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Abstract

To tackle the growing complexity and huge demand for tailored domestic video surveillance systems along with a
high demanding time-to-market expectation, engineers at VW Automacao, LDA? are exploiting video surveillance
domain as families of systems that can be developed following a pay-as-you-go fashion rather than developing an ex-
nihilo new product. Several and different new functionalities are required for each new product’s hardware platforms
(e.g, ranging from mobile phone, PDA to desktop PC) and operating systems (e.g., flavors of Linux, Windows and MAC
OS X). Some of these functionalities have special economical constraints of development time and memory footprint.

To better accommodate all the above listing requirements, a model-driven generative software development
paradigm supported by mainstream tools is proposed to offer a significant leverage in hiding commonalities and
configuring variabilities across families of video surveillance products while maintaining the new product quality.

1 Introduction
Nowadays there is a growing demand for video surveil-
lance systems [1]. The development of these systems
is increasingly complex since there is a high demand
for new products with a rising number of different
requirements [2].

However, it can be noticed that the increasing com-
plexity is induced by the variability in tasks related to
image capturing, image processing, communications and
computer vision [3]. Furthermore, it is now expected that
the system runs in different hardware platforms, ranging
from desktop PCs to low cost embedded boards, mobile
phones, etc.

The majority of system designers use modular archi-
tectures based on Microsoft DirectShow implementation
[4,5] in order to address the growing complexity of novel
products and the ever increasing time-to-market pres-
sure. In this implementation, all system functionalities
are implemented as individual plug-ins or filters. Later,
these plug-ins will be connected following the pipeline
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execution model (filter graph) through a generic interface.
In this way, higher flexibility, customizability and reusabil-
ity can be achieved for video surveillance oriented design.
Furthermore, at run time, only the required plug-ins for
a given configuration will be loaded and a new system
configuration can be implemented by simply defining new
plug-ins to be loaded and the connections among them.

In the case of embedded systems, such an implemen-
tation incurs a huge abstraction penalty [6-9], since it
is based on weighty language’s dialects (i.e., features
that increase overhead in space and performance), like
dynamic polymorphism.

In order to tackle these embedded systems constraints
[6], video surveillance systems can be implemented as a
software product line (SPL) [2,10] by designing plug-ins
which fit all possible video surveillance system’s configu-
rations and simply reusing the common features of several
configurations while considering the variable features that
identify each system specific configuration.

Based on practical experience at IVV in tackling the
design challenges of video surveillance systems, new
software technologies such as model driven develop-
ment [11] and generative programming [12], should be
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combined with SPL engineering to bridge the abstraction
gap between domain modeling and feature modeling.

The remainder of this article is structured as follows.
The following section deliberates related works. Next, in
Section 3, Microsoft DirectShow is reviewed, together
with brief discussion on how to reverse engineer it.
Section 4 focuses on video surveillance domain engi-
neering by implementing the feature modeling. Section 5
presents the details of video surveillance application
engineering, showing how model-driven engineering
techniques are employed to establish the relationships
between video surveillance feature models and video
surveillance domain model. It also describes how offline
and online partial evaluators [13] will be applied, respec-
tively, at whole system and filter designs. In Section 6, the
implementation of a SDK for video surveillance product
line development is described. Section 7 presents some
results. Finally, in Section 8 we conclude the article and
present some directions of future study.

2 Related work

The amount of research works in this field is very large,
so this short literature survey describes related works
that apply similar software technologies, describes video
surveillance systems design and/or manages variability.

In [2], a mixture of model-driven and generative pro-
gramming techniques are proposed to support variability
configuration of video surveillance systems. In order to
better manage features combination at runtime, it sepa-
rates the variability in domain and code representation
spaces.

In [14], Aspect-Oriented Programming (AOP) is
employed in order to avoid crosscutting concerns by man-
aging the existing variability in operating systems domain.
Even though the use of AOP enables higher levels of gran-
ularity when compared with other variability management
strategies, it incurs in higher overhead depending on the
applied type of advice and the inability to manage variabil-
ity in systems with several instances of the same class each
with different requirements.

In [15], to better tackle the time-to-market pressure
during the developing of digital games the use of genera-
tive programming was proposed. In [16], a Fujaba plug-in
for SPL development was described using model-driven
techniques. The main focus is on how to bridge the gap
between feature modeling and domain modeling with
annotations.

In [17], new mechanisms are explored in order to better
specify and understand the relationship between system
variability and requirements by combining SPL, Aspect-
orientation and model-driven techniques. The Ample
project, presents two complementary languages, RDL and
VMLA4RE, to allow specifying and reasoning about cross-
cutting relationships between features and requirements.
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In [18], Matilda is described. Matilda is a model-driven
development framework that allows automatic code gen-
eration through transformations using UML models while
addresses the abstraction gap and lack of traceability
related to current model-driven development practice. In
this way, the developer analyses, designs and executes
applications in modeling layer, abstracting it from the
programming layer.

In [19], generative programming as an automatic selec-
tion and assembly of components based on configuration
knowledge and a set of construction rules is proposed. A
layered architecture, called GenVoca is used and the con-
figuration knowledge is implemented using C++ template
metaprogramming as generator.

3 Microsoft directshow and its reverse
engineering

DirectShow is a pipeline-based media-streaming architec-
ture and API based on component object model (COM)
framework that provides a common interface for media
across several programming languages. It’s a filter-based
framework that implements a complex multimedia appli-
cation by connecting several filters of three main kinds
(i.e., source, transform and renderer filters) through their
input and output pins using filters graphs to provide
specific functionality [5].

Since DirectShow SDK only offers partial code of the
framework, we run a reverse engineering process using
IDA Pro [20] on quartz.dll to figure out its real architec-
ture, starting with the CFilterGraph class.

Due to the limited space, we'll only present how the
implemented interfaces at CFilterGraph class were identi-
fied as well as the overhead of a filter class like CMjpegDec.
Listing 1 partially shows the assembly code of the CFilter-
Graph constructor where the initialization of the virtual
tables for each defined interface is visible. The register esi
points to the data member of the class (i.e., this pointer)
while the first memory addresses point to the interfaces
virtual tables implemented by CFilterGraph class. Figure 1
presents CFilterGraph class layout with special focus on
its thirteen direct and ten indirect interfaces through the
pointer, m_pFGControl, to an object of CFGControl class
that encapsulates all filter graph control functionalities.

3.1 Listing 1 Partial Assembly code of CFilterGraph class
constructor
1 ??0CFilterGraph@@AAE@PAGPAUIUnknown@@-
PAJ@Z proc near

3 ...mov esi, ecx ; esi = this... call

4 CBaseFilter::CBaseFilter(ushort const *,]JUnknown
*,CCritSec %,_GUID

5 const &) push [ebp+cbData] mov dword ptr
[ebx], offset
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Figure 1 CFilterGraph class layout and its implemented interfaces.
6 CFilterGraph::‘vftable’{for ‘CUnknown’} xor ebx, 13 [esi+10h], offset CFilterGraph::‘vftable’{for
ebx lea ecx, ‘TAMMainThread’} mov
7 [esi+9Ch] mov dword ptr [esi], offset 14 dword ptr [esi+14h], offset
8 CFilterGraph::‘vftable’{for ‘IFilterGraph2’} mov CFilterGraph::‘vftable’{for
dword ptr 15 TAMOpenProgress’}mov dword ptr [esi+18h],
9 [esi+4], offset CFilterGraph::‘vftable’{for offset
‘IGraphVersion’} mov 16 CFilterGraph::‘vftable’{for TAMGraphStreams’} mov
10 dword ptr [esi+8], offset CFilterGraph::‘vftable’{for dword ptr
11 ‘IPersistStream’} mov dword ptr [esi+0Ch], offset 17 [esi+1Ch], offset CFilterGraph::‘vftable’{for
12 CeFilterGraph::‘vftable’{for ‘IObjectWithSite’} mov ‘IVideoFrameStep’} mov
dword ptr 18 dword ptr [edi], offset CFilterGraph::‘vftable’{for
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19 ‘IServiceProvider’} mov dword ptr [esi+24h], offset

20 CFilterGraph:‘vftable’{for TRegisterServiceProvider’}
mov dword

21 ptr [esi+54h], offset CFilterGraph::‘vftable’{for
‘IBaseFilter’} mov

22 dword ptr [esi+58h], offset
CFilterGraph::‘vftable’{for

23 ‘TAMovieSetup’} mov [esi+98h], ebx...

From the CMjpegDec class constructor analysis, List-
ing 2, the following code segments were identified,
informing us that it inherits from CVideoTransform-
Filter class and implements IUnknown, IBaseFilter and
IAMovieSetup interfaces:

i. Initialization of the stack frame from line 1 to 3;

ii. Calling of CVideoTransformFilter constructor as a
base class from line 6 to 10;

ili. Registering of virtual tables addresses for each
implemented interface from line 15 to 17;

iv. Initialization of class variable members from line 18
to 24;

v. Returning to the caller with stack restoring from line
25 to 31.

3.2 Listing 2 CMjpegDec class constructor assembly code
1 mov edi, edi push ebp ; save ebp mov ebp, esp ;
2 save stack frame push esi ; save esi push edi ;
3 save edi push offset _CLSID_MjpegDec ; push
CLSID_MjpegDec
4 (REFCLSID) push [ebp+arg_4] ; push pUnk

(LPUNKNOWN) mov

5 esi, ecx ; esi = this push [ebp+arg_0] ; push pName
(TCHAR

6 *)call
CVideoTransformFilter:CVideoTransformFilter(...) ;
call

7 the base class xor edi, edi ; edi = 0 push edi
8 ; push nDefault (INT) push offset aMjpegnoskip ;
push
9 “MJPEGNoSkip” (LPCTSTR lpKeyName) push
offset AppName ; push
10 “Quartz” (LPCTSTR IpAppName) mov dword ptr
[esi], offset
11 CMjpegDec::‘vftable'{for ‘CUnknown’} mov dword
ptr [esi+0Ch],
12 offset CMjpegDec::‘vitable’{for ‘IBaseFilter’} mov
dword ptr
13 [esi+10h], offset CMpegAudioCodec::‘vftable’ for
‘TAMovieSetup’ mov
14 [esi+0COh], edi mov [esi+0C8h], edi mov
[esi+0CCh], edi mov
15 [esi+0DOh], edi mov [esi+0D4h], edi call
16 GetProfileIntW (x,x,x) ; GetProfileInt(“Quartz”,
“MJPEGNoSkip”, 0);

Page 4 of 24

17 mov [esi+0B0h], eax mov eax, [ebp+arg_8] ; eax =
phr;

18 (HRESULT x*phr) mov [eax], edi ; xphr =
NOERROR; pop

19 edi ; restore edi mov eax, esi ; ret = this pop

20 esi ; restore esi pop ebp ; restore ebp retn

21 OCh ; return and clean stack

Listing 3 shows the assembly code of CMjpegDec::-
Transform method that receives a media sample (i.e.,
IMediaSample *pIn) and outputs another media sample
(i.e., IMediaSample *pOut), with the image decompres-
sion carried out at line 7 by the function DecompressBegin
that receives as arguments an output YCbCr buffer, an
input JPEG image buffer and an image header info.

3.3 Listing 3 CMjpegDec::Transform method partial

assembly code

1 mov [ebp+ms_exc.disabled], 1 push dword ptr
[esi+0COh] call

2 _DecompressEnd@4 ; DecompressEnd(x) push
[ebp+pInfoHeader] ;

3 image header push edi ; image src buffer push

4 dword ptr [esi+0COh] ; image dst buffer call
_DecompressBegin@12

5 ; DecompressBegin(x,x,x) ; decompress frame or

6 [ebp+ms_exc.disabled], OFFFFFFFFh and
[ebp+var_6C], 0

Listing 3 shows the assembly code of CMjpegDec::-
Transform method that receives a media sample (i.e., [Me-
diaSample #pIn) and outputs another media sample (i.e.,
IMediaSample *pOut), with the image decompression
carried out at line 7 by the function DecompressBegin that
receives as arguments an output YCbCr buffer, an input
JPEG image buffer and an image header info.

Listing 4 partially shows the disassembling of Decom-
pressBegin function indicating that MJpegDec filter uses
IJG JPEG library during decompression process. Deeper
analysis of this function revealed through the C routines
into the library that it’s a generic JPEG decompressor
implementation full of variations and consequently with a
severe dead code overhead.

3.4 Listing 4 Partial disassembling of DecompressBegin

function

1 lea edi, [esi+1F8h] lea eax, [esi+8] push eax call

2 _jpeg-exception_error@4 ; jpeg-exception_error(x)
mov [edi], eax

3 push edi call _jpeg_create_decompress@4 ;

4 jpeg_create_decompress(x) mov byte ptr [esi+399h],
1 mov

5 eax, [ebx+10h] test eax, eax jnz loc_74823996
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Complementing this information with a reverse engi-
neering on the SDK source code, Figures 2, 3 and 4
describe the DirectShow static architecture.

4 Video surveillance domain engineering

We'll follow the usual approach for SPL development
organized in domain engineering and application engi-
neering, with the former also defined as “development for
reuse” and split into domain analysis, domain design and
domain implementation. Application engineering is also
defined as “development with reuse” SPL technology con-
sists of a set of tools, methods and techniques to create
a set of products, software systems, from a common base
for all products (i.e., all system settings) [13]. Furthermore,
to bridge the gap between variability model and model ele-
ments and automate the mapping of system configuration
to the domain model and generating the final code, we fol-
lowed the MDD process proposed in [16] as showing in
Figure 5.

4.1 The domain analysis

The domain analysis is split in domain scope that deter-
mines which systems and features are part of video
surveillance domain (Figure 6) and feature modeling
which identifies the commonality and variability as well as
the relationship among features in the variability model.
Feature modeling was proposed as a part of the Feature
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Oriented Domain Analysis (FODA) [21], and since then, it
is applied in various fields. The model features are visually
represented by functionality diagrams that model sys-
tem variability notwithstanding the used implementation
mechanism, such as inheritance, templates or conditional
compilation.

For the video surveillance domain, several feature dia-
grams are provided—one for the filter graph or pipeline
and one for each type of filter (Figures 7, 8, 9 and 10).

The feature diagram of the filter graph, Figure 7, iden-
tifies and classifies all filters that compose the filter graph
as well as all possible links between them. The root node
represents the concept (i.e., filter graph) that consists of
three features, one for each type of filters that make up
the filter graph (i.e., source, transform and renderer fil-
ters). The source filter concept contains two alternative
features, live device or file, meaning that in any video
surveillance system instance, only one of them should be
included. The transform filter concept consists of two or-
features (i.e., codecs and Processing), meaning that any
video surveillance system instance has at least one of
them.

As indicated by the cardinalities [0..*] and [1..*], the
transform filters are optional and a filter graph can present
none, one or several of them, and source and rendering
filters are mandatory, i.e., a filter graph or pipeline must
present at least one of each.

CFilterGraph

T

«interface» «interface»

IFilterGraph2 IGraphVersion

«interface»
I0bjectWithSite

«interface»
IAMOpenProgress

CServiceProvider CBaseFilter

-+AddSourceFilterForMoniker() : unsigned long |+QueryVersion() : unsigned long|

+SetSite() : unsigned long|
+GetSite() : unsigned long|

+QueryProgress() : unsigned long|
+AbortOperation() : unsigned long|

+RenderEx() : unsigned long

+ReconnectEx() : unsigned long %

«interface»

«interface»

+Connect() : unsigned long

+Render() : unsigned long

+RenderFile() : unsigned long
+AddSourcefFilter() : unsigned long
+SetlLogFile() : unsigned long

+Abort() : unsigned long
+ShouldOperationContinue() : unsigned long

+Querylnterface() : unsigned long|
+AddRef() : unsigned long
+Release() : unsigned long

——

«interface»
IUnknown

«interface»
IUnknown

+Queryinterface() : unsigned long|
+AddRef() : unsigned long
+Release() : unsigned long

+Querylnterface() : unsigned long
+AddRef() : unsigned long
+Release() : unsigned long

——

«interface»

«interface»

IFilterGraph
+AddFilter() : unsigned long
+RemoveFilter() : unsigned long
+EnumeFilters() : unsigned long
+FindFilterByName() : unsigned long
+ConnectDirect() : unsigned long
+Reconnect() : unsigned long
+Disconnect() : unsigned long
-+SetDefaultSyncSource() : unsigned long|

«interface»

IUnknown
+Querylnterface() : unsigned long|
+AddRef{() : unsigned long
+Release() : unsigned long

«interface»
IAMMainThread

+IsDirty() : unsigned long
+Load() : unsigned long
+Save() : unsigned long
+GetSizeMax() : unsigned long|

«interface»
IPersist

+GetClassID() : unsigned long

«interface»
IUnknown

+Querylinterface() : unsigned long
+AddRef() : unsigned long
+Release() : unsigned long

+PostCallBack() : unsigned long
+IsMainThread() : unsigned long

+GetMainThread() : unsigned long

«interface»
IUnknown

+Querylnterface() : unsigned long|
+AddRef() : unsigned long
+Release() : unsigned long

Figure 2 CFilterGraph class diagram showing the multiple inheritance.

«interface»
+Step() : unsigned long
+CanStep() : unsigned long|
+CancelStep() : unsigned long|

«interface»

IUnknown
+Querylnterface() : unsigned long
+AddRef() : unsigned long
+Release() : unsigned long

«interface»
IAMGraphStreams

+FindUpstreaminterface() : unsigned long
+SyncUsingStreamOffset() : unsigned long
+SetMaxGraphLatency() : unsigned long

«interface»

IUnknown
+Querylinterface() : unsigned long|
+AddRef() : unsigned long
+Release() : unsigned long




Cardoso et al. EURASIP Journal on Embedded Systems 2012, 2012:7
http://jes.eurasipjournals.com/content/2012/1/7

Page 6 of 24

CBaseFilter

-m_State : FILTER_STATE
-m_pClock : IReference Clock

+GetState() : unsigned long
+SetSyncSource() : unsigned long
+GetSyncSource() : unsigned long

+...()

«interface»
IBaseFilter

«interface»
IAMovieSetup

+EnumPins() : unsigned long
+FindPin() : unsigned long
+QueryFilterinfo() : unsigned long
+JoinFilterGraph() : unsigned long
+QueryVendorinfo() : unsigned long

+Register() : unsigned long
+Unregister() : unsigned long

L%

«interface»
IUnknown

«interface»
IMediaFilter

+Stop() : unsigned long

+Pause() : unsigned long

+Run() : unsigned long
+GetState() : unsigned long
+SetSyncSource() : unsigned long
+GetSyncSource() : unsigned long

+Querylnterface() : unsigned long
+AddRef() : unsigned long
+Release() : unsigned long

«interface»
IPersist

+GetClassID() : unsigned long

L%

«interface»
IUnknown

+Querylnterface() : unigned long
+AddRef() : unsigned long
+Release() : unsigned long

Figure 3 CBasefFilter class diagram.

CUnknown

-m_pUnknown : CUnknown
#m_cRef : long

+GetOwner() : CUnknown
+NonDelegatingQueryInterface() : unsigned long
+NonDelegatingAddRef() : unsigned long
+NonDelegatingRelease() : unsigned long

CBaseObject

-m_cObjects : long

«interface»
INonDelegatingUnknown

+ObjectsActive() : long

+NonDelegatingQuerylnterface() : unsigned long|
+NonDelegatingAddRef() : unsigned long
+NonDelegatingRelease() : unsigned long

All the above feature diagrams are internally repre-
sented using XML notation as can be shown in Listings 5
and 6 for the description of the File renderer filter and

filter graph, respectively.

4.2 Listing 5 XML Feature diagram of a renderer filter

designed File
1 <?xml version="1.0" ?> <feature name="File”>
2 <feature name="Localization” type="Mandatory”>
3 <featureGroup type="Alternative”>
4 <feature name="Local” type="Mandatory”/>
5 <feature name="Remote” type="Mandatory”>
6 <featureGroup type="Alternative”>
7 <feature name="SMB” type="Mandatory”/>
8 <feature name="FTP” type="Mandatory”/>
9 </featureGroup>
10 </feature>
11 </featureGroup>
12 </feature>
13 <feature name="Format” type="Mandatory”>
14 <featureGroup type="Alternative”>
15 <feature name="AVI” type="Mandatory”/>
16 <feature name="WAV” type="Mandatory”/>
17 <feature name="OWN” type="Mandatory”/>
18 </featureGroup>

19
20

4.3

HOWWNOUTE WM -

</feature>
</feature>

Listing 6 Filter graph XML Feature diagram

<?xml version="1.0" ?> <feature name="Filter Graph”>

w, n

<feature min="1"max="+"name="Source Filter"type="Mandatory”>
<featureGroup type="Alternative”>
<feature name="Live Device” type="Mandatory”>

<featureGroup type="Alternative”>
<feature name="Analogic Camera” type="Mandatory’/>
<feature name="Microphone” type="Mandatory”/>
<feature name="IP Camera” type="Mandatory”/>

</featureGroup>

</feature>

</ féétureGroup >

</feature>

<feature min="1"max="+"name="Renderer Filter”
type="Mandatory™>
<featureGroup type="Or”">
<feature name="Transmission” type="Mandatory”>
<featureGroup type="“Alternative”>

<feature name="HTTP” type="Mandatory”/>
<feature name="RTSP” type="Mandatory”/>
</featureGroup>
</feature>

</featureGroup>
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CBasePin

-m_pName : wchar_t
-m_Connected : IPin

+AttemptConnection() : unsigned long
+TryMediaTypes() : unsigned long
+...()

«interface» «interface»
IPin IQualityControl

CUnknown

+Connect() : unsigned long +Notify() : unsigned long
+ReceiveConnection() : unsigned long +SetSink() : unsigned long

-m_pUnknown : CUnknown
#m_cRef : long

+GetOwner() : CUnknown

+Disconnect() : unsigned long
+ConnectedTo() : unsigned long
+ConnectionMediaType() : unsigned long

+NonDelegatingQueryInterface() : unsigned long
+NonDelegatingAddRef() : unsigned long

+EnumMediaTypes() : unsigned long +Release() : unsigned long

+QueryPininfo() : unsigned long «interface» +NonDelegatingRelease() : unsigned long
+QueryDirection() : unsigned long 1Unknown

+Queryld() : unsigned long +Querylnterface() : unsigned long

+QueryAccept() : unsigned long +AddRef() : unsigned long

+QuerylnternalConnections() : unsigned long
+EndOfStream() : unsigned long
+BeginFlush() : unsigned long
+EndFlush() : unsigned long
+NewSegment() : unsigned long

T

«interface»

IUnknown
+Queryinterface() : unsigned long
+AddRef() : unsigned long
+Release() : unsigned long

Figure 4 CBasePin class diagram.

«interface»
INonDelegatingUnknown
+NonDelegatingQuerylnterface() : unsigned long
+NonDelegatingAddRef() : unsigned long
+NonDelegatingRelease() : unsigned long

CBaseObject
-m_cObjects : long
+ObjectsActive() : long

25  </feature>
26 </feature>

4.4 The domain design and implementation

Domain design is the next step after the specification
of applications and components in video surveillance
domain and its main goal is developing a common archi-
tecture for the video surveillance family of products.
Having defined the common architecture, the imple-
mentation domain proposes developing configurable and
customizable components to support the implementa-
tion of the video surveillance system domain architecture
[22]. The implemented generative-friendly framework for
video surveillance software product family, basically, han-
dles variability at two levels of granularity (intra-filter and
inter-filter) and consists of:

(i) Several and different artifact templates encoded in
C++ template metaprogramming for each type of
filter that is generated;

(ii) A filter graph artifact template describing the
pipeline as a confederation of filters based on
component technology and encoded in C++
template metaprogramming;

(ili) A set of meta-expressions and presence conditions
with direct correspondence to the artifact templates

and their variability points, and expressed in terms of
features used to map features in feature models to
the artifact templates, and so, giving semantics to
those features [23];

(iv) A set of implicit rules for filters connection and
validation, are internal and implicitly defined as part
of filter graph within its built-in Intelligent
Connector. These rules are also encoded in C++
metaprogramming artifact templates.

4.4.1 The filter artifact template

The filter artifact template does not implement an arti-
fact template for each filter type, in opposition to other
filter implementations that classify each filter by cate-
gory using specific classes for the purpose. Instead, all the
filters follow the same implementation that allows the rep-
resentation of artifact filters in a more flexible manner.
This methodology was used to allow easier refactoring of
legacy code from external libraries that implements some
filters functionalities. The framework allows exploring the
granularity at two levels: coarse-grained and fine-grained.
A coarse-grained granularity allows changing between
filters; as an example, changing a JPEG transformation
filter by a H.264 transformation filter. A fine-grained
granularity allows having different instances of the same
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filter to satisfy the system requirements, e.g., the JPEG
transformation filter can have a generic implementation
and an optimized implementation.

To develop a new filter artifact template, the unique
requisites that the filter needs to implement are:

(i) Define the data type named type that informs what is

the type of the filter (source, transform, renderer);

(i) The Initialize and Cleanup methods that initialize
and cleanup all the filter resources;

(ili) The Connect method that allows connecting other
filter to this filter;

(iv) The Start, Stop and Pause methods that control the
execution data flow;

(iv) The Process method that process data.

Most of the artifact templates related to different kind
of filters are automatically generated running an online
partial evaluator on legacy codes from previous video

surveillance projects (external libraries). Such refactoring
process was implemented based on an automatic partial
evaluation for the C++ language named transformer [13]
on a first stage and then the output was adapted to our
filter template architecture.

In the following sub-section, two filter artifact imple-
mentations are presented, one for an input filter and the
other for a transformation filter.

4.4.2 Theinput filter artifact template

Now let’s take the input filter V4L2 as represented by
the feature diagram in Figure 8 to partially describe the
artifact template of such kind of filters. Due to huge exten-
sion of the code we'll focus on the filter Cleanup method
needed to free all allocated resource by the filter. Three
created structures, one for each capture method and a
skeleton artifact template for CV4L2Source along with the
Cleanup method are created as shown by Listings 7 and
8, respectively.
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4.5 Listing 7 Data type definition for the capture mode 8 CV4L2Source() {}
1 // read method 9
2 struct v4l2_read_method_t {}; 10 // TODO: add the other class methods
3 11 void Cleanup();
4 /| mmap method 12
5 struct v412_mmap_method_t {}; 13 public:
6 14 // TODO: add class variables
7 ] userptr 15 }
8 struct v412_userptr_method._t {}; 16
17 // cleanup method
18 void CV4L2Source::Cleanup() {
4.6 Listing 8 CV4L2 class skeleton artifact template code 19 CV4L2Sourcelmpl<IOMethod>::Cleanup<
template <typename IOMethod> CV4L2Source> (xthis);
class CV4L2Source { 20 }

public:

/1 defines the filter type
typedef source_filter_t type;

CV4L2Source() {}

The Cleanup method uses a template data structure,
CV4L2Sourcelmpl (see Listing 9), which defines three spe-
cialized templates, one for each capture mode. Based
on the selected capture mode, one of these templates

JPEG Encoder
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Figure 9 Feature diagram of a transform filter for JPEG decompression.
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is instantiated with an inline Cleanup function whose 24 // TODQO: insert the code to cleanup using
body is statically patched into the place where Cleanup is userptr method
supposed to be called. 25 }
26 };

4.7 Listing 9 CV4L2Sourcelmpl template code structure
template <typename IOMethod> struct

CV4L2Sourcelmpl;

template<>
struct CV4L2Sourcelmpl<v412_read_method_t> {
template<typename T>
static inline void Cleanup(T &t) {
// TODO: insert the code to cleanup using read
method

}

NOY Uk W N

O

b
10
11

12

template<>
struct CV4L2Sourcelmpl<v4l2_mmap_-method_t> {

13 template<typename T>

14 static inline void Cleanup(T &t) {

15 // TODO: insert the code to cleanup using
mmap method

16 }

IVARH

18

19

29 template<>

21 struct CV4L2Sourcelmpl<v412_userptr_method_t>
{

22 template<typename T>

23 static inline void Cleanup(T &t) {

Finally, a concrete instance of the CV4L2Source arti-
fact template using one of the capture modes (i.e.,
read_method) is given in Listing 10.

4.8 Listing 10 Instantiation of CV4L2Source class with
read capture mode
1 CV4L2Source<v4l2_read_method_t> v4l2;
2 V4lI2.Cleanup();

4.8.1 The transform filter artifact template

Taking the diagram in Figure 9 let’s partially describe
the artifact template related to the concept JPEG Decoder
that decompresses images streaming in JPEG format to
raw format (e.g., YCbCr or RGB). Again due to the code
huge extension we’ll only discuss the implementation of
sampling and color Space features. Three data type will
be defined, one for each JPEG’s sampling, 4:4:4. 4:2:2
and 4:1:1 (Listing 11) as well as their associated special-
ized template structure CJPEGSamplinglmpl as shown in
Listing 12.

»
©

Listing 11 JPEG’s sampling data type definition
// 4:4:4 sampling
struct jpeg_444_sampling_t {};

// 4:2:2 sampling
struct jpeg 422 _sampling_t {};

// 4:1:1 sampling
struct jpeg_411_sampling t {};

O N O\ Uk W
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4.10 Listing 12 Template struct code for
CJPEGSamplingimpl
1 template <typename SamplingType> struct
CJPEGSamplingImpl;

w

template<>
struct CJPEGSamplinglmpl<jpeg_444_sampling_t>
{

template <typename T>

static inline void apply(T &t) {

// TODO: insert the code for sampling 4:4:4

}

|5

S

O 0 N1 O

10

11 template<>

12 struct CJPEGSamplinglmpl<jpeg_422_sampling_t>
{

13 template <typename T>

14 static inline void apply(T &t) {

15 // TODQO: insert the code for sampling 4:2:2

16 }

17 %

18

19 template<>

20 struct CJPEGSamplinglmpl<jpeg_411_sampling_t>
{

21 template<typename T>

22 static inline void apply(T &t) {

23 // TODO: insert the code for sampling 1:1:1

2%d© )

25 }

Each specialized template defines an inline function
apply that implements the related sampling functionality.
Upon instantiation, only one of the specialized templates
is instantiated by the compiler, depending on the type of
data SamplingType. The Color Space concept implemen-
tation follows similar steps (Listings 13 and 14) but as it
includes alternative features, YCbCr and RGB, two dif-
ferent types of data should be created as illustrated in
Listing 13.

4.11 Listing 13 Definition of data types for JPEG’s Color
implementation

1 // YCbCr color space

2 struct jpeg_ycbcr_colorspace_t {};

3

4 // RGB color space

5 struct jpeg_rgb_colorspace_t {};

412 Listing 14 CJPEGColorSpacelmpl template structure
code
1 template <typename ColorSpaceType> struct
CJPEGColorSpacelmpl;
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w

template<>
struct
CJPEGColorSpacelmpl<jpeg-ycbcr_colorspace_t> {
template<typename T>
static inline void apply(T &t) {
// TODO: insert the code for color space YCbCr
}

S

O 0 N O U

I8

10

11 template<>

12 struct
CJPEGColorSpacelmpl<jpeg_rgb_colorspace_t> {

13 template<typename T>

14 static inline void apply(T &t) {

15 // TODO: insert the code for color space RGB

6 )

17 }

Now the CJPEGDec artifact template can be pre-
sented (see Listing 15) and should be later instanti-
ated with two template input parameters given by the
data types of SamplingType and Color Space features.
CJPEGDec::Decode( ) takes as input parameter a buffer
containing the image information stored in JPEG format.
In Listing 16 sampling 4:4:4 and RGB color space are
chosen.

4.13 Listing 15 CJPEGDec is the template artifact related
to JPEG Decoder concept
1 template <typename SamplingType, typename
ColorSpaceType>
2 class CJPEGDec
3 {
4 public:
5 // defines the filter type
6 typedef transform_filter_t type;
7
8

CJPEGDec() {}
9 ~CJPEGDec() {}

11 // TODOQO: add the other class methods

13 void Decode(CBuffer «pBuffer);

14

15 public:

16 // TODQO: add class variables
17 }

18

19 // decode method

20 template <typename SamplingType, typename
ColorSpaceType>

21 void CJPEGDec::Decode(CBuffer spBuffer)

22 |
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23 /...

24

25 CJPEGSamplingImpl<ColorSpaceType>:apply<
CJPEGDec> (xthis);

26

27 CJPEGColorSpacelmpl<SamplingType>::apply<
CJPEGDec> (xthis);

28 1

4.14 Listing 16 Instantiation example of the artifact
template CJPEGDec
1 //image buffer
2 CBuffer buffer;
3
4 CJPEGDec<jpeg-444_sampling_t,
jpeg-rgb_colorspace_t> dec;
5 dec.Decode(&buffer);

4.14.1 The filter graph artifact template

To implement the CFilterGraph class, specialized tem-
plates are used to instantiate an appropriate artifact tem-
plate which creates an instance of filter graph with a
predefined number of filters. The CFilterGraph artifact
template receives a Boost MPL [24,25] vector with the
data types of all filters and the number of filters as its
input parameters. The number and data type of each filter
depends on the configuration required to implement the
desired functionality and the simplest filter graph config-
uration contains at least two types of filters: a source filter
and a renderer filter (see Listing 17).

4.15 Listing 17 Creating a CFilterGraph instance using a
data type, Types, representing a vector with 2 filters:
CV4L2Source and CXVRenderer

1 typedef mpl:vector<CV4L2Source, CXVRenderer>
Types;
2 CFilterGraph<Types, mpl::size<Types>::value> fg;

By default nineteen specialized templates are created,
allowing at least the instantiation of a CFilterGraph
with at least two and at most twenty filters with
the number of specialized templates reconfigured by
changing the compilation variable MAX_FILTER-
GRAPH_SPECIALIZATIONS (see Listing 18).

4.16 Listing 18 A snippet of CFilterGraph C++ template
metaprogramming artifact template
1 template <typename FilterTypes, int N> class
CFilterGraph;

template <typename FilterTypes>

class CFilterGraph<FilterTypes, 2> {
typedef typename mpl::at<FilterTypes,

mpl:long_<0> >:type Filter0;

Gl W N
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(o)

typedef typename mpl::at<FilterT'ypes,
mpl::long_<1> >:type Filterl;

Filter0_f0;

Filter1_f1;

10 public:

11 FilterO& const GetFilter(mpl::int-<0>)
{return_f0;}

12 Filter1& const GetFilter(mpl::int_<1>)
{return_f1;}

13 }

14

15 template <typename FilterTypes>

16 class CFilterGraph<FilterTypes, 3> {

17 typedef typename mpl::at<FilterTypes,
mpl:long_<0> >:type Filter0;

18 typedef typename mpl::at<FilterT'ypes,
mpl:long_<1> >:type Filterl;

19 typedef typename mpl::at<FilterT'ypes,
mpl:long_<2> >:type Filter2;

20

21 Filter0_fo;

22 Filterl f1;

23 Filter2_2;

24 public:

25 FilterO& const GetFilter(mpl::int_<0>)
{return_f0;}

26 Filter1& const GetFilter(mpl::int_<1>)
{return _f1;}

27 Filter2& const GetFilter(mpl::int_<2>)
{return_f2;}

28 };

29 ..

O 0

To access each type of filters that make up the
filter graph, the CFilterGraph class implements the
method GetFilter which receives as input parameter
the Boost MPL data type int- with the index of
the filter and returns the data type of the filter. To
simplify and also offer some flexibility to the imple-
mentation of each CFilterGraph template specializa-
tions, a few macros based on the token past operator
are used, such as DEFINE_FILTER_TYPE(n), and CRE-
ATE_FILTER_.GRAPH(n) to define the data types of each
filter at index # in the vector of types and create each
specialization with # filters, respectively (Listings 19
and 20.

4.17 Listing 19 Macro that defines the type of filters: n is
the index in the vector of types
1 #define DEFINE_FILTER_TYPE(n)\
2 typedef typename mpl::at<TList,
mpl:long_<n> >:type Filter##n;
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3 #define DEFINE_FILTER TYPE_1(TList)
DEFINE_FILTER_TYPE(0)

4 #define DEFINE_FILTER_TYPE_2(TList)
DEFINE_FILTER_TYPE_1(TList)\

5  DEFINE_FILTER_TYPE(1)

#define DEFINE_FILTER TYPE_3(TList)

DEFINE_FILTER_TYPE_2(TList)\

o)

7 DEFINE_FILTER_TYPE(2)
8 .
4.18 Listing 20 Macro that creates specialized templates

of CFilterGraph: n is the number of filters
#define CREATE_FILTER_ GRAPH(n)\
template <typename FilterTypes>\
class CFilterGraph<FilterTypes, n>\
{\
DEFINE_FILTER_TYPE ##n(FilterTypes);\
FILTER_TYPE ##n;\
public:\
GET_FILTER ##n;\
I8

O 00 N O Ul W

To create the class variables of each filters and the filter
graph GetFilter methods, similar macros are also used and
the final implementation of CFilterGraph artifact template
will be as shown in Listing 21.

4.19 Listing 21 Final implementation of the CFilterGraph
artifact template
1 template <typename FilterTypes, int N> class
CFilterGraph;

2
3 CREATE_FILTER_.GRAPH(2);
4 CREATE_FILTER_GRAPH(3);
5 .

6 CREATE_FILTER_GRAPH(20);

Listing 22 shows an example of video image capture
from an ONVIF compliant IP camera. To capture the
images from the IP camera, the input filter RTSP (CRT'SP-
Source) is used, as the IP camera sends images using the
JPEG compressed video format, the JPEG transform filter
(CJPEGDec) is used and the xvideo renderer filter allows
seeing the images on the screen (CXVRenderer. To control
and receive camera events a filter that implements web
services is used. For that purpose several auxiliary arti-
fact templates were implemented to validate and connect
all the filters following a pipeline of streams that compose
a filter graph artifact template. The connection between
filters is represented by a vector of connections, Connec-
tions, in which each link is an ordered pair consisting of
the index into the vector of filter types and the respective
filter type.
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4.20 Listing 22 Ordered pair vector specifying
connections between CRTSPSource, CJPEGDec and
CXVRenderer filters

1 // filter types vector
2 typedef mpl::vector<CRTSPSource, CJPEGDec,
CXVRenderer> Types;

5 // pair that represents the link between
CRTSPSource and CIPEGDec filter
6 typedef mpl::pair<mpl::int_<0>,mpl:int_<1>> cl;
7 // pair that represents the link between CJPEGDec
and CXVRenderer filter
8 typedef mpl::pair<mpl::int_<1>,mpl:int_<2>> c2;
9
10 // filter connections vector
11 typedef mpl:vector<cl, c2> Connections;

Listings 23, 24 and 25 specify how the links described by
the Connections vector are applied during the filter graph
construction by an auxiliary function template, Connect-
Filters (see Listing 24), which receives a Connection vector
as input parameter. At the instantiation time, a special-
ized or concrete CFilterGraph class should implements
the ConnectFilters function template which uses the inline
ConnectFilters of the FilterGraphManager structure given
by Listing 25.

4.21 Listing 23 Building a filter graph stream by
connecting a set of filters

1 // filter graph variable

2 CFilterGraph<Types, mpl::size<Types>::value> fg;
3 // connect filters

4 fg.ConnectFilters<Connections>();

4.22 Listing 24 CFilterGraph::ConnectFilters(...)
implementation
template <typename FilterTypes>
class CFilterGraph<FilterTypes, 2>

{

template <typename FilterConnections>

void ConnectFilters() {

FilterGraphManager<mpl::size <FilterConnec-

tions>:value>::template
ConnectFilters<Filter Types,

FilterConnections,CFilterGraph> («this);

10 }

11}

1

2

3

4

5 public:
6

7

8

e

4.23 Listing 25 Template struct FilterGraphManager
implemented as a filter graph manager
1 template <int N> struct FilterGraphManager;
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2
3 template <int N>
4 struct FilterGraphManager {
5 template <typename Types, typename
Connections, typename FilterGraph>
6  inline static void ConnectFilters(FilterGraph&
fg) {
7 // TODO: add code to connect filters recursivelly
8 1}
9
10  template <typename FilterGraph>
11 inline static void StartFilters(FilterGraph& fg) {
12 // TODO: add code to start filters recursivelly
13 )
14
15  template <typename FilterGraph>
16  inline static void StopFilters(FilterGraph& fg) {
17 // TODO: add code to stop filters recursivelly
18 )
19
20  template <typename FilterGraph>
21  inline static void PauseFilters(FilterGraph& fg) {
22 // TODO: add code to pause filters recursivelly
23}
24}
25
26 template<>
27 struct FilterGraphManager <0> {
28 template <typename Types, typename
Connections, typename FilterGraph>
29 inline static void ConnectFilters(FilterGraph&
fg) {1
30
31 template <typename FilterGraph>
32 inline static void StartFilters(FilterGraph& fg){}
33
34 template <typename FilterGraph>
35 inline static void StopFilters(FilterGraph& fg) { }
36
37 template <typename FilterGraph>
38 inline static void PauseFilters(FilterGraph& fg){}
39 k%

The FilterGraphManager template structure in List-
ing 25 implements the management of certain filter
graph operations, such as, filter connections and start,
stop, and pause of the filter streams execution. The
inline functions ConnectFilter, StartFilters, StopFilters
and PauseFilters connects two filters of a given fil-
ter graph, starts the filters execution flow, stops the
filters execution flow and pauses the filters execution
flow, respectively.
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Since the management operations are applied recur-
sively with the number of operations given by N, the Fil-
terGraphManager structure is implemented by a generic
template (line 05 to 28) and a specialized one with input
parameter zero (line 31 to 45) to indicate the termination
condition. When N is zero, all inline functions defined
inside the specialized template will present an empty body
and the C++ compiler patches no code at all.

The ConnectFilter inline function of FilterGraphMan-
ager structure accepts three template parameters (i.e.,
Types, Connections, FilterGraph) and a filter graph refer-
ence as input parameter to connect the filters composing
a filter graph as shown by its implementation in Listing 26.

4.24 Listing 26 Inline ConnectFilters function code
1 template <int N> struct FilterGraphManager;

template <int N>
struct FilterGraphManager {
template <typename Types, typename
Connections, typename FilterGraph>
6 inline static void ConnectFilters(FilterGraph&
fg) {
7 // call ConnectFilters for N-1 index
8 FilterGraphManager <N-1>::ConnectFilters
<Types,Connections,FilterGraph> (fg);

Gr b W N

10 // aux data types

11 typedef typename
mpl::at<Connections,mpl::long_<N-1> >:type
elem;

12 typedef typename mpl::at<Types,
mpl:first<elem>::type >:type

13 out_filter_type;

14 typedef typename mpl::at<Types,
mpl::second<elem>::type >::type

15 in_filter_type;

16

17 CheckErrorOnConnection<AllowConnection<
out_filter_type,

18 in_filter_type>:value, out_filter_type,
in_filter_type>;

19

20 // connect filter first<elem> to second<elem>
; elem<A,B>

21 fg.GetFilter(mpl::first<elem>::type()).
Connect(&fg.GetFilter(mpl::second <elem>::type()),

22 fg.GetFilter(mpl::second <elem>
:type()).Process);

23 )

24

25 // more inline functions

26 L
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27

28 template<>

29 struct FilterGraphManager <0> {

30 template <typename Types, typename
Connections, typename FilterGraph>

31 inline static void ConnectFilters(FilterGraph&

fg) {}
32
33 // more inline empty functions
34k

In each iteration is called first the same function recur-
sively with value N-1 (line 11), then a test is run to validate
the connection between two filters (lines 20 to 21) and
finally the connection is made (line 24 to 25). As an exam-
ple, consider the filter graph, the code to create it and the
recursive iteration inside ConnectFilters method for the
filter graph fg as shown in Figures 11, 12 and Listing 27,
respectively.

4.25 Listing 27 Filter graph code builder for Figure 11

1 // filter types vector

2 typedef mpl::vector<fl, £2, 3, f4, f5> Types;

3

4 // links between filters

5 typedef mpl::pair<mpl::int_< 0 > mpl:int < 1 > >
cl2;

6 typedef mpl::pair<mpl:int_< 0 >,mpl:int_ < 2 > >
cl3;

7 typedef mpl::pair<mpl:int_< 1 >,mpl:int_ < 3 > >
c24;

8 typedef mpl::pair<mpl:int_< 2 > mpl:int_ < 4 > >
c35;

9

10 // filter connections vector

11 typedef mpl::vector< ¢12, 13, c24, ¢35 >
Connections;

12

13 // filter graph variable

14 CFilterGraph<Types, mpl::size<Types>:value> fg;

15 // connect filters

16 fg.ConnectFilters<Connections> ();

o
@<C‘ Z 75

Figure 11 Filter graph with five filters.
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The StartFilters, StopFilters or PauseFilters inline func-
tions template of the FilterGraphManager structure given
by Listings 28, Listing 29 Inline StopFilters function code
and 30, performs only two operations. The first one will
recursively call the Start, Stop or Pause methods of filters
at indexes lower than N-1 and greater than zero while the
second one executes the Start, Stop or Pause methods of
the filter at index N-1.

4.26 Listing 28 Inline StartFilters function code
1 template <int N> struct FilterGraphManager;

2
3 template <int N>
4 struct FilterGraphManager {
5 template <typename FilterGraph>
6 inline static void StartFilters(FilterGraph& fg) {
7 // call StartFilters for N-1 index
8 FilterGraphManager <N-
1>::StartFilters<FilterGraph>(fg);
9
10 // start filter[N-1]
11 fg.GetFilter(mpl::int_<N-1>()).Start();
12
13 }
14

15 template<>

16 struct FilterGraphManager< 0 > {

17 template <typename FilterGraph>

18 inline static void StartFilters(FilterGraph& p) { }
19 L

4.27 Listing 29 Inline StopFilters function code
template <int N>
struct FilterGraphManager {
template <typename FilterGraph>
inline static void StopFilters(FilterGraph& fg) {
// call stop_filters for N-1 index
FilterGraphManager <N-

1>:StopFilters<FilterGraph> (fg);

N Ul W N

7

8 // stop filter[N-1]

9 fg.GetFilter(mpl:int_<N-1>()).Stop();
10 }
11 %
12

13 template<>

14 struct FilterGraphManager<0> {

15 template <typename FilterGraph>

16 inline static void StopFilters(FilterGraph& p) { }
17 }

4.28 Listing 30 Inline PausefFilters function code
1 template <int N> struct FilterGraphManager;
2
3 template <int N>
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fg.ConnectFilters<Connections>();
e ot
FilterGraphManager<4>::template
ConnectFilters<Types, Connections, CFilterGraph>(&fg);

FilterGraphManager<3>::template
ConnectFilters<Types, Connections, CFilterGraph>(&fg);

-
| FilterGraphManager<2>::template

ConnectFilters<Types, Connections, CFilterGraph>(&fg);

N

J i

p
| FilterGraphManager<1>::template

ConnectFilters<Types, Connections, CFilterGraph>(&fg); J

FilterGraphManager<0>::template
) ConnectFilters<Types, Connections, CFilterGraph>(&fg);

fg.at(mpl::int_<1>).process);

fg.at(mpl::int_<0>).Connect(&fg.at(mpl::int_<1>),
Ly 9 (mpl::int_<0>) (&fg.at(mpl::int_<1>)

fg.at(mpl::int_<0>).Connect(&fg.at(mpl::int_<2>),
fg.at(mpl::int_<2>).process);

\ 4

f1.connect(&f2, f2.process);

f1.connect(&f3, f3.process);

fg.at(mpl::int_<1>).Connect(&fg.at(mpl::int_<3>),
fg.at(mpl::int_<3>).process);

\ 4

f2.connect(&f4, f4.process);

f3.connect(&f5, f5.process);

fg.at(mpl::int_<2>).Connect(&fg.at(mpl::int_<4>),
fg.at(mpl::int_<4>).process);

A 4

Figure 12 ConnectFilters function iterations.

4 struct FilterGraphManager {
5 template <typename FilterGraph>
6 inline static void PauseFilters(FilterGraph& fg) {
7 // call pause_filters for N-1 index
8 FilterGraphManager<N-
1>::PauseFilters<FilterGraph> (fg);
9
10 // pause filter[N-1]
11 fg.GetFilter(mpl::int_<N-1>()).Pause();
12 }
13
14

15 template<>

16 struct FilterGraphManager<0> {

17 template <typename FilterGraph>

18 inline static void PauseFilters(FilterGraph& p) { }
19 %

4.28.1 The intelligent connect artifact template
The AllowConnection artifact template, shown in List-
ing 31, was implemented to validate the connection

between two filters based on the following conditions: (1)
the input and output filters should present at least one out-
put and input pin respectively, (2) the two pins through
which the connection is made should support the same
type of data stream, and (3) the minimum stream require-
ment dictated by at least one source and output filters with
compatible media type. It receives as parameters the data
types of the two filters, i.e., one audio/video format vector
supported at the input of InputFilter and another one at
the output of OutputFilter.

4.29 Listing 31 AllowConnection template class code

1 template <typename OutputFilter, typename
InputFilter>

2 class AllowConnection {

3 typedef typename OutputFilter::output_types
output_types;

4 typedef typename InputFilter:input_types
input_types;

6 public:
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7 enum { value = AllowConnectionImpl
<mpl::size<output_types>:value>

8 ::template apply<output_types,
input_types>::value };

9k

Listing 32 partially presents the implementation of
AllowConnectionlmpl template structure that registers the
result of connecting two filters into the enumeration vari-
able value. This structure template is implemented by
a specialized and a generic template, both receiving as
template input parameter the number of elements of the
output_types vector related to the OutputFilter. Also, both
templates define a metafunction, apply, that takes the
audio/video vectors supported by each filters as input
parameters. For each element in the output_types vector
it uses a boost MPL library metafunction named contains
to check if the same element exists in the input_type vec-
tor. Any denied connection is verified and notified with an
error message by the CheckErrorOnConnection template
structure shown in Listing 33.

4.30 Listing 32 AllowConnectionlmpl template structure
code
template <int N> struct AllowConnectionImpl;

1
2
3 template <int N>

4 struct AllowConnectionImpl {

5 template <typename T, typename U>
6
7

struct apply {
typedef typename
mpl::at<T,mpl:long_<N-1> >:type ftype;
8 enum { value =
mpl::contains<U, ftype>::value —
9 AllowConnectionImpl<N-1>::template
apply<T,U>::value };
10§
11 %

12

13 template <>

14 struct AllowConnectionImpl<0> {

15 template <typename T, typename U>
16 struct apply {

17 enum { value =0 };
18 |5
19 }
4.31 Listing 33 CheckErrorOnConnection template

structure code
1 // forward declaration
2 template <bool C, typename T, typename U>
struct CheckErrorOnConnection;

w

4 // generic implementation
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template <bool C, typename T, typename U>
struct CheckErrorOnConnection

{

static_assert(C, “cannot connect the two filters.”);

|5

O 0 N O Ul

10

11 // template specialization for filters v412 and xvideo

12 template <bool C>

13 struct CheckErrorOnConnection<C,CV4L2Source,
CXVRenderer>

14 {

15 static_assert(C, “cannot connect v412 filter to
xvideo filter.”);

16 %

17

18 // specializations for the other filters combinations

19 ..

A denied connection occurrence is indicated by one of
the three template parameters received by CheckErrorOn-
Connection template structure, i.e., the first one that has
a boolean type. If denied, the value of C will be false
as well as the input parameter of static_assert function
and so, forcing a compilation error with our predefined
message. For a more complete notification of a denied
connection, specialized templates are defined, combining
all participating filters.

The domain model will be concluded with the
built-in intelligent connect feature of the filter graph
composition and validation that is in charge of the fol-
lowing three tasks: (1) trying combinations of interme-
diate transform filters to satisfy the required matching
between a pair of output and source pins, (2) special-
izing some partially configured filter that failed to be
fully mapped to a model, and (3) avoiding code bloat
by exploring any possible cross-silo synergy among sim-
ilar filters. Possible code bloat may happen with a video
surveillance system consisting of more than one filter
graph using the same filter but with different config-
urations. In such case, several different classes will be
instantiated, one for each configuration as illustrated in
Figure 13.

To tackle the code bloat phenomenon, intelligent con-
nect initially analyzes the type of filters and their settings
for each pipelines and create a list of setting for any
repeated filter among different pipelines but with differ-
ent settings. Based on the collected settings, a unique class
will be created, instantiated and shared among pipelines,
as shown in Figure 14.

To conclude the domain engineering stage of the video
surveillance systems development environment, a XSLT
code transformer, shown in Listing 34, was implemented
to generate a Config.h file from the configuration. This
file will be used later by the offline partial evaluator C++
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Figure 13 Bloat due to H.264 filter duplication with base and main profiles.

code generator that is in charge of the filter graph artifact
template instantiation.

4.32 Listing 34 A snippet of the SDK built-in XSLT
transformer

1 <?xml version="1.0" encoding="utf-8"?>

18 </xsl:itemplate>
19 ..
20 </xsl:stylesheet>

5 Video surveillance application engineering
The passage from development for reuse to the develop-
ment with reuse of video surveillance systems requires

2 <xsl:stylesheet version="1.0" several steps surrounded by two main activities as shown
3 xmlns:xsl= by Figure 15: (1) establishing the communication channel
“http://www.w3.0rg/1999/XSL/Transform”™ between the stakeholders (IVV Automation customers)
4 <xsltemplate match="Configuration”> and system analysts and programmers to build a model
5 struct config { family instance (i.e., a feature configuration and model
6 <xsl:apply-templates select="FilterGraph” /> templates), and then (2) generating the final code from the
7 configured model family. At the end of a video surveillance
8  //list of filter graphs system configuration process and before starting the code
9  typedef mpl::vector< generation process, several concrete filters and filter graph
10 <xsl:for-each select="FilterGraph”> will be encoded in XML and validated against the generic
11 mpl::pair(fg<xsl:value-of select="position()”/>, ones, and a mapping will be intensive and automatically
c<xsl:value-of select="position()”/>) established between features of the feature model and the
12 <xsl:if test="last()-1 >= position()”> model elements of the domain model.
13 <xsl:text>,</xsl:text> Our MDD approach combines feature models and
14 </xslif> domain models on the artifact template class level
15 </xsl:for-each> encoded using C++ template metaprogramming. The
16 > fgs; mapping is automatically done at three level of granular-
17 }; ity, i.e., at artifact template filter graph, at artifact template
pipeline 1 pipeline 2 PréProcessador de Instanciacdes:
CH264Dec<base> + CH264Dec<main>
Acquisition ‘ RTSP ‘ ‘ HTTP ‘ \—> -
! T CH264Dec<vector<base,main> >
Decoder H.264 (1) W
== &4
Visualization ‘ XVideo ‘
i i CH264Dec<vector<base,main> >
Storage ‘ File ‘
Base
Code
< Base > < Main >
Profile Profile
Figure 14 Optimized Code after intelligent connect intervention.
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Figure 15 Communication among stakeholders and Video surveillance systems developers.

filter and internally to the artifact template filter at sev-
eral variability points, such as attributes and methods
when in the sync mode is selected or semi-automatically
otherwise. Selected features of a filter will be successive
collected till the moment that the filter can be evaluated
by a meta-expression to a particular artifact template fil-
ter and the mapping realized. Any other selected features
will be mapped to internal variability points or attributes
of the previously mapped artifact template filter by meta-
expressions or presence conditions, respectively, indicat-
ing whether they should be patched or removed from the
specialized template instance. Mapping at template filter
graph level will be triggered by a meta-expression when at
list two filters are linked in a stream. Missing or unmapped

feature in the domain model forces the extension of the
domain model and so, be carefully analyzed. By now, the
online partial evaluator based on C++ template metapro-
gramming solved it successfully, after refactoring some
filter legacy code. Figure 16 shows a simple example of our
Feature2ModelMapping activity.

Listings 35, 36 and 37 shows the second step of a two
step video surveillance system generator, as the first one is
a SDK built-in functionality. First, the XSLT transformer is
fed with a video surveillance system configuration to gen-
erate the Config.h and then calling an offline partial eval-
uator based on C++ template metaprogramming (i.e., the
CApplicationlnstantiator), some of the previously arti-
fact templates produced during domain engineering will

= [ Active Library |
(=) ;; i;urce Filter — [ Transform Fiter |
B & Live Device [ Analogic Camera | [Microphone | El
= "F -t--[->(CvaL2d0Method>. [ DShow | L L
= E Analogic Camera | A Templates> CVal2areads (1) Renderer Fiter |
=A | 7 | CTemplates (Valammaps L] [IPCamera ]
=8 y4L2 :></ [ Template<> CVaL2<userptr>{..}; |
o I0_MMAP
o IO_LUSERPTR
g DsShow
O Microphone @
g IP Camera H.264EncH XVideo H File J
[#-a File
A Transform Filter
A Renderer Filter [ ] [ ] [ ] j
V42 JPEG Enc File

Figure 16 Exemplifying the SDK built-in feature to model mapping.
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be customized into specialized application-specific com-
ponents and linked together to construct the final video
surveillance system that addresses the need of specific
customers. Basically, the offline partial evaluator carries
out the instantiation process at several levels of granu-
larity by translating the video surveillance system con-
figuration into an ordered sequence of finer instantiation
operations which when executed will instantiate the new
video surveillance system.

Listing 35 Offline Partial Evaluator: the
CApplicationinstantiator class

1 template <typename Config>

2 class CApplicationInstantiator

3 :CApplicationlnstantiatorImpl<
IntelligentConnect<Config:fgs>::value,
mpl::size<IntelligentConnect<Config:fgs>::value
>>{};

5.1
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Listing 36 A snippet of the Offline Partial Evaluator:
the CApplicationinstantiatorimpl class

1 template <typename FilterTypes, int N> class
CApplicationlnstantiatorImpl;

5.2

template <typename Vector>

class CApplicationInstantiatorImpl<Vector, 1> {
typedef typename mpl:at<Vector,

mpl::long_<0>>::type itemO;

6  typedef typename mpl:first<itemO>::type
Filters0;

7  typedef typename mpl::second <itemO>::type

Connections0;

G W N

9  CFilterGraph<Filters0, mpl::size<Filters0> >
_fg0;
10 public:
11 void Initialize() {

Framework

FmGraphObjFactory : GraphObjFactory
-mSetComposition

SetComposition
[-pC 'ACompostion

s_pFramework : Framework
+getpFramework() : Framework
+getGraphObjFactory() : GraphObjFactory
+getSetComposition() : SetComposition

+readSetlings(entrada type : int) : bool
+getCompostion() : ACompostion

GraphObjFactory

+CreateFilter(entrada : char, entrada : string, entrada : int, entrada :int) : AGraphObj

+CreatePin(entrada : string, entrada : string, entrada : string, entrada : bool, entrada : AGraphObj) : AGraphObj

ACompostion

[+virtual DrawGraphObj() : void
+virtual BuildXmi() : void
+getGraphName() : string
—~—-|+getGraphType() : string
+getType() : string
+getSubType() : string
+getPinlo) : bool
+getLinkToPin1() : AGraphObj
+getLinkToPin2() : AGraphObj
+getFilterFromPin() : AGraphObj

-QDomDocument xmi
-QDomElement root

-QDomNode xmiNode

+xmiFilter(entrada : string, entrada : string, entrada : int, entrada : int) : void
+xmlPin(entrada : string, entrada : string, entrada : string, entrada : bool) : void
+chkDir(entrada : char) : void

+writeToFile(entrada : string) : void

+readFromFile(entrada : string) : void

+Createl : string, entrada : AGraphObj, entrada : AGraphObj) : AGraphObj
[+virtual AddGraphObj(entrada : AGraphObj) : void
[+virtual RemoveGraphObj(entrada  int) : void
[+virtual ClearContainer() : void
[+virtual getLastindexFilter() - int
1 [rvirtual NumberOfGraphs() : int
. [+virtual getGraphFromContainer(entrada : int) : AGraphObj
tvirtual DrawAll() : void
[+virtual BuildXmlAll() : void
‘AGraphObj Ty : AGraphObj, entrada : AGraphObj) : bool
XMLHandle XMLHandle

Hash

-QHash<int, AGraphObj*> HashTable
-QHash<int AGraphObj*>::const_iterator iterator

Vector

-QVector<AGraphObj> m_GraphChildren
-m_KeyLastFilter : int

-m_key  int
-m_keyLastFilter : int
+AddGraphObj(entrada : AGraphObj) : void
+DrawAll() : void

+BuildXmIAlI() : void
+RemoveGraphObij(entrada : int) : void
+ClearContainer() : void
+getLastindexFilter() : int
+NumberOfGraphs()
+getGraphFromContainer() : AGraphObj

+AddGraphObj(entrada : AGraphObj) : void
+RemoveGraphObij(entrada : int) : void
+ClearContainer() : void

+getLastindexFilter() : int
+getGraphFromContainer(entrada : int) : AGraphObj
+DrawAll() : void

+BuildXmiAll() : void

[+NumberOfGraphs() : int

S |

]

[ ]

TransformFilter RenderFilter Pin Link

Figure 17 SDK class diagram.

SourceFilter

-m_Name : string
-m_Width : int
-m_Height : int

-m_Name : string
-m_Width : int
-m_Height : int

-m_Name : string
-m_Width : int
-m_Height : int

+DrawGraphObj() : void
+BuildXml() : void

+getGraphType() : char
+getType() : string
+getSubType() : string
+getPinlo() : bool

+DrawGraphObj() -

+BuildXml() : void

void +DrawGraphObj() : void
+BuildXml() : void
string

+getGraphName() : string

+getLinkToPin1 () : AGraphObj
+getLinkToPin2() : AGraphObj

) : string

+getGraphType()
+getType() : string

+getSubType() : string

+getPinlo() : bool
+getLinkToPin1()

char +getGraphType() : char
+getType() : string
+getSubType() : string
+getPinlo() : bool
+getLinkToPin1 () : AGraphObj
+getLinkToPin2() : AGraphObj

AGraphObj
AGraphObj

+getFilterFromPin() : AGraphObj

+getLinkToPin2()
g (

() : AGraphObj

) : AGraphObj |  |+g:

-m_Name : string
-m_Type : string
-m_SubType : string
-m_Pinlo : int
-m_PinFilter : AGraphObj

+DrawGraphObj() : void
+BuildXml() : void
+getGraphName() : string
+getGraphType() : char
+getType() : string
+getSubType() : string
+getPinlo() : bool
+getLinkToPin1 () : AGraphObj
+getLinkToPin2() : AGraphObj

+getFilterFromPin() : AGraphObj
0
|
1

-m_Name : string
-LinkPin1 : AGraphObj
-LinkPin2 : AGraphObj
+DrawGraphObj() : void
+BuildXmi() : void
+getGraphName() : string
+getGraphType() : char
+getType() : string
+getSubType() : string
+getPinlof) : bool
+getLinkToPin1() : AGraphObj
+gelLinkToPin2() : AGraphObj

+gefFilterFromPin() : AGraphObj
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Figure 18 Screenshot of the SDK exemplifying the design of two filter graphs.
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13
14
15
16
17
18
19
20
21
22
23

24

_fg0.ConnectFilters<Connections0> ();
|5

template <typename Vector>
class CApplicationInstantiatorImpl<Vector, 2> {

typedef typename mpl::at<Vector,
mpl::long_<0>>:type itemO;

typedef typename mpl:at<Vector,
mpl:long_<1>>:type item1;

typedef typename mpl::first<item0>:type
Filters0;

typedef typename mpl::second <itemO>:type
Connections0;

typedef typename mpl:first<iteml>:type
Filtersl;

typedef typename mpl::second <item1>:type
Connectionsl;

25

26

27
28
29
30
31
32
33

CFilterGraph<Filters0, mpl::size <Filters0> >
_fg0;
CFilterGraph<Filters1, mpl::size<Filters1>>
fgl;
public:
void Initialize() {
_fg0.ConnectFilters<Connections0> ();
_fgl.ConnectFilters<Connections1>();

Listing 37 Offline Partial Evaluator: C++ final code
generation
#include <config.h>

int main(int argc, char xargv(])

{
CApplicationInstantiator app<Config>;

Raw video Segmentation

Tracking

Identification

Alert
and Visualization

Pattern
Recognition

Figure 19 Activities sequence of the early drowning detection at domestic swimming pools.
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Figure 20 Motion detection at domestic swimming pools.
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app.Initialize();

6
7
8 return 0;

9}

6 Video surveillance product line SDK

A Qt-based video surveillance system SDK that allows
graphical instantiation of a feature model configuration
similar to DirectShow graphEdit was designed using sev-
eral design patterns, such as singleton, strategy, factory
and composite, as shown in Figure 17. After a configura-
tion instantiation all the previously described steps will be
executed till the generation of final C++ configured code
for the new video surveillance system. Figure 17 presents
a screenshot of the design of an early drowning detection
at domestic swimming pools consisting of two pipelines:
the first one with six filters:

(i) An analog input filter, V4L2, for image capture;

(ii) Three transform filters for motion segmentation,
object tracking, and object recognition and analysis
behavior;

(iii) Two output filter for alarm and visualization.

The second pipeline has the following five filters:

(i) A digital input filter, RTSP, that captures image
frames from an IP camera using RTSP/RTP for
transmission;

(ii) Two transformation filters for JPEG decoding and
motion detection;
(iii) Two output filter for alarm and visualization.

Figure 18 illustrates two of several possible functionality
scenarios supported by the generated system of Figures 19
and 20.

7 Methods
As previously mentioned, the video surveillance ecosys-
tem is divided in two stages: the implementation domain,
developed envisioning the system evolution, followed by
the application engineering stage.

During the application engineering stage, a specific
pipeline was created in order to meet the client imposed
application requirements. In the pipeline creation process,

several alternatives were explored, both at low levels (e.g.,
platform selection) and at high levels (e.g., filter selection
according to context aware strategies.)

In this specific case, to make the comparison study
between the two implementations, a video surveillance
system based on DirectShow using C++, with virtual func-
tions and inheritance, and a video surveillance system
using the proposed framework were used on two kinds
of machines. 1) First, a general purpose PC was used, an
Intel Core 2 Duo CPU T9550 at 2.66GHz with 2,83 GB
of RAM with Ubuntu 10.04 and secondly an embedded
system based on a BeagleBoard-xM with an ARM Cortex-
A8 MHz at 1GHz and extra memory with 512MB of
low-power DDR RAM with Angstrom Embedded Linux.

For the two configurations, a pipeline composed by an
RTSP source filter, a JPEG decoder transform filter and
a File output filter was created. The pipeline was com-
piled with the GNU C++ compiler (g++) with the -O3
optimization option.

8 Conclusion and future work

To meet the embedded systems constraints and tackle
the growing complexity of new video surveillance systems
and time-to-market pressure, we abandoned our previous
product-centric perspective and shifted to the multitude
of products. In doing so, we promote the integration of
MDD, SPL and generative technologies to create software
for a portfolio of video surveillance systems in a pay-as-
you-go fashion rather than an ex-nihilo development. The
synergistic convergence of those technologies improved
our ability to meet product quality demands while reduc-
ing the development effort and expanding the scale and
scope of our video surveillance systems portfolio. One of
the unique features of the proposed video surveillance sys-
tems design environment compared to existing ones, is
its simplicity and higher integration level of mainstream
tools and technologies such as, XML, XSLT, C++ tem-
plate metaprogramming, generative programming, MDD,
and SPL. Acher’s et al. proposal didn’t discuss the code
generation process, ie. it seems to us like an under
development work. The proposed system supports the
easy integration of external libraries that implement well-
known standards and functionalities, e.g., ONVIF and
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PSIA, developed as a filter that is integrated on the video
surveillance system. The system was tested on a Beagle
Board. The core processor of this embedded platform is
the Texas OMAP that includes a DSP capable of decom-
pressing HD frames in H.264 format, for which an encod-
ing/decoding filter was developed. When the hardware
system doesn’t support SIMD instructions for video pro-
cessing (MMX, SSE2, etc) or is not equipped with a DSP,
then the video surveillance system performance will be
degraded.

However, this project is still under development and
next steps will be focused on: (1) automating the simula-
tion and verification of the generated code, (2) automating
the test cases generation and testing of the generated fil-
ters and video surveillance systems, (3) the integration of
external modules, developed in other programming lan-
guages such as Python or Java (i.e., JNI-aware C++ wrap-
per), that implement video surveillance functionalities,
and (4) study of the variability management of functional-
ity related to playback application, e.g., playback, jump to
absolute timestamp and find nearest I-Frame.

Endnote
2http://www.ivv-aut.com/.

Competing interests

The authors declare that they have no competing interests. This work was
funded by the Science and Technology Foundation (FCT) and developed in
cooperation with IVWW Automation, but none pose any objection to the
publication of results.

Acknowledgements

This work was funded through the Competitive Factors Operational Program -
COMPETE and through national funds though the Science and Technology
Foundation - FCT, within the project: FCOMP-01-0124-FEDER-022674. This
work was developed in cooperation with VW Automation; all support and
means provided by the company is acknowledged.

Author details

! Department of Industrial Electronics, Centro Algoritmi, University of Minho,
Braga, Portugal. 2School of Engineering and Technology, Asian Institute of
Technology, Khlong Luang, Thailand.

Received: 23 January 2012 Accepted: 5 June 2012
Published: 31 July 2012

References

1. L Marcenaro, L Marchesotti, C Regazzoni, in Proceedings of the Fifth
International Conference on Information Fusion. vol. 2. A multi-resolution
outdoor dual camera system for robust video-event metadata extraction,
(Annapolis, MD, Washington DC Area, USA, 2002), pp. 1184-1189

2. MAcher, P Lahire, S Moisan, JP Rigault, in Modeling in Software
Engineering, 2009. ICSE Workshop on MISE '09. Tackling high variability in
video surveillance systems through a model transformation approach,
(Vancouver, Canada, 2009), pp. 44-49

3. | Ahmad, Z He, M Liao, F Pereira, MT Sun, Special issue on video
surveillance, IEEE Trans. Circ. Syst. Video Technol. 18(8), 1001-1005 (2008)

4. YHongyu, X Lixia, X Feng, in IEEE International Conference on Industrial
Informatics. Research on cluster remote video surveillance system,
(Singapore, 2006), pp. 1171-1174

5. MD Pesce, Programming Microsoft DirectShow for Digital Video and
Television. (Microsoft Press, Redmond, Washington, 2003)

Page 24 of 24

6.  PLPlauger, Embedded C++: An Overview. Embedded Systems Programming,
(1997). [http://www.dsi.fceia.unr.edu.ar/downloads/informatica/info_ll/
C++/ec++.pdf]

7. S Meyers, Effective C++ in an embedded environment. [http://www.
aristeia.com/c++-in-embedded.html]

8. D Saks, in Embedded Systems Conference. Reducing run-time overhead in
C++ programs, (San Francisco, USA, p. 2002

9. 9.Technical Report on C++ Performance. [www2.research.att.com/bs/
performanceTR.pdf]

10. | McRitchie, TJ Brown, ITA Spence, Managing component variability
within embedded software product lines via transformational code
generation, Softw. Product Family Eng. 3014/2004, 98-110 (2004)

11. AKleppe, J Warmer, W Bast, MDA Explained: The Model Driven Architecture:
Practice and Promise. Addison-Wesley Professional, Boston, 2003)

12. K Czarnecki, U Eisenecker, Generative Programming: Methods, Tools, and
Applications. (Addison-Wesley Professional, Boston, 2003)

13. R Anisko, Towards automatic partial evaluation for the C++ language, in
CSI Seminar (2002)

14. D Lohmann, W Hofer, W Schroder-Preikschat, O Spinczyk, in AOSD '11
Proceedings of the tenth international conference on Aspect-oriented
software development. Aspect-aware operating system development,
(Porto de Galinhas, Pernambuco, Brasil, 2011), pp. 69-80

15. V Sarinho, A Apolinario, in SBGAMES ‘09 Proceedings of the 2009 VII Brazilian
Symposium on Games and Digital Entertainment. A generative
programming approach for game development, (Rio de Janeiro, Brazil,
2009), pp. 83-92

16. T Buchmann, A Dotor, in Pieter van Gorp, Hrsg., Proceedings of the 7th
International Fujaba Days. Mapping features to domain models in Fujaba,
(Seiten 20-24, Eindhoven, The Netherlands, 2009)

17. AMPLE: Aspect-Oriented, Model-Driven, Product Line Engineering.
[http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&
amp;PJ_.RCN=8724342]

18. H Wada, EMM Babu, A Malinowski, J Suzuki, K Oba, in IASTED Int'l Conf. on
Software Engineering and Applications. Design and implementation of the
matilda distributed UML virtual machine, (Dallas, TX, USA), p. 2006

19. KCzarnecki, U Eisenecker, in Proceedings of the European Software
Engineering Conference. Components and generative programming,
(Toulouse, France, 1999), pp. 2-19

20. IDA: About. [http://www.hex-rays.com/products/ida/index.shtmi]

21. KKang, S Cohen, J Hess, W Nowak, S Peterson, Feature-Oriented Domain
Analysis (FODA) Feasibility Study, (CMU/SEI- 90-TR-21). (Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1990).
[http://www.sei.cmu.edu/library/abstracts/reports/90tr021.cfm]

22. V Cechticky, P Chevalley, A Pasetti, W Schaufelberger, in GPCE 03
Proceedings of the 2nd international conference on Generative programming
and component engineering. A generative approach to framework
instantiation, (Erfurt, Germany, 2003), pp. 267-286

23. K Czarnecki, M Antkiewicz, in ACM SIGSOFT/SIGPLAN International
Conference on Generative Programming and Component Engineering
(GPCE'05). Mapping features to models: a template approach based on
superimposed variants, (Tallinn, Estonia, 2005), pp. 422-437

24. A Gurtovoy, D Abrahams, The boost MPL library. [http://www.boost.org/
doc/libs/1_48_0/libs/mpl/doc/index.html]

25. D Abrahams, A Gurtovoy, C++ Template Metaprogramming: Concepts,
Tools, and Techniques from Boost and Beyond. (Addison-Wesley
Professional, Boston, 2004)

doi:10.1186/1687-3963-2012-7

Cite this article as: Cardoso et al: A generative-oriented model-driven
design environment for customizable video surveillance systems. EURASIP
Journal on Embedded Systems 2012 2012:7.



http://www.ivv-aut.com/
http://www.dsi.fceia.unr.edu.ar/downloads/informatica/info_II/c++/ec++.pdf
http://www.dsi.fceia.unr.edu.ar/downloads/informatica/info_II/c++/ec++.pdf
http://www.aristeia.com/c++-in-embedded.html
http://www.aristeia.com/c++-in-embedded.html
www2.research.att.com/bs/performanceTR.pdf
www2.research.att.com/bs/performanceTR.pdf
http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&amp;PJ_RCN=8724342
http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&amp;PJ_RCN=8724342
http://www.hex-rays.com/products/ida/index.shtml
http://www.sei.cmu.edu/library/abstracts/reports/90tr021.cfm
http://www.boost.org/doc/libs/1_48_0/libs/mpl/doc/index.html
http://www.boost.org/doc/libs/1_48_0/libs/mpl/doc/index.html

	Abstract
	Introduction
	Related work
	Microsoft directshow and its reverse engineering
	1
	2
	3
	4

	Video surveillance domain engineering
	The domain analysis
	5
	6
	The domain design and implementation
	The filter artifact template
	The input filter artifact template

	7
	8
	9
	10
	The transform filter artifact template

	11
	12
	13
	14
	15
	16
	The filter graph artifact template

	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	Listing 29 Inline StopFilters function code
	30
	The intelligent connect artifact template

	31
	32
	33
	34

	Video surveillance application engineering
	35
	36
	37

	Video surveillance product line SDK
	Methods
	Conclusion and future work
	Competing interests
	Acknowledgements
	Author details
	References

