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Abstract

In this paper, we discuss the n-dimensional diffraction problem for weakly coupled
quasilinear parabolic system on a bounded domain €2, where the interfaces I'y
(k=1,...,K-1) are allowed to intersect with the outer boundary €2 and the
coefficients of the equations are allowed to be discontinuous on the interfaces. The
aim is to show the existence of solutions by approximation method. The
approximation problem is a diffraction problem with interfaces, which do not
intersect with 9 €2.
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1 Introduction

Let Q2 be abounded domain in R” with boundary 92 (n > 1), and let Q2 be partitioned into
a finite number of subdomains € (k =1,...,K) separated by I'y, where I't, k=1,...,K -1,
are interfaces, which do not intersect with each other. For any T > 0, set

K-1
Qr=x(0,T], Sr=02x[0,T], T:=|JIW  Tr:=Cx[0,T]
k=1

In this paper, we consider the diffraction problem for quasilinear parabolic reaction-
diffusion system in the form

up - ) =gt w)  ((x,8) € Qp),
Wy =0, [ tulul vi@)]r, =0, (L)

=yt ((xt)eSru{Qx{0})),/=1...,N,

where x = (x1,...,%,), u= (..., uV), ui = 9ul/dt, ufci := 0ul/9x;, ui = (ufq,...,uin),

d
el(u) = d—xi(afj(x, t ul)uij) + b;(x, L ul)uii, [=1,...,N, (1.2)

repeated indices i or j indicate summation from 1 to n, v(x) := (v1(x),..., v,(x)) is the unit
normal vector to I' (the positive direction of v(x) is fixed in advance), the symbol [-]r,
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denotes the jump of a quantity across I'r, and the coefficients afj(x, tub), b}(x, t,u') and
gl (%, £, u) are allowed to be discontinuous on I'z. In the following, we refer to the conditions
on I'y in (1.1) as diffraction conditions.

The diffraction problems often appear in different fields of physics, ecology, and tech-
nics. In some of them, the interfaces are allowed to intersect with the outer boundary 92
(see [1-5]). The linear diffraction problems have been treated by many researchers (see
[1-10]). For the quasilinear parabolic and elliptic diffraction problems, when all of the in-
terfaces I'x do not intersect with 92, the existence and uniqueness of the solutions have
been investigated in [11-14] by Leray-Schauder principle and the method of upper and
lower solutions. In this paper, we investigate the existence of solutions of (1.1) when the
interfaces are allowed to intersect with 9. In this case, because of the existence of the
intersection of I and 92, the methods in [11-14] can not be extended. We shall show the
existence of solutions by approximation method. The approximation problem is a diffrac-
tion problem with interfaces which do not intersect with 9<.

The plan of the paper is as follows. In Sect. 2, we give the notations, hypotheses and
an example, and state the existence theorem of the solutions. Section 3 is devoted to the
proof of the existence theorem.

2 The hypotheses, main result and example
2.1 The notations, hypotheses and main result
First, let us introduce more notations and function spaces.
For any set S, S denotes its closure. The symbol Q' CC Q means that Q' C Q and
dist(2,0L) > 0.
Let

Ty T} = {T5 L T JUATTS W TR b

where I'},, k' =1,...,Ko -1, intersect with the outer boundary 92, and | kK'=1,...,K -
Ky do not intersect with 32. Assume that the domain  is partitioned into subdomains
Q, k' =1,...,Ko, separated by interfaces I';,, and partitioned into 7, k" = 1,...,K —

Ko + 1, separated by I'}7. The interface of Q}, and €, is I'};. Then Q= Uf,"zl S_th/ =

k//'
K—-Ko+1 &
Ko Q. Set

Q=% x(0,T] fork=1,...,K,

Ko-1 K-Kop
r=|Jr;, = Jrg TR=0x[0,T], [y :=T"x[0,T],
K =1 k=1

Qpr:= x(0,T] fork'=1,...,Ko,

Q= x (0, T] fork”=1,..., K- Ko +1.

We see that I'r = 'y, UT'J.
C*(Qr) is the spaces of Holder continuous in Q7 with exponent « € (0,1). W1(S2) and
Wzl’l(QT) are the Hilbert spaces with scalar products (v, W)W% @ = fQ(VW + Vi Wy,;) dx and

VW) it o, = foT(vw + VW + Vi, Wy, ) dx dt, respectively. Let

Wyl

W%(Q) = {V € Wzl(Q): V|xeBQ = O}) Wé,l(QT) = {V € W;,I(QT):V“J:,L‘)EST = O}
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For the vector functions with N-components we denote the above function spaces by

C*(Qr), Wi (2), Wy (Qr), W 1(Q) and W Y(Qr), respectively.
Moreover, we recall the following.

Definition 2.1 (see [13, 15]) Write u in the split form

u= (ul, [u] 4, [ul ).

The vector function g(-,u) := (g'(-,u),...,g" (-, u)) is said to be mixed quasimonotone in

B C RN with index vector (a!,...,a") if for each [ = 1,..., N, there exist nonnegative inte-
gers a!, b', satisfying

d+b=N-1,

such that g/(-, u/, [u] 4, [u],) is nondecreasing in [u];, and is nonincreasing in [u],; for all
uc’Bb.

The following hypotheses will be used in this paper:
(H) (i) 9Qand Iy, k=1,...,K —1, are of C2*% for some exponent ag € (0,1) and there
exist Oy € (0,1) and po > 0 such that for every open ball K, centered at xy € 3Q

and radius p < po,
mes(K, N Q) < (1-6p)mesK,.
Assume that for each k' =1,...,Ky — 1,
Ipiepx)=0 (xe Q),

and

U QF - Iy = {x tpp(x) < 0} nQ. (2.1)
=1

(ii) Assume that

! Nl ! ! Nyl I
aij(x, tu')= aij’k/(x, t,u'), bl.(x, tu')= b],’k/ (x,t,u), 2.2)
g tu) =g (xtu) ((5t) € Q) ueRV),K =1,...,K,,

where aﬁj’k, (x,¢,4') and b}{k, (x,t,u') are defined on Q7 x R, g,l(, (x, t,u) are defined
on Qr x RN, and all of them are allowed to be discontinuous on I'*.

(iii) There exist constant vectors M = (M',...,MY) and m = (m',...,m"N), m <M,
such that

gu @, t,M',[M],[m]y) <0 ((x,2) € Qp),
gu(x,t,m, [m] 1, [M]y) =0 ((x,2) € Qp),
m' < l(x, ) < M

(% 8) € ST U{Q x (OW), K =1,...,Ko, I =1,...,N,

(2.3)
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where @/, b' are all independent of k. Let
G:={ueC(Qr):m<u<M).

The vector functions gy (-, u) = (gk W, e N(.,w), K =1,...,Kp, are mixed
qua51monot0ne in & with the same index vector (al,... ,aN ).
(iv) Foreachk'=1,...,Ko, k" =1,...,K =Ko +1,1=1,...,N, a’ (6 ub),

b] k,(x,t u ) € C1+a0 (Qk// T X R) (ly} = ]-y« .. 1”): g/l(/(xy , W ) € C1+a0(Qk// T )
There exist a positive nonincreasing function v(#) and a positive nondecreasing

function u(0) for 6 € [0, +00) such that

|ul| Z§2<a”k, x,tu)’;‘,é,<u |ul| Zél/, (2.4)
i'=1 i'=1
Ay =y, ayp @t u)ibl L (nnu)| < pn(|d]), ij=1...,N. (25)

Foreach/=1,...,N, ¥!(x,t) € C*(E x [0, T]) N WH( x (0, T)) for some
domain E with Q cC &, ¥!(x,0) € C***(Q;) (k =1,...,K), and the following
compatibility condition on I"** holds:

[ (%, 0, (x, 0))w,ii(x, 0)v;(%)] e = O. (2.6)

Definition 2.2 A function u is said to be a solution of (1.1) if u possesses the follow-
ing properties: (i) For some « € (0,1), u € C*(Qr) N C*'(Qx.1), k = 1,..., K. For any given
Q' cc Qand ¢ € (0,T), there exists o/, 0 < «’ <1, such that u, € C¥ (€ x [¢, T]) and
u, € L2Qr)NCY (U N) x [¢,T)), k=1,...,K,j=1,...,m; (ii) u satisfies the equations
in (1.1) for (x,£) € Qx 1, k =1,..., K, the diffraction conditions for (x,£) € 'y N Qr and the
parabolic boundary conditions for (x,£) € St U (2 x {0}).

The main result in this paper is the following existence theorem.

Theorem 2.1 Let Hypothesis (H) hold. Then problem (1.1) has a solution u in G.

2.2 An example
We next give an example satisfying the conditions in Hypothesis (H).

Example 2.1 In problem (1.1), let

n=2, @ = (x1)? + (x2)* = 100, @1 =x1 + (%) +1,
@2 =21 (x2)* -1, @3 = (61 —4)* + (x)* —

0Q:¢=0, Fi:p=0 (x1€h), Foia=0 (% €l), [3:03=0,
where I; = [-(9+/5 -1)/2,-1] and I, = [1,(9+/5 — 1)/2], and let

Q:p<0, Q:0<0,0<0, Q:90<0,01>0,0, <0,

Q3:0<0,02>0,03>0, Q4:03<0.

Page 4 of 14
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Figure 1 The example of the domain and the 2
interfaces for n = 2.

I'i(=

1

The outer boundary of domain is a circle of radius 10 with the center at the origin, whereas

the interface curves are two parabolas and a smaller circle of radius 1 (see Figure 1). We
see that I'; and I'; intersect with 92, and I'; does not.

For the coefficients of the equations and the boundary values in (1.1) we set
AL, i=j,
0, i#j

bj(x, t, ul) =0 ((x, t) e Qpu e R),j =1,2,

ﬂfj(x’ t,u') = ((x,t) € Qur, v’ € R),k=1,2,3,4,i,j=1,2,

g t,w) =ridflm) (1) € Qr,ueRY),k=1,23,4,
vl =o', I=1,..,N,

where
N N-1
fkl(u):l—ZSf,'kul for/i=1,...,N -1, ka(u):1+26f>{kul —SﬁykuN,
r=1 r=1

Elu!) € CX(R) with El(ul) > vy, and vy, Ai, r,l(, 8;,’,( and o’ are all positive constants for
k=1,2,3,4,1,' =1,...,N.

Then

FTZFI, F;ZFz, QT:QI’ 92292, Q;2§0<0,§02>0,

Iy =Ts;, Q" :19<0,03>0, Q5 = Q4.

Foreach/=1,...,N, let

ayp(xtu') =0 ((6)€Qru' €R),i#jij=1,2,k =123,
aﬁi,k, (x, t ul) = Af(,El(ul) ((x, t) e Qpnul e R), i=1,2,k'=1,2,

ALE' W) (1) € Q7 Ul €R),

! I
Aji3 (x’ Lu ) = 1l 1 skl
AE W) ((xt) € Q5 u' €R),

i=1,2,

g,l(,(x, t,u) = r,i,ulf,f/ (u) ((x, t)eQr,uc RN),/(/ =1,2,
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rulfim) (%1 e QueR),

l
g tu) =
rhulfim) (1) € Q5 ue RY).

We find that these functions satisfy (2.2) and the hypothesis (iv) of (H). Set m = (0, ..., 0).
Then the requirements on M in (2.3) become

1-s,,M <0, M'>o,l=1,. N-1

N-1

N ! N N N N

1+ 8 M=o, MN <0, MN >0V
I'=1

It follows from these inequalities that there exist positive constant vector M, such that
m and M satisfy (2.3). Furthermore, the vector functions gy (-, u) = (g}(,(~,u), . ..,g,](\,[(-,u)),
k' =1,2,3, are mixed quasimonotone in & with the same index vector (0,...,0, N —1). The
above arguments show that the conditions in Hypothesis (H) can be satisfied.

3 The proof of the existence theorem
3.1 Preliminaries
Lemma 3.1 The following statements hold true:
(i) Forany given x € , if(plf(,) (x) <0 for some ky € {1,...,Ko — 2}, then

@;(x) <0 forallf e {k6+1,...,1(0—1}.

(i) There exists a positive number &g such that for any given k' € {2,...,Ko -1}, if
1<6 <Kk -1, then

ps(x) =60 forallxe{y: i) =0} NQ.

Proof By (2.1),ifx € Qand go;:é (x) <0,thenx € U]T(O:1 Q*. Thusforeachf = k) +1,...,Ky—1,
x € Ule S_Z’T‘ —I';. Again by (2.1) we get ¢} (x) < 0. This proves the result in (i).

For any given k' € {2,...,Ky — 1}, if x € Q and @5 (x) = 0, then it follows from (i) that
@p(x)>0foralld e{l1,...,k" —1}. Since ¢} € C?*%0, there exist positive constants £ 4 such
that

pix) > ey forallxe{y:pp(y)=0}NQ.

Hence, the conclusion in (ii) follows from the above relation by taking & := ming ¢ &g 4.
O

For an arbitrary ¢, 0 < ¢ < &, let s, = s.(6) be smooth function with values between 0
and 1 such that |d%s5(9)| <Cleforalld e R, s, (0)=1for# <0 ands.(0) =0 for 6 > ¢.
Define

[T se(@r(x)  (xe @),k =1,
Zew(®) = L [TX 1 = s (03 ()] (x € Q), K = Ko, (3.1)
[T s (@@ [T L = s: (03 (0)] (xe @),k =2,..., Ko — 1.
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Lemma 3.2 z.p(x), k' =1,...,Ky, are smooth functions with values between 0 and 1, and
possess the property

Ko
Yz =1 (xeQ). (3.2)
k=1

Let functions i (x), k' =1,...,Ky, be defined on Q, and let

Ko
() =Y e @zep ) (xeQ). (3.3)
k'=1

Then for any x € Q,

m@)  ifefx) <0,
Mk ®) o, 1) = &,
ne(®) = new(x)  if o} (%) = € and ¢},(x) < 0 for some k' € {2,...,Ko -1}, (3.4)
N-1(0)se (@1 (%) + niw (R)[1 = se (g (%))]
if0 <@ (x) <& forsomek' € {2,...,Ko —1}.

Proof Since (3.2) is a special case of (3.4) with ni(x) =1 for all K’ € {1,..., Ky}, we only
prove (3.4).

Case 1. If ¢ (x) < 0, then the conclusion of (i) in Lemma 3.1 implies that ¢}, (x) < 0 and
se(pp(x)) =1forall kK" € {1,...,Ko —1}. (3.1) yields that z, 1 (x) = 1 and z x/(x) = 0 for kK’ > 2.
These, together with (3.3), imply that 7. (x) = 1 (x).

Case 2. If (pl*(o_l(x) > ¢, then the conclusion of (ii) in Lemma 3.1 shows that ¢}, (x) > ¢
and s, (¢} (x)) = 0 for all K’ € {1,..., Ko — 1}. Hence, z¢x,(x) = 1 and z 4 (x) = 0 for all K’ €
{1,...,Ko —1}. Again by (3.3) we get 1, (x) = ng, (x).

Case 3. If ¢, (x) < 0 and ¢}, _, (x) > ¢ for some k' € {2,..., Ko — 1}, then Lemma 3.1 yields
that ¢¥ (x) < 0, s.(¢} (x)) =1 forall 7" € {K,..., Ko — 1}, and that ¢, (x) > &, 5. (¢, (x)) = 0
forall 7”7 € {1,...,k" — 1}. Hence, z. (x) =1 and z,,/(x) = O for v’ # k’. Therefore, n.(x) =
Nk ().

Case 4. If 0 < ¢}, (x) < ¢ for some k' € {2,..., Ko — 1}, then it follows from Lemma 3.1
that ¢ (x) > & and s¢(¢,(x)) = 0 for all 7" € {1,..., k' — 2}, and that ¢}, (x) < 0. Again by the
conclusion of (i) in Lemma 3.1 we have ¢¥, (x) < 0 and s, (¢, (x)) = 1forall " € {K',..., Ko -
1}. Hence, z¢x (%) = 1 = s:(¢},_; (%)), Zex-1(%) = se(@f_;(x)) and z, . (x) = 0 for T # k', k' - 1.
Thus, 1. (x) = nrr-1(x)se (07 _; (x) + e (%) [1 = se (9, (%))] O

3.2 The approximation problem of (1.1)
In this subsection, we construct a problem to approximate (1.1).
Foreach/=1,...,N, let

K
aﬁjs = afjs (x, 8, ul) := 1 “f/,k/ (0, t, uh)z, o (%),

b= b (x t,ul) = SO0 B (%, 8 )z g () (3.5)
j€ - ]'8 by o= I =1 j,k/ X2 £,k ) *

g =gdmtu) =Y gt Wz @) (%0 € Qr).
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It follows from hypothesis (iv) of (H), (3.2) and (3.5) that a’, (x,¢,u'), bfg(x, t,u') are in

ije
CHo(Qpi 7 x R) (i,j = 1,...,m), gh(x,t,u) is in C0(Qp 7 x &) (K" =1,...,K - Ko + 1),

the vector function g,(-,u) = (g}

N . . . . . .
2(-u),...,g (- u)) is mixed quasimonotone in & with in-

dex vector (a,...,a"), and

n n

v(|u']) Y087 < a (et )ity < m(|u']) Y67, (3.6)
i'=1 i'=1

ay =ay, |y (6t u)ib (ntud)| < u(d]), ij=1..,n (37)

‘We note that the functions afjg

(%, t,ub), bjg (%,t,u!) and g! (x, ¢, u) are continuous on I'}, and
are allowed to be discontinuous on I'}*.

For each k" = 1,...,K — Ko, there exists QF & such that I';7 C €27 . Take two subdo-
mains By, By satisfying ') C Byry CC Byrg CC Q’T‘k”. Let Agpr = Agr(x) be an arbi-

trary smooth function taking values in [0, 1] such that A7 = 0 for x ¢ Q* and Ay =1 for

*
Ty

x € Byry. Set

yl = vl e

K-Ky K-Ky
= /| | (%~ yl) (1 -y M@)) Vo 0dy+ Y @y (x,) (3.8)
x-yl=e k'=1 K'=1

with a sufficiently smooth nonnegative averaging kernel w(|£]) that is equal to zero for
|€] > 1 and is such that flé—‘sl w(£)dé = 1. Then from the hypothesis (iv) of (H) and [1,
Chapter II] we know that for each [ =1,...,N, wsl(x, t) is in C*(Q7) N WZI‘I(QT), I/Ié(x, 0)
is in C?*0(Q5) (K" =1,...,K — Ko + 1), ¢! — ¢! in C*0(Qr) and ¥ — ¥’ in W, (Qy).
Thus,

(VHER) ||Cot0(QT) + 1wl wh(op) < A (3.9)

where p; is a positive constant, independent of . Furthermore, (3.4), (3.5) and (3.8) show

that for small enough ¢,

ﬂffs (x’ 2 ”1) = af/vfk“ (x’ b ul)’

Yl t) =y t) (0 t) € By x [0,T1),k" =1,...,K - K.
These, together with (2.6), imply that
l ! _
[ae (x,0, ws(x,o))wsxj(x,o)ui]w =0. (3.10)

For any given ¢, 0 < ¢ < &9, consider the approximation diffraction problem of (1.1)

uﬁ - Sls(ul) = gg (xr t, u) ((xy t) € QT)’
[ul]r;w* =0, [al (x, t, L{l)btijl)i(x)]r? =0, (311)

ije

=yl ) (xt) eSrU{Qx {0}),l=1,...,N,
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L) = dix, (afe (%1, ul)uij) + b (%2, ul)uij.

We note that the interfaces in (3.11) are I';; (K" = 1,..., K — Ko) which do not intersect with
9. In view of (3.10), the compatibility condition on I'** holds.

Proposition 3.1 Problem (3.11) has a unique piecewise classical solution u, = u.(x,t) in
G possessing the following properties:

W e @), e €T PQr), ey €CHP(Qpy) (o cO,D),
u&‘xit € EZ(QT); uexlx] € C(Qk// ), k” = 1, e ,I( - [(0 + 1.

(3.12)

Proof Problem (3.11) is a special case of [13, problem (1.1)] without time delays. Formulas
(2.3) and (3.5) show that @t = M, & = m are a pair of bounded and coupled weak upper and
lower solutions of (3.11) in the sense of [13, Definition 2.2]. We find that the conditions of
[13, Theorem 4.1] are all fulfilled. Then from [13, Theorem 4.1], we obtain that problem
(3.11) has a unique piecewise classical solution u, = u,(x, £) in & possessing the properties
in (3.12). O

3.3 The uniform estimates of u,
In the following discussion, let K, be an arbitrary open ball of radius p with center at x°,
and let Q, be an arbitrary cylinder of the form K, x [t° - p%1°].

For each [ = 1,...,N, consider the equality fo Jolul, — LL)n' dredt = fto Jo &t
u.)n! dxdt for any function 1’ = n'(x,t) from W 5 1(Qr) with ess Supg, In'| < 0o and for
any £, t from [0, T']. In view of u, € G, it follows from (3.6), (3.7), (3.9) and the formula of
integration by parts that

f u.n dx

/ f (=05 (0,4, )t + g2, 1, we) ' dede (3.13)

/ / —u! nt+al]‘9 x,t,ui) Uy, nx]dxdt

<c//ﬁu|upqm& (3.14)
Similarly, for any ¢’ € W () and for every ¢ € [0, T] we get

fg o (%, tu ) éxjd)fc’, dx = /Q[—ulgt - bll.g (%2, ué)uéxl +g (a2, ug)]qbldx dt. (3.15)

Lemma 3.3 There exist constants oy (0 < oy < 1) and C depending only on My (:=
max (M|, |m|)), po, 6o, 2o, V(Mp), t(Mo) and w1, independent of €, such that
!
”“s ||cﬂ1ﬂ1/2((gT) =G (3.16)

””ix”LZ(QT) <C, Il=1,...,N. (3.17)
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Proof (3.16) follows from (3 14), (3.6), (3.7), (3.9) and [1, Chapter V, Theorem 1.1 and
Remark 1.2]. Setting n’ = 4L — ¢! in (3.14) and using Cauchy’s inequality, we can obtain
(3.17). O

Lemma 3.4 For any given k; € {1,...,Ko}, let D, CC Q*i and t' € (0,T). Then there exist
positive constants oy (0 < ay < 1) and C(d},t") depending only on d (:= dist(Dy, 8912)), t
and the parameters My, po, 6o, g, v(My), w(Mo) and p,, independent of €, such that for
any Q7 satisfying D1 N Qg # 0,

etk | oo rmmgprnte.y < C@E)s j=osml=1, 0N, (3.18)
]| e uxiey < CldLt), 1=1,...,N. (3.19)

For any given k € {1,...,K}, let Q" CC Qi and t" € (0, T). Then there exist positive con-
stants a3 (0 < a3 < 1) and C(d",t") depending only on d’ (:= dist(Q2",9Q%)), t” and the
parameters My, po, 0o, ag, v((My)), w(My) and w1, such that

|| u || c2+as, 1+°‘3/2(Q”><[t” T)) (d” H) l = 1; s ’N' (3'20)

Proof Choose a subdomain B satisfying D; CC B CC Q7%,. (3.4) and (3.5) show that for
1
small enough &,

6128 (x, 8, ul) = ﬂfj,ki (%, t, ul)’

b]l»g(x, tul) = b{k, (%, t,ub), (3.21)
JAST
gl(x,t,u) :g][(, (x,t,u) ((x,t)eBx(0,T]),l=1,...,N.
1

Then the same proofs as those of [13, formulas (3.30) and (3.31)] give (3.18) and (3.19). If
Q" ccC Q,thenQ’ CC Q*, Ny, for some kj € {1,...,Ko}, k" € {1,...,K - Ko +1}. Hence,
the conclusion in (3.20) follows from (3.18), (3.19), (3.21) and the same argument as that
for [13, formula (3.37)]. O

In the rest of this subsection, let k) be an arbitrary fixed numberin {1,...,K, -1}, and let
D, CC 2 be an arbitrary fixed subdomain satisfying D, N Flz £, Dy N (F*, U FZ, +1) =
@ and D, N T** = (). We next investigate the uniform estimates in the neighborhood of

ﬂD2 Let x° be any point of Iy ﬂDz [2, Chapter 3, Section 16] and [13] show that there
ex1sts a ball K, with center at x° such that we can straighten 1"”‘é N K, out by introducing a
local coordinate system y = y(x). Our assumptions concerning I" imply that we can divide
F/’% N D, into a finite number of pieces and to introduce for each of them coordinates y.
Since the investigations in the rest of this subsection are local properties, we can assume
without loss of generality that the interface I‘]’:é lies in the plane x,, = 0. Then by (3.4), when
(x,£) € Dy x [0, T] the coefficients of problem (3.11) can be represented in the form

(e, tyul) = g (0t ul)se () +al]k,+1(x, t,u)[1 - s (x,)],

bl (v, t,u) = blk, (x,t ul)s. (x,) + b a@® uh)[1 = s. (%)), (3.22)

gg(x,t,u)=gké(x, ,u)sg(xn)+gké+1(x, Lw(l-se(x,)], [=1,...,N,
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and the diffraction conditions on I'}. in problem (1.1) can be represented in the form

(] =0, [dy(nt ul)uij]r; =0, I=1,...,N. (3.23)

T

Lemma 3.5 Lett' € (0, T). Then there exist positive constants as (0 < ag < 1) and C(d,, t)

depending only on d), (:= min{dist(D,, 3<2), dist(D-, F/f, Y FZ‘, +1), dist(D,, '**)}), t', and the
2 2

parameters My, po, 0o, o, V(Mp), W(Mo) and w1, independent of €, such that

[

” Ugy, ” C% (Do x[t',T]

y=C(dyt), s=1..,n-1, (3.24)

||ar€l,n ||C°‘4(D2><[t’,T]) < C(dy,t), wgl’n = aijs (%2, ui)uﬁx], (3.25)
|4t s oy iy < C(dnt), 1=1,..,N. (3.26)

Proof 1t follows from (3.22) and Hypothesis (H) that

aafjg(x, t, ul)‘ Bafjs. aafjg labjl»s(x, t, ul)' Bb]l.g' 8b/l.8 ) N '8g£(x, t,u)_ B;gﬁ 8g£

’

at " dul T ot oul dx, ot oul
<C (€D, x[0,T,ue®),s=1,...,n-1,LI=1,..,N, (327)

Bxs a?‘:s

and from the equations in (3.11) that

n-1 n )
< C(|uét| + ZZ|”ix;xs| + || +1>

d
‘ dx, (ai’js (st uﬁ)uﬁx/ ) s=1 j=1

(x,t) e Dy x [0,T]),l=1,...,N. (3.28)
( )

Then using (3.13), (3.15), (3.22), (3.27) and (3.28), we can prove (3.24)-(3.26) by a slight
modification of the proofs of [13, formulas (3.30) and (3.31)]. The detailed proofs are omit-
ted. O

3.4 The proof of Theorem 2.1

From estimates (3.16), (3.17) and the Arzela-Ascoli theorem it follows that we can find a
subsequence (we retain the same notation for it) {u,} such that {u,} converges in C(Qr) to
u and {ugxi} converges weakly in £2(Qr) to u, for eachj=1,...,n. Then u € C*1(Qr) and
u, € L£2(Qr). Furthermore, the parabolic boundary conditions for u, in (3.11) imply that
u satisfies the parabolic boundary conditions in (1.1).

For any given k € {1,...,K}, and for any Q" CC Q, t” € (0, T), (3.20) yields that there
exists a subsequence {u,/} (denoted by {u,} still) such that {u,} converges in C>*(Q" x
[¢”, T]) to u. By letting ¢ — 0, from (3.21) and the equations u’, — £/ (ul) = g!(x,£,u.) in
(3.11) we get that

uﬁ - Sl(ul) =g (x,t,u) ((x, t)e Q" x [t”, T]),l =1,...,N.
Since " and ¢” are arbitrary, then u satisfies the equations in (3.11) for (x,¢) € Q1.
Forany given kj € {1,...,Ko} and forany D; CC €2;,, ¢’ € (0, T), we see from (3.18), (3.19)
1
that there exists a subsequence {u./} (denoted by {u,} still) such that for each j=1,...,n
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and for any Q7 satisfying D; N Q5 # ¥, {uey;} converges in C((D1N Q) x [¢,T]) to u,,
and {u,;} converges in C(D; x [t/, T]) to u,. Hence

w, €C((DrnQE) x [£,7]),  w e (D x [£,T)). (3.29)

By letting ¢ — 0 we conclude from (3.21) and the diffraction conditions on I'}* for u, in
(3.11) that

I i N, 1
[u]r?mQT:(L [au@gau)uﬁvxxﬂr?mQT:O, [=1,...,N. (3.30)
For any given k; € {1,...,Ko — 1} and D, CC Q satisfying D, N Iy #9, Dy N (Fl’(‘, LY
2 2

Iy .,)=9and D, NT** = @, the estimates (3.24)-(3.26) imply that for any given ¢’ € (0, T)
2+
there exists a subsequence {u.’} (denoted by {u.} still) such that for each s =1,...,n -1,

l=1,...,N,
byl i
- (3.31)
w!, = aqus (%2, uﬁ)uﬁx/ - inC(Dyx [¢,T]).
Then
u, ul, ' e C*(Dy x [, T)). (3.32)

We next show that &' = aﬁlj(x, t, ul)ufci. For any n = n(x,t) € L*(Dy x (¢, T)),

T
-/t’ /l; [af’ljS (x: t, ulg)l/léxj - df,,/ (x, t, I/ll)ui]_]n dxdt
2
T [ ,
- f fD (@) = (ot e
i ! n_ N
+ /t/ /D2 (@ (e tu) —ay(x,t,u ))Msx/-n de ds
! l Nl l
+ /t/ /Dz @y (% t,01') (1t — vt ) et
=1 L, + I
By (3.27), (3.17), we get

|1£,1| = C” (”é - ”1)’7 ” L2(Dy x(¢/,T)) H ”éx,- ||L2(D2><(t’,T))

= O (e - )

77||L2(D2><(t’,T)) —0 ase—0,

and by (2.2), (3.22),

Lol =

T
/ﬂ /Dzm{x|o<xn<s} (@4 (0 508) = (60 s i et

T 1/2
! 2
C””sx,— ||L2(D2x(o,T)){/t, /[.) n d"dt}
2 N{x|0=<x,<e}

IA
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T 1/2
< C’{/ / n* dxdt}
t' J DyN{x|0<x,<e}

— 0 ase— 0.

Since {u,,;} converges weakly in £2(Qr) to u, foreachj=1,...,n, then 12,3 — 0ase — 0.
Hence, @/, = aqug (x,t, ui)uix/, converges weakly in L*(D, x (¢, T)) to ai,j(x, L ul)ui,, for each
j=1,...,n. This, together with (3.31), implies that

o' = ai,j(x, ¢, ul)uil, € C*(Dy x [, T]), (3.33)

and u satisfies the diffraction conditions on I}, N Q7 in (3.23).
In view of (3.30) u satisfies the diffraction conditions on I'r N Q7 in (1.1). Furthermore,
(3.29), (3.32) and (3.33) imply that for any k € {1,...,K}, Q' CC £,

LIS C"‘((Q’ n Qk) X [t’, T]), w eC” (Q’ X [t/, T]), j=1,...,n

for some « € (0,1). Therefore, u is a solution of (1.1). This completes the proof of Theo-
rem 2.1.
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