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Abstract
A semilinear multivalued evolution equation is considered in a reflexive Banach
space. The nonlinear term has convex, closed, bounded values and a weakly
sequentially closed graph when restricted to its second argument. No strong
compactness is assumed, neither on the evolution operator generated by the linear
part, or on the nonlinear term. A wide family of nonlocal associated boundary value
problems is investigated by means of a fixed point technique. Applications are given
to an optimal feedback control problem, to a nonlinear hyperbolic integro-differential
equation arising in age-structure population models, and to a multipoint boundary
value problem associated to a parabolic partial differential equation.
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1 Introduction
The paper deals with the following semilinear evolution inclusion in a reflexive Banach
space E:

⎧⎨
⎩x′(t) ∈ A(t)x(t) + F(t,x(t)), for a.a. t ∈ [a,b],

Lx =M(x),
(.)

where {A(t)}t∈[a,b] is a family of linear not necessarily bounded operators, F : [a,b]×E� E
is a multivaluedmap (multimap for short) and L : C([a,b];E)→ E,M : C([a,b];E)→ E are
a linear and a nonlinear operator respectively. See Section  for detailed assumptions.
The boundary condition considered is very general and includes the initial value prob-

lem, the two-point problem as well as several nonlocal conditions. For instance, the fol-
lowing two cases are covered by our general framework when Lx = x(a):

(i) M(y) = 
b–a

∫ b
a g(y(t))dt with g : E → E such that ‖g(x) – g(x)‖ ≤ κ‖x – x‖ for

every x,x ∈ E and κD‖K–‖ < ;
(ii) M(y) =

∑n
i= αiy(ti) + y, with y ∈ E, αi ∈R \ {}, ti ∈ [a,b], i = , . . . ,n and

D‖K–‖∑n
i= |αi| < ,

where D is the uniform bound for the evolution operator U generated by {A(t)}t∈[a,b] (see
formula (.)) and K is the invertible linear operator LU(·,a) (see hypothesis (L)).
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Since the pioneering work of Byszewsky [], nonlocal problems have been extensively
studied due to being of interest in several contexts. For instance, the multipoint boundary
value problem (case (ii) above) has better application in physics than the classical initial
problem because it allows measurements at t = ti ∈ [a,b], i = , . . . ,n rather than just at
t = . Abstract problems similar to (.) are considered, for example, in [, ] and [] with
the linear part generator of aC-semigroup or of a strongly continuous evolution operator;
the semigroup and the evolution operator are always assumed to be compact there. In
[] a semilinear functional differential inclusion associated with a multivalued nonlocal
boundary condition is considered, and in [] an abstract problem as (.) is studied with
a lower Scorza-Dragoni type nonlinearity; in both papers, regularity conditions by means
of a measure of non-compactness on the nonlinearity are assumed. However, in [] and
[] we proved the existence of classical solutions for the inclusion (.) associated with
a two-point boundary condition by means of weak topology, thus avoiding hypotheses
of compactness both on the semigroup generated by the linear part and on the nonlinear
term F . The same is done in the present paper, for a wider class of boundary conditions, in
order to find a result of existence formild solutions of (.) (see Theorem.). In particular,
unlike [] and [], this allows to treat a class of nonlinear terms F which are not necessarily
compact-valued.
Problems with a nonlinear nonlocal boundary condition of type (.) occur in many

fields like pharmacokinetics, neural networks, epidemiology models etc, see e.g. [, Sec-
tion .]. In Section  we present several applications of the abstract result Theorem ..
More precisely, with our techniques we can handle diffusion problems of the form

ut = �u + p
(
t,x,

∫
�

u(t, ξ )dξ

)
u(t,x)

joined with several boundary conditions and, in example (.), associated with a feedback
control. This model arises from population dynamics theory in the case of intraspecific
competition for resources (see []), while we refer to [] for recent achievements for its
controllability.
Moreover, we can consider the following class of nonlinear hyperbolic integro-differen-

tial problems arising in population biology:

⎧⎪⎪⎨
⎪⎪⎩
ut = –ua – f (t,a,

∫ B
 u(t,a)da)u,  ≤ a≤ B,  ≤ t ≤ T ,

u(,a) = u(a),  ≤ a≤ B,

u(t, ) =
∫ B
 b(a)u(t,a)da,  ≤ t ≤ T .

(.)

They describe the time evolution of the age-structure of a population. The first models
studying the age-structure of a population were the linear ones by McKendrick and Von
Forster [, ]. The nonlinear model was introduced by Gurtin-MacCamy []. We are
able to solve problem (.), writing it as an abstract problem of type (.). A similar ap-
proach for this type of models, but in a different setting, can be found in [].
In Section  the abstract existence result is proved bymeans of a linearization argument

and the application of the Ky Fan fixed point theorem. We investigate problem (.) in
the space of continuous functions C([a,b];E) endowed with the weak topology. As was
done in [], on the nonlinear term F we assume a growth condition (see (F′)) stronger
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than the sublinear growth, but weaker than the global integrably boundedness; instead,
the sublinear growth condition is enough for studying the Cauchy problem and we have,
as a by-product, the weak compactness of the solution set (see [] and also Remark .).
In Section  some definitions and results used in the sequel of the paper are recalled.
As far as we know, all the results showed are new even for the case of a single-valued

nonlinear term F .

2 Preliminaries
Let (E,‖ · ‖) be a reflexive Banach space, and let Ew be the space E endowed with the weak
topology. We denote by nB the closed ball centered at the origin and of radius n of E,
and for a set A ⊂ E, the symbol Aw denotes the weak closure of A. We take for granted
that a bounded subset A of a reflexive Banach space E is weakly relatively compact. In the
whole paper, we denote by ‖ · ‖ and ‖ · ‖ the L([a,b];E)-norm and the C([a,b];E)-norm
respectively and by ν the Lebesgue measure on [a,b]. We recall (see [, Theorem .])
that a sequence {xn} weakly converges to an element x ∈ C([a,b];E) if and only if
. there exists N >  such that for every n ∈N and t ∈ [a,b], ‖xn(t)‖ ≤ N ;
. for every t ∈ [a,b], xn(t)⇀ x(t);

Denoting � = {(t, s) ∈ [a,b]× [a,b] : a ≤ s ≤ t ≤ b}, we recall that a two-parameter family
{U(t, s)}(t,s)∈�, where U(t, s) : E → E is a bounded linear operator and (t, s) ∈ �, is called
an evolution system if the following conditions are satisfied:
. U(s, s) = I , a≤ s ≤ b; U(t, r)U(r, s) =U(t, s), a ≤ s≤ r ≤ t ≤ b;
. (t, s) �→ U(t, s) is strongly continuous on �, i.e., the map (t, s)→U(t, s)x is

continuous on � for every x ∈ E.
For every evolution system, we can consider the respective evolution operator U : � →
L(E), where L(E) is the space of all bounded linear operators in E.
We observe that since the evolution operator U is strongly continuous on the compact

set �, by the uniform boundedness theorem, there exists a constant D =D� >  such that

∥∥U(t, s)
∥∥
L(E) ≤ D, (t, s) ∈ �; (.)

for details about evolution systems, we refer to [, ].
Let G : L([a,b];E)→ C([a,b];E) be the Cauchy operator defined by

Gf (t) =
∫ t

a
U(t, s)f (s)ds for t ∈ [a,b].

Finally, for the sake of completeness, we recall some well-known results that we will need
in the main section.
Firstly, we state the Ky Fan fixed point theorem.

Theorem . ([, Theorem ]) Let X be a Hausdorff locally convex topological vector
space, let V be a compact convex subset of X, and let G : V � V be an upper semicontin-
uous multimap with closed, convex values. Then G has a fixed point.

Then we mention two results that are contained in the so-called Eberlein-Smulian the-
ory.

http://www.boundaryvalueproblems.com/content/2013/1/60
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Theorem. ([, Theorem , p.]) Let� be a subset of a Banach space X.The following
statements are equivalent:
. � is relatively weakly compact;
. � is relatively weakly sequentially compact.

Corollary . ([, p.]) Let� be a subset of a Banach space X.The following statements
are equivalent:
. � is weakly compact;
. � is weakly sequentially compact.

We recall the Krein-Smulian theorem.

Theorem . ([, p.]) The convex hull of a weakly compact set in a Banach space E
is weakly compact.

In conclusion, we recall the Pettis measurability theorem, which we use in Section .

Theorem. ([, p.]) Let (X,	) be ameasure space, and let E be a separable Banach
space.Then f : X → E ismeasurable if and only if for every e ∈ E′ the function e ◦ f : X →R

is measurable with respect to 	 and the Borel σ -algebra in R.

3 Abstract result
3.1 Problem setting
We consider the semilinear differential inclusion (.) under the following hypotheses:

(A) {A(t)}t∈[a,b] is a family of linear not necessarily bounded operators with
A(t) :D(A)⊂ E → E, D(A) not depending on t and dense in E, generating an
evolution operator U :� →L(E);

(F) for every t ∈ [a,b] and x ∈ E, F(t,x) is nonempty, convex and weakly compact, and
for every x ∈ E, F(·,x) : [a,b]� E has a measurable selection;

(F) for a.a. t ∈ [a,b], F(t, ·) : Ew � Ew is weakly sequentially closed;
(L) L : C([a,b];E)→ E is a linear continuous operator;
(L) the operator K : E → E defined as Kx = LU(·,a)x is invertible;
(M) M : C([a,b];E)→ E is a weakly sequentially continuous operator mapping

bounded sets into bounded sets and such that

lim sup
‖u‖→∞

‖M(u)‖
‖u‖ = l with l <


D‖K–‖ . (.)

We observe that if Lx = x(a), we have that K equals the identity operator, thus condition
(L) is trivially satisfied. When A(t) ≡ A is the abstract formulation of the Laplace opera-
tor, it generates a strongly continuous compact semigroup of contractions S(t) such that
S(t)x = x if and only if x =  (see, e.g., [] and []). According to the Fredholm alterna-
tive, S(t) – I is invertible for all t ∈ (a,b], where I denotes the identity operator. Hence, the
associated periodic problem satisfies condition (L).
In the remaining part of this section, we always assume the following condition on the

multivalued map F .
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(F) for each bounded subset � of E, there exists η� ∈ L([a,b];R) such that, for a.a.
t ∈ [a,b], supx∈� ‖F(t,x)‖ ≤ η�(t).

Instead, for our main result (see Theorem .), we need the stronger assumption as fol-
lows.

(F′) For every n ∈ N, there exists ϕn ∈ L([a,b];R) such that, for a.a. t ∈ [a,b],
sup‖x‖≤n ‖F(t,x)‖ ≤ ϕn(t) and

lim inf
n→∞


n

∫ b

a
ϕn(s)ds = . (.)

The previous boundedness condition is anyway weaker than the one that is often used in
literature in relation with boundary value problems, i.e., the following one.

(F′′) There exists η ∈ L([a,b];R) such that, for every x ∈ E and a.a. t ∈ [a,b], ‖F(t,x)‖ ≤
η(t).

We look for mild solutions, i.e., for functions that satisfy the following definition.

Definition . A continuous function x : [a,b] → E is said to be a mild solution of prob-
lem (.) if there exists a function f ∈ L([a,b];E) such that f (t) ∈ F(t,x(t)) for a.a. t ∈ [a,b]
and

x(t) =U(t,a)x(a) +
∫ t

a
U(t, s)f (s)ds, ∀t ∈ [a,b],

Lx =M(x).

By the assumption of the invertibility of the operatorK , it is possible towrite the solution
as

x(t) =U(t,a)K–[M(x) – LGf
]
+

∫ t

a
U(t, s)f (s)ds, ∀t ∈ [a,b].

Remark . If E is a separable Banach space, according to the Kuratowski-Ryll-Nar-
dzewski theorem (see [, Theorem A]), the measurability of F(·,x) for every x ∈ E is suf-
ficient to obtain condition (F). Moreover, in [] sufficient conditions are given to obtain
the existence of a strongly measurable selection for the multimap F(·,x) in not necessarily
separable Banach spaces.

3.2 Existence result
Given q ∈ C([a,b];E), let us denote

Sq =
{
f ∈ L

(
[a,b];E

)
: f (t) ∈ F

(
t,q(t)

)
a.a. t ∈ [a,b]

}
.

Note that with our hypotheses on F , the set Sq is always nonempty as the following propo-
sition shows.

Proposition . (see [, Proposition .]) Let F : [a,b]×E� E be amultimap satisfying
properties (F), (F) and (F). Then, for every q ∈ C([a,b];E), the set Sq is nonempty.

http://www.boundaryvalueproblems.com/content/2013/1/60
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We denote by T : C([a,b];E)� C([a,b];E) the multioperator defined as

T(q) =
{
x ∈ C

(
[a,b];E

)
: x(t) =U(t,a)K–[M(q) – LGf

]

+
∫ t

a
U(t, s)f (s)ds, ∀t ∈ [a,b], f ∈ Sq

}
. (.)

The fixed points of the multioperator T are mild solutions of problem (.).
Fix n ∈ N, let Qn be the closed ball centered at the origin and of radius n of C([a,b];E),

and denote by Tn = T
Qn :Qn � C([a,b];E) the restriction of the operator T on the setQn.
We show some properties of Tn.

Proposition . The multioperator Tn has a weakly sequentially closed graph.

Proof Let {qm} ⊂ Qn and {xm} ⊂ C([a,b];E) satisfying xm ∈ Tn(qm) for all m and qm ⇀ q,
xm ⇀ x in C([a,b];E); we will prove that x ∈ Tn(q).
Since qm ∈ Qn for all m and qm(t) ⇀ q(t) for every t ∈ [a,b], it follows that ‖q(t)‖ ≤

lim infm→∞ ‖qm(t)‖ ≤ n for all t. Moreover, M is weakly sequentially continuous, and
hence M(qm) ⇀ M(q) in E. The fact that xm ∈ Tn(qm) means that there exists a sequence
{fm}, fm ∈ Sqm , such that

xm(t) =U(t,a)K–[M(qm) – LGfm
]
+

∫ t

a
U(t, s)fm(s)ds, ∀t ∈ [a,b].

We observe that, according to (F), ‖fm(t)‖ ≤ ηnB(t) for a.a. t and every m, i.e., {fm} is
bounded and uniformly integrable and {fm(t)} is bounded in E for a.a. t ∈ [a,b]. Hence,
by the reflexivity of the space E and by the Dunford-Pettis theorem (see [, p.]), we
have the existence of a subsequence, denoted as the sequence, and a function g such that
fm ⇀ g in L([a,b];E).
Moreover, we have

∫ t

a
U(t, s)fm(s)ds⇀

∫ t

a
U(t, s)g(s)ds, ∀t ∈ [a,b].

Indeed, let e′ : E → R be a linear continuous operator. By the linearity and continuity of
the integral and the evolution operator U(t, s), we have that the operator

g → e′
(∫ t

a
U(t, s)g(s)ds

)

is a linear and continuous operator from L([a, t];E) to R for all t ∈ [a,b]. Then, from the
definition of the weak convergence, we have for every t ∈ [a,b]

e′
(∫ t

a
U(t, s)fm(s)ds

)
→ e′

(∫ t

a
U(t, s)g(s)ds

)
.

Moreover, ‖Gfm(t)‖ ≤ D‖ηnB‖ for all m and every t ∈ [a,b]. Consequently, Gfm ⇀ Gg
weakly in C([a,b];E). Hence, for the linearity and continuity of the operator L, we have

http://www.boundaryvalueproblems.com/content/2013/1/60
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that LGfm ⇀ LGg . Finally, by the linearity and continuity of K– (due to hypotheses (L)
and (L)) and U(t, s), we have that

xm(t) ⇀ U(t,a)K–[M(q) – LGg
]
+

∫ t

a
U(t, s)g(s)ds = x(t), ∀t ∈ [a,b]

implying, for the uniqueness of the weak limit in E, that x(t) = x(t) for all t ∈ [a,b].
To conclude, we only have to prove that g(t) ∈ F(t,q(t)) for a.a. t ∈ [a,b].
By Mazur’s convexity theorem, we have the existence of a sequence

f̃m =
km∑
i=

λmifm+i, λmi ≥ ,
km∑
i=

λmi = 

satisfying f̃m → g in L([a,b];R) and, up to a subsequence, there is N ⊂ [a,b] with
Lebesgue measure zero such that f̃m(t) → g(t) for all t ∈ [a,b] \ N. With no loss of
generality, we can also assume that F(t, ·) : Ew � Ew is weakly sequentially closed and
sup‖x‖≤n‖F(t,x)‖ ≤ ηnB(t) for every t /∈N.
Fix t /∈ N and assume, by contradiction, that g(t) /∈ F(t,q(t)). By the reflexivity of

the space E, the restriction FnB(t, ·) of the multimap F(t, ·) on the set nB is weakly com-
pact. Hence, by Corollary ., FnB(t, ·) is a weakly closed multimap, and by [, Theo-
rem ..], it is weakly u.s.c. Since ‖q(t)‖ ≤ n and since FnB(t,q(t)) is closed and convex,
from the Hahn-Banach theorem, there is a weakly open convex set V ⊃ FnB(t,q(t)) sat-
isfying q(t) /∈ V . Since FnB(t, ·) is u.s.c., we can also find a weak neighborhood V of
q(t) such that FnB(t,x) ⊂ V for all x ∈ V with ‖x‖ ≤ n. Note that ‖qm(t)‖ ≤ n for all m.
The convergence qm(t) ⇀ q(t) as m → ∞ then implies the existence of m ∈ N such
that qm(t) ∈ V for all m >m. Therefore fm(t) ∈ FnB(t,qm(t)) ⊂ V for all m >m. The
convexity of V implies that f̃m(t) ∈ V for all m >m and, by the convergence, we arrive
at the contradictory conclusion that g(t) ∈ V . We conclude that g(t) ∈ F(t,q(t)) for a.a.
t ∈ [a,b]. �

Proposition . The multioperator Tn is weakly compact.

