaccuracy. While
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anatomical constraints do not increase accuracy when
used together with local constraints, they improve
results of standard AAMs in complicated scenarios (jack-
daws). This fits their intended purpose of providing a
rough initial landmark estimate for the other constraints
(cf. Section 3).
An example in Figure 7 which demonstrates all aspects

of the above argumentation is the case of lower leg land-
marks in the top view for jackdaws. In case that no
constraints are used (‘none,’ standard AAMs), the median
point-to-point error is larger than 125 pixels. If all but
local tracking priors are employed (‘without local’), a
median error of about 55 pixels is obtained. When using
all priors (‘all,’ augmented AAMs), the median error is
smallest with about 25 pixels.

4.4 3D evaluation of tracking results
To allow an analysis of uncalibrated animal locomotion
datasets recorded in previous biological studies such as
[7], augmented AAMs do not rely on a calibrated cam-
era setup, albeit both X-ray camera views are modeled
in a consistent manner. However, for datasets having
calibration information available, using 3D landmark
positions instead of projected 2D positions is desired for
biological evaluations (e.g., [8]). In the case of a known
camera calibration, this can be achieved by triangulat-
ing the 2D tracking results of both X-ray camera views
[53,54]. Similarly, we obtain 3D ground-truth landmarks
by triangulating the given 2D ground-truth landmark
locations. In the following, we evaluate the 3D accu-
racy of the landmarks tracked with our approach in
order to

1. State whether our approach is accurate enough to
produce reliable 3D results

2. Obtain an upper error bound for pure 3D tracking
methods

Currently, camera calibration is only available for
exactly one of the 32 datasets presented above - namely
a quail dataset having 1,841 frames which cover 24 steps.
For the calibration of this dataset, a custom-built metal
plate with a size of 140mm × 60mm × 0.5mm was
employed. It contains 18 uniquely identifiable holes which
are easily detectable in both X-ray as well as visible light
cameras. For the actual calibration, we use the method
of Zhang [55]. The mean backprojection error of the
intrinsic camera calibration is 0.27 pixels at an image size
of 1,536× 1,024 pixels.
In Figure 8, both qualitative as well as quantitative

results of the 3D evaluation are presented. From the quan-
titative results in Figure 8a, it can be seen that the median
point-to-point error of all landmark types is below 5mm.
Compared to the animal’s body length of 200mm, this
error is negligible for many practical biological evalua-
tions. Additionally, this error serves as a rough upper
bound for methods which perform pure 3D tracking. The
largest median error (5mm) is obtained for lower leg land-
marks, which is in accordance with the results of the 2D
evaluation (cf. Figure 5). The rather surprising result that
upper leg landmarks have a slightly lower median error
(2.7mm) than torso landmarks (3.5mm) is caused by 2D
tracking inaccuracies in the top view of this particular
dataset. To allow a visual assessment of the 3D accuracy,
Figure 8b shows the reprojected landmark positions for
one step of the animal which was additionally filmed with
a visible light camera. A video showing these reprojected
3D landmarks is provided in Additional file 2.

4.5 Implementation details
Both the augmented AAM approach presented in this
work as well as the standard AAMs were entirely imple-
mented in the programming language R (http://www.
r-project.org/). The robust template tracking approach
of [16] which is used to provide local AAM fitting

(a) (b)

Figure 8 3D evaluation of landmark tracking using augmented AAMs. The evaluation was based on one quail dataset with known camera
calibration. 3D landmark positions were obtained by triangulating 2D tracking results. In (a), the 3D Euclidean point-to-point errors between
triangulated tracked and triangulated ground-truth landmarks are shown as Tukey boxplots grouped by landmark group. The quail has a body
length of approximately 200mm. Based on these results, a median error of 5mm can be seen as a rough upper bound for future methods which
perform pure 3D tracking. In (b), reprojected landmarks are shown for a visible light camera to visualize the accuracy.

http://www.biomedcentral.com/content/supplementary/1687-5281-2013-45-S4.4.avi
http://www.r-project.org/
http://www.r-project.org/
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constraints was implemented in C++ using the OpenCV
library [56]. All experiments were performed on a typ-
ical desktop computer with an Intel� CoreteTM i5-760
CPU at 2.80 GHz. On average, the creation of all fitting
constraints for the augmented AAM was performed at
13.2 frames per second (fps) for the anchor AAM, 11.4
fps for local tracking constraints, and 2.8 fps for torso
and leg distance constraints (cf. Section 3). Given these
constraints, our implementation of augmented AAMs
runs at 0.5 fps. Note that this value could be drastically
increased using a pureC/C++ implementation, employing
the inverse compositional/project-out [40,45] optimization
instead of the additive method [37] and by exploiting the
vast parallelization capability of the approach. In the ani-
mal locomotion scenario at hand, however, a real-time
processing of datasets is not of primary importance.

5 Conclusions and further work
In this paper, we presented augmented active appear-
ance models, a general approach for AAM fitting in cases
of non-stationary shape motions and non-discriminative
local texture information. Our method is based on a holis-
tic, probabilistic framework which allows the inclusion
of arbitrary fitting priors. We applied our approach to
the challenging scenario of landmark tracking in X-ray
animal locomotion sequences, for which until now only
methods for specific landmark subsets existed. For this
particular scenario, we presented various types of suitable
fitting constraints that were included into our probabilis-
tic framework. Extensive experiments based on 32 real-
world datasets including 175,942 ground-truth landmark
positions showed that our approach clearly outperforms
standard AAM fitting and allows to reliably track all land-
marks of interest. In addition, we could show that the
accuracy of our approach is sufficient to provide reliable
3D landmark estimates for calibrated datasets.
For further work, an interesting and relevant point to

consider is the scenario of non-cyclic locomotion, for
instance birds running over obstacles. Another impor-
tant problem we want to solve is how to transfer already
trained models to different tracking scenarios, such as
adapting a quail model to be able to track tinamous. Both
points mentioned require an adaption of a given model to
novel cases, and we plan to utilize methods from incre-
mental learning [47] and domain adaptation for this task.
Inspired by the promising results of 3D landmark estima-
tion for calibrated datasets, another idea for further work
is the inclusion of additional imaging modalities such as
visible light cameras into the tracking process.

Additional files

Additional file 1: Video 1. Qualitative tracking examples. This video
shows some qualitative landmark tracking results for the scenario of
grounded bird locomotion.

Additional file 2: Video 2. 3D landmark reconstruction examples. This
video shows an example of 3D landmark estimation using augmented
AAMs for the scenario of grounded bird locomotion.
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