Proof We first prove that Tn(Qn) is weakly relatively sequentially compact.
Let {qm} ⊂ Qn and {xm} ⊂ C([a,b];E) satisfying xm ∈ Tn(qm) for all m. By the definition

of the multioperator Tn, there exists a sequence {fm}, fm ∈ Sqm , such that

xm(t) =U(t,a)K–[M(qm) – LGfm
]
+

∫ t

a
U(t, s)fm(s)ds, ∀t ∈ [a,b].

Moreover, reasoning as in Proposition ., we have that there exist a subsequence, denoted
as the sequence, and a function g such that fm ⇀ g in L([a,b];E). Since the operator M
maps bounded sets into bounded sets and Qn is bounded, we obtain that M(qm) ⇀ x ∈ E
up to subsequence. Therefore

xm(t) ⇀ l(t) =U(t,a)K–(x – LGg) +
∫ t

a
U(t, s)g(s)ds, ∀t ∈ [a,b].

http://www.boundaryvalueproblems.com/content/2013/1/60
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Furthermore, by the weak convergence of {fm} and {M(qm)}, we have
∥∥xm(t)∥∥ ≤ D

∥∥K–∥∥[∥∥M(qm)
∥∥ + ‖L‖D‖fm‖

]
+D‖fm‖ ≤ N

for allm ∈N, for all t ∈ [a,b], and for some N > . Reasoning again like in Proposition .,
it is then easy to prove that xm ⇀ l in C([a,b];E). Thus Tn(Qn) is weakly relatively sequen-
tially compact, hence weakly relatively compact by Theorem .. �

Proposition . The multioperator Tn has convex and weakly compact values.

Proof Fix q ∈Qn, since F is convex-valued, the set Tn(q) is convex from the linearity of the
integral and of the operators K–, L, and U(t, s) for all (t, s) ∈ �. The weak compactness of
Tn(q) follows by Propositions . and .. �

Theorem. Under the assumptions (A), (F), (F), (F′), (L), (L) and (M), problem (.)
has at least a mild solution.

Proof We show that there exists n ∈ N such that the operator Tn maps the ball Qn into
itself.
According to (.), there exists a subsequence, still denoted as the sequence, such that

lim
n→∞


n

∫ b

a
ϕn(s)ds = . (.)

Assume by contradiction that there exist two sequences {qn} and {xn} such that qn ∈ Qn,
xn ∈ Tn(qn) and xn /∈ Qn for all n ∈ N. By the definition of Tn, there exists a sequence
{gn} ⊂ L([a,b];E), gn(s) ∈ F(s,qn(s)) ∀n ∈N and q.o. s ∈ [a,b], such that

xn(t) =U(t,a)K–[M(qn) – LGgn
]
+

∫ t

a
U(t, s)gn(s)ds, ∀t ∈ [a,b].

By the assumption xn /∈Qn, we must have, for every n,

n < ‖xn‖ ≤D
∥∥K–∥∥[∥∥M(qn)

∥∥ + ‖L‖D‖gn‖
]
+D‖gn‖. (.)

Moreover qn ∈ Qn implies by (F′) that ‖gn(t)‖ ≤ ϕn(t) for a.a. t ∈ [a,b], hence ‖gn‖ ≤
‖ϕn‖. Consequently,

n <D
∥∥K–∥∥∥∥M(qn)

∥∥ +D‖ϕn‖
(∥∥K–∥∥‖L‖D + 

)
.

Therefore


D‖K–‖ <

‖M(qn)‖
n

+
‖ϕn‖
n

(
‖L‖D +


‖K–‖

)
.

Notice that if ‖qn‖ ≤ H < +∞ for every n ∈ N, then limn→∞ ‖M(qn)‖
n =  because M maps

bounded sets into bounded sets; if lim supn→∞ ‖qn‖ = +∞, then by hypothesis we have

lim sup
n→∞

‖M(qn)‖
n

≤ lim sup
n→∞

‖M(qn)‖
‖qn‖ ≤ lim sup

‖u‖→∞
‖M(u)‖
‖u‖ = l <


D‖K–‖ .

http://www.boundaryvalueproblems.com/content/2013/1/60
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In both cases lim supn→∞
‖M(qn)‖

n < 
D‖K–‖ . Moreover, by (.)

lim
n→∞

‖ϕn‖
n

(
‖L‖D +


‖K–‖

)
= .

Hence


D‖K–‖ ≤ lim sup

n→∞

[‖M(qn)‖
n

+
‖ϕn‖
n

(
‖L‖D +


‖K–‖

)]
<


D‖K–‖ ,

obtaining a contradiction.
Fix now n ∈N such thatTn(Qn) ⊆Qn. By Proposition . the setVn = Tn(Qn)

w
is aweakly

compact set. Let nowWn = co(Vn), where co(Vn) denotes the closed convex hull of Vn. By
Theorem ., Wn is a weakly compact set. Moreover, from the fact that Tn(Qn) ⊂ Qn and
that Qn is a convex closed set, we have thatWn ⊂Qn and hence

Tn(Wn) = Tn
(
co

(
Tn(Qn)

)) ⊆ Tn(Qn) ⊆ Tn(Qn)
w
= Vn ⊂Wn.

Therefore, from Proposition . and from Corollary ., we obtain that the restriction of
the multimap Tn on Wn has a closed graph, and hence, by Proposition ., it is weakly
u.s.c (see [, Theorem ..]). The conclusion then follows by Theorem .. �

When dealing with Cauchy problems, it is possible to weaken condition (F′) and to
obtain the weak compactness of the solution set, as pointed out in the following remark.

Remark . In [, Theorem .], under condition (F), an existence result for local clas-
sical solutions for the Cauchy problem associated to a semilinear differential inclusion is
proved. Following the proof ’s outline of the cited theorem and combing it with Proposi-
tions ., ., ., it is easy to obtain the existence of local mild solutions for (.) with a
Cauchy initial condition under the same boundedness assumption (F). Moreover, in the
same paper (see Theorem .), a global classical solution is obtained for the initial value
problem under the following classical assumption.

(F′′′) There exists α ∈ L([a,b];R) such that, for every x ∈ E and a.a. t ∈ [a,b], ‖F(t,x)‖ ≤
α(t)( + ‖x‖).

Again, under (F′′′), in [, Theorem .] the existence of a nonempty weakly compact set
of mild solutions is showed for the initial value problem.
Wepoint out the fact that the boundedness hypotheses considered are related as follows:

condition (F′′) implies (F′) which implies (F′′′) which implies (F).

http://www.boundaryvalueproblems.com/content/2013/1/60
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4 Applications
4.1 Optimal feedback control problems of population diffusion models
Let � be a bounded domain in R

n with boundary of class C∞ and u : [,d]× � →R. We
consider the following feedback control problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = �u + p(t,x,
∫
�
u(t, ξ )dξ )u(t,x) + a(t,x)w(t,x) + b(t,x),

t ∈ [,d],x ∈ �,w(t,x) ∈W (u(t,x)),

u(t,x) = , t ∈ [,d],x ∈ ∂�,

u(,x) = u(x), x ∈ �,

(.)

withW (r) = {s ∈R : �r +m ≤ s ≤ �r +m}, where � >  andm <m.
We assume the following hypotheses:
(i) a and b are globally measurable in [,d]× �, and there exist two functions

ϕ,ϕ ∈ L([,d];R) such that, for a.a. x ∈ � and every t ∈ [,d],

∣∣a(t,x)∣∣ ≤ ϕ(t);∣∣b(t,x)∣∣ ≤ ϕ(t);

the map p : [,d]× � ×R →R satisfies the following conditions:
(ii) for all r ∈R, p(·, ·, r) : [,d]× � →R is measurable;
(iii) for a.a. t ∈ [,d] and x ∈ �, p(t,x, ·) :R→R is continuous;
(iv) there exists ϕ ∈ L([,d];R) such that, for a.a. x ∈ � and every t ∈ [,d] and r ∈R,

∣∣p(t,x, r)∣∣ ≤ ϕ(t).

Let y : [,d] → L(�;R), v : [,d] → L(�;R), f : [,d]× L(�;R)× L(�;R) → L(�;R),
and V : L(�;R)� L(�;R) be the maps defined by

y(t) = u(t, ·);
v(t) = w(t, ·);

f (t,α,β) :� →R, f (t,α,β)(x) = p
(
t,x,

∫
�

α(ξ )dξ

)
α(x) + a(t,x)β(x) + b(t,x);

V (z) =
{
v ∈ L(�;R) : �z(x) +m ≤ v(x)≤ �z(x) +m, a.a. x ∈ �

}
.

We can write the feedback control problem (.) as a first-order inclusion in the Hilbert
space E = L(�;R)

⎧⎨
⎩y′(t) ∈ Ay(t) + F(t, y(t)), t ∈ [,d], y(t) ∈ L(�;R),

y() = y,
(.)

where F(t, z) = f (t, z,V (z)), A :W ,(�;R) ∩ W ,
 (�;R) → L(�;R) is the linear operator

defined as Ay = �y and y = u(·).
The operators L : C([,d];E) → E and M : C([,d];E) → E are defined as Ly = y() and

M(y) = y. Trivially, L is a linear and bounded operator, andM is sequentially continuous

http://www.boundaryvalueproblems.com/content/2013/1/60
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with respect to the weak topology, and the operator K of condition (L) is the identity
operator, in particular it is invertible. Moreover, it is known that A generates a semigroup
of contractions U(t) on E with the constant D of (.) equal to  (see, e.g., [] p.-).
Hence hypotheses (A),(L),(L) and (M) are satisfied with l = .
We prove that there exists a mild solution

y(t) =U(t)y +
∫ t


U(t – s)f

(
s, y(s), v(s)

)
ds, t ∈ [,d],

y() = y,

where v(s) ∈ V (y(s)), s ∈ [,d].
We show now that all the hypotheses of Theorem . are satisfied.
The map g : [a,b]→ L(�;R) defined as

g(t)(x) = p
(
t,x,

∫
�

z(ξ )dξ

)
z(x) + a(t,x)

(
�z(x) +m

)
+ b(t,x)

is a selection of F(·, z). Moreover, by the separability of the space L(�;R), conditions (i),
(ii), (iii), and by the Pettis measurability theorem (see Theorem .), we obtain that g is a
measurable map, and so we have obtained for every z ∈ L(�;R) the existence of a mea-
surable selection of F(·, z).
We prove now that the map F verifies condition (F), i.e., that the map F(t, ·) :

L(�;R) → L(�;R) is weakly sequentially closed for a.a. t ∈ [,d].
We start proving the sequential closedness with respect to the weak topology of the

multimap V .
Let {αj} ∈ L(�;R), αj ⇀ α in L(�;R), {ωj} ∈ L(�;R),ωj ∈ V (αj),ωj ⇀ ω. According to

Mazur’s convexity lemma, for each j there exist kj ∈N and positive numbers λji, i = , . . . ,kj
such that

∑kj
i= λji =  and the sequence α̃j =

∑kj
i= λjiαj+i → α in L(�;R). Then we can

extract a subsequence, denoted as the sequence, satisfying α̃j(x)→ α(x) for a.a. x ∈ �. We
have that the convex combination ω̃j =

∑kj
i= λjiωj+i converges weakly to ω. Moreover, by

the definition of V , we have that

�α̃j(x) +m ≤ ω̃j(x) ≤ �α̃j(x) +m a.a. x ∈ �.

Applying again Mazur’s convexity lemma, for each j there exist hj ∈ N and positive num-
bers νji, i = , . . . ,hj such that

∑hj
i= νji =  and the sequence ˜̃ωj =

∑hj
i= νjiω̃j+i → ω in

L(�;R). Then we can extract a subsequence, denoted as the sequence, satisfying ˜̃ωj(x) →
ω(x) for a.a. x ∈ �. As before,

�

hj∑
i=

νjiα̃j+i(x) +m ≤
hj∑
i=

νjiω̃j+i(x)≤ �

hj∑
i=

νjiα̃j+i(x) +m.

Then passing to the limit, we obtain

�α(x) +m ≤ ω(x)≤ �α(x) +m, ∀j, i = , . . . ,hj, and a.a. x ∈ �,

i.e., ω ∈ V (α).

http://www.boundaryvalueproblems.com/content/2013/1/60
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Let now t ∈ [,d] be fixed, let {αn} ⊂ L(�;R), weakly convergent to α ∈ L(�;R), and
let {wn} ∈ L(�;R) with wn ∈ F(t,αn) for every n ∈ N, weakly convergent to w ∈ L(�;R).
By the definition of the multimap F , we have

wn = f(t,αn) + f(t,βn), with βn ∈ V (αn) for every n ∈N,

where f, f : [,d] × L(�;R) → L(�;R), f(t,α)(x) = p(t,x,
∫
�

α(ξ )dξ )α(x), f(t,β)(x) =
a(t,x)β(x) + b(t,x).
By the definition of the multimap V and the weak convergence of {αn}, we have that the

sequence {βn} is norm bounded. Hence, by the reflexivity of the space L(�;R), up to a
subsequence, {βn}weakly converges to β ∈ L(�;R) and the weak closure of themultimap
V implies β ∈ V (α). Moreover, by the continuity of the map p and condition (iv), we have
that {f(t,αn)} converges weakly to f(t,α) and it is easy to see that {f(t,βn)} converges
weakly to f(t,β). In conclusion, we have obtained

w = f(t,α) + f(t,β) ∈ f
(
t,α,V (α)

)
= F(t,α).

Furthermore, easily, V has convex and closed values; thus, by the linearity of the map f
and following the same reasonings as above, F is convex closed-valued as well.
Finally, the multimap F : [,d]×L(�;R)� L(�;R) verifies all the hypotheses of The-

orem .. Indeed from (i), (iv) and again from the definition of V , we have that

∥∥F(t,α)∥∥ ≤ ∥∥f(t,α)∥∥ +
∥∥f(t,V (α)

)∥∥


≤ ϕ(t)‖α‖ + ϕ(t)
(
�‖α‖ +m|�|/ + �‖α‖ +m|�|/) + ϕ(t)|�|/

≤ (
ϕ(t) + �ϕ(t)

)‖α‖ + |�|/[(m +m)ϕ(t) + ϕ(t)
]
.

Denoting with ϕ(t) = ϕ(t) + �ϕ(t) + |�|/[(m +m)ϕ(t) + ϕ(t)], we have

∥∥F(t,α)∥∥ ≤ ϕ(t)
(
 + ‖α‖

)
,

obtaining both that for every t ∈ [,d] and α ∈ L(�;R) the set F(t,α) is bounded (hence
relatively compact by the reflexivity of L(�;R)) and that condition (F′′′) is satisfied. Then
applying Theorem . (see also Remark .), we obtain the existence of a function such
that

y(t) =U(t)y +
∫ t


U(t – s)h(s)ds, t ∈ [,d]

with h(s) ∈ F(s, y(s)) = f (s, y(s),V (y(s))).
Finally, applying the implicit function theorem of Filippov type (see [, Theorem .]),

we have that there exists v : [,d] → L(�;R) such that v(t) ∈ V (y(t)) and h(t) =
f (t, y(t), v(t)), t ∈ [,d].

Theorem . Let j : C([,d];L(�;R)) → R be a lower semicontinuous (l.s.c. for short)
functional with respect to the weak topology. Then, under conditions (i)-(iv), there exists a

http://www.boundaryvalueproblems.com/content/2013/1/60


Benedetti et al. Boundary Value Problems 2013, 2013:60 Page 13 of 18
http://www.boundaryvalueproblems.com/content/2013/1/60

mild solution (u∗,ω∗) of problem (.) such that

j
(
u∗) = min

x∈S(u)
j(x),

where S(u) is the set of all mild trajectories of the system (.) with the initial value u.

Proof Under the hypotheses (i)-(iv), the set S(u) �= ∅; see the proof above. Moreover,
according to [, Theorem .] (see also Remark .), the solution set S(u) is weakly
compact in C([,d],L(�;R)). Let u∗ be the minimizer of j on S(u), and let ω∗ be the
corresponding control, then the pair (u∗,ω∗) is the required optimal solution. �

4.2 Age-structure population model
Weconsider the nonlinear hyperbolic integro-differential problem (.) whichwas already
introduced in Section . This model arises in population biology and describes the time
evolution of the age-structure of a population. Here we consider the case of a nonlinear
equation with linear boundary conditions. The independent variables t and a denote re-
spectively time and age, and u(t,a) represents the density of individuals of age a at time t.
The death rate f is a nonnegative term depending on the time, the age and the total size
of the population

∫ B
 u(t,a)da. The boundary condition accounts for the birth in the pop-

ulation. The weight function bmeasures the fertility at age a.
We consider problem (.) under the following hypothesis:
(i) for all c ∈ R, f (·, ·, c) : [,T]× [,B] →R is measurable;
(ii) for a.a. t ∈ [,T] and a ∈ [,B], f (t,a, ·) :R →R is continuous;
(iii) there exists α ∈ L([,T];R) such that, for every t ∈ [,T], a ∈ [,B] and c ∈R,

|f (t,a, c)| ≤ α(t);
(iv) b ∈ L([,B];R).

Problem (.) can be written as the following Cauchy problem in the Banach space E =
L([,B];R):

⎧⎨
⎩y′(t) = Ay(t) + F(t, y(t)),

y() = y,
(.)

where y : [,T] → E is defined as y(t) = u(t, ·), y = u(·), F : [,T] × E → E is the single-
valued map F(t, y)(a) = –f (t,a,

∫ B
 y(s)ds)y(a) and A :D(A) → E, with

D(A) =
{
y ∈W ,([,B];R)

: y() =
∫ B


b(a)y(a)da

}
,

is the linear operator Ay = –y′. A is the generator of the translation semigroup, which
satisfies the identity

U(t)y(a) =

⎧⎨
⎩y(a – t) if t < a,∫ B

 b(s)U(t – a)y(s)ds if t ≥ a.
(.)

This semigroup is intensely studied in [, ], thus we do not give any details here. We
just recall that the translation semigroup is not compact.

http://www.boundaryvalueproblems.com/content/2013/1/60
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As showed in Section ., the initial condition y() = u satisfies (L), (L) and (M).
According to (iii), for every y ∈ L([,B];R), the function a → f (t,a

∫ B
 y(s)ds)y(a) be-

longs to L([,B];R), hence F is nonempty-valued. Moreover, the Pettis measurability
theorem (see Theorem .), the separability of L([,B];R) and conditions (i) and (ii) im-
ply that F is globally measurable (see [, Corollary ..]), and hence, according to Re-
mark ., since F is single-valued, condition (F) is also satisfied.
We now prove that F(t, ·) is weakly sequentially continuous for a.a. t, so we take

yn ⇀ y in L([,B],R). Then
∫ B
 yn(s)ds → ∫ B

 y(s)ds, thus (ii) implies that f (t,a,∫ B
 yn(s)ds) → f (t,a,

∫ B
 y(s)ds) for a.a. a ∈ [,B]. Moreover, it is possible to show that

f (t,a,
∫ B
 yn(s)ds)yn ⇀ f (t,a,

∫ B
 y(s)ds)y in L([,B];R) obtaining condition (F).

Finally, according to (iii), we have, for a.a. t ∈ [,T] and every y ∈ L([,B];R),

∥∥F(t, y)∥∥
 =

∫ B


f 

(
t,a,

∫ B


u(t,a)da

)
y(a)da≤ α(t)‖y‖,

and so the growth condition (F′′′) is satisfied. Recalling Remark ., this condition is suf-
ficient for the existence of at least a solution for the Cauchy problem.
Hence we find a mild solution y ∈ C([,T];L([,B];R)). We stress that by (.) the so-

lution u(t, ·) = y(t) is a mild solution of (.) satisfying the required boundary conditions.
Indeed,

u(t, ) = y(t)() =
[
U()y(t)

]
() =

∫ B


b(s)

[
U()y(t)

]
(s)ds =

∫ B


b(s)y(t)(s)ds

=
∫ B


b(s)u(t, s)ds.

Remark . With our techniques, we can attach also problems of the following general
form:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = –ua +�u – f (t,a,x,
∫ B
 u(t,a,x)da)u,  ≤ a ≤ B, ≤ t ≤ T ,x ∈ �,

u(,a,x) = u(a,x),  ≤ a≤ B,x ∈ �,

u(t,a,x) = ,  ≤ a≤ B,  ≤ t ≤ T ,x ∈ ∂�,

u(t, ,x) =
∫ B
 b(a,x)u(t,a,x)da,  ≤ t ≤ T ,x ∈ �,

(.)

where the Laplacian operator is understood only with respect to the space variable x and
� ⊂ R

 is a bounded closed domain with Lipschitz boundary. This model represents the
age-structure of a population with spatial diffusion which takes into account the conse-
quences of the environment changes on populations dynamics (see [, ]). The same
arguments as above show that Theorem . applies to problem (.), taking again into ac-
count Remark .. In fact, in this case, given the Banach space E = L([,B] × �;R), we
define the operator Ay = – ∂y

∂a +�y on

D(A) =
{
y : y(a, ·) ∈W ,(�;R), y(·,x) ∈ W ,([,B];R)

, y(,x) =
∫ B


b(a,x)y(a,x)da

}
.

This operator generates a strongly continuous semigroup (see []), and all the other con-
ditions can be shown as in the previous example.

http://www.boundaryvalueproblems.com/content/2013/1/60


Benedetti et al. Boundary Value Problems 2013, 2013:60 Page 15 of 18
http://www.boundaryvalueproblems.com/content/2013/1/60

4.3 Multipoint boundary value problem
Let t ∈ [a,b] and � ⊂R

m be a bounded set with a sufficiently regular boundary. Consider
the multipoint boundary value problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut ∈ �u + [p(t,x,
∫
�
k(x, ξ )u(t, ξ )dξ ),p(t,x,

∫
�
k(x, ξ )u(t, ξ )dξ )]ϕ(t,x),

t ∈ [a,b],x ∈ �,

u(t,x) = , t ∈ [a,b],x ∈ ∂�,

u(a,x) +
∑n

i=ciu(ti,x) = u(x), x ∈ �,

(.)

under the following hypotheses:
(i) k : � × � → R is measurable with k(x, ·) ∈ L(�;R) and ‖k(x, ·)‖ ≤  for all x ∈ �;
(ii) pi : [a,b]× � ×R →R, i = , , satisfy the following conditions:

(a) for every r ∈ R and i = , , pi(·, ·, r) is measurable;
(b) for a.a. t ∈ [a,b] and all x ∈ �, p(t,x, ·) is l.s.c. and p(t,x, ·) is u.s.c.;
(c) there exist η ∈ L([a,b];R) and λ : [,∞) → [,∞) increasing such that, for a.a.

t ∈ [a,b] and every x ∈ �, r ∈ R and i = , , |pi(t,x, r)| ≤ η(t)λ(|r|) and

lim inf
r→∞

λ(r)
r

= ; (.)

(d) for every t ∈ [a,b], x ∈ � and r ∈R, p(t,x, r)≤ p(t,x, r);
(iii) ϕ : [a,b]× � →R is measurable with ϕ(t, ·) ∈ L(�;R) for a.a. t ∈ [a,b] and

‖ϕ(t, ·)‖ ∈ L∞([a,b];R);
(iv) u ∈ L(�;R);
(v) ti ∈ [a,b], ci ∈R \ {}, i = , , . . . ,n satisfy a < t < t < · · · < tn ≤ b and

∑n
i= |ci| < .

We search for solutions u ∈ C([a,b];L(�;R)), and we can transform problem (.) into
the nonlocal boundary value problem

⎧⎨
⎩y′(t) ∈ Ay(t) + F(t, y(t)),

y(a) +
∑n

i=cy(ti) = y
(.)

in the reflexive Hilbert space L(�;R), where y : [a,b]→ L(�;R), A and y are as in Sec-
tion .. For α ∈ L(�;R), the function Iα : � → R defined by Iα(x) =

∫
�
k(x, ξ )α(ξ )dξ is

well defined and measurable according to (i). Moreover, |Iα(x)| ≤ ‖α‖ for every x ∈ �.
The multimap F : [a,b]× L(�;R)� L(�;R) is defined by y ∈ F(t,α) if and only if there
is a measurable function β : � → R satisfying p(t,x, Iα(x)) ≤ β(x) ≤ p(t,x, Iα(x)) and
y(x) = β(x)ϕ(t,x) for a.a. x ∈ �. This definition is well posed, i.e., F is nonempty-valued
according to (ii) and (iii), and it is easy to see that F is also convex-valued.
Given (t,α) ∈ [a,b]× L(�;R), from (ii) we have that

‖y‖ =

√∫
�

β(x)ϕ(t,x)dx

≤
√∫

�

max
{
p

(
t,x, Iα(x)

)
,p

(
t,x, Iα(x)

)}
ϕ(t,x)dx

≤ η(t)λ
(‖α‖

)∥∥ϕ(t, ·)∥∥, (.)
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for every y ∈ F(t,α). Hence F has weakly relatively compact values. Moreover, according
to (.) and (ii)(c), we have that

sup
‖α‖≤n

∥∥F(t,α)∥∥ ≤ η(t)λ(n)
∥∥ϕ(t, ·)∥∥ := ϕn(t) for n ∈N;

and therefore (F′) follows from (.).
Now we investigate (F), and hence we fix a value t in [a,b] for which (ii)(b) is satisfied

and consider the sequences {αn}, {yn} ⊂ L(�;R) such that αn ⇀ α, yn ⇀ y in L(�;R) and
yn ∈ F(t,αn) for all n ∈ N. Notice that the weak convergence of αn implies both the exis-
tence of σ >  such that ‖αn‖ ≤ σ and Iαn (x)→ Iα(x) for all x ∈ �. Moreover, yn = βnϕ(t, ·)
for all n and somemeasurable βn : � →R satisfying p(t,x, Iαn (x))≤ βn(x)≤ p(t,x, Iαn (x))
for a.a. x ∈ �. According to (ii)(c), |βn(x)| ≤ η(t)λ(σ ) a.e. in � for all n. Since � is bounded
in R

m, the set {βn} ⊂ L(�;R) and it is weakly relatively compact. Hence we can find a
subsequence, again denoted as the sequence, satisfying βn ⇀ β ∈ L(�;R). Consequently,
applying Mazur’s convexity lemma, for each n there exist kn ∈ N and positive numbers
δni, i = , , . . . ,kn, such that

∑kn
i=δni =  and the sequence β̃n :=

∑kn
i=δniβn+i → β . Up to a

subsequence, denoted again as the sequence, β̃n(x)→ β(x) for a.a. x ∈ �. Since

kn∑
i=

δnip
(
t,x, Iαn+i (x)

) ≤ β̃n(x)≤
kn∑
i=

δnip
(
t,x, Iαn+i (x)

)
for a.a. x ∈ �,

passing to the limit as n → ∞ and according to (ii)(b), we obtain that p(t,x, Iα(x)) ≤
β(x) ≤ p(t,x, Iα(x)) a.e. in �. Let ỹn :=

∑kn
i= δniyn+i. It is possible to see that ỹn ⇀ y. How-

ever, ỹn(x) = β̃n(x)ϕ(t,x), and hence ỹn(x) → β(x)ϕ(t,x) for a.a. x ∈ � and the conver-
gence is dominated since |β̃n(x)| ≤ ∑kn

i= δni|βn(x)| ≤ η(t)λ(σ ) for a.a. x ∈ �. Therefore
ỹn → βϕ(t, ·) in L(�;R), and the uniqueness of the weak limit implies that y = βϕ(t, ·).
We have showed that F(t, ·) is weakly sequentially closed, i.e., that (F) is satisfied, for a.a.
t ∈ [a,b]. Then by (.) F has weakly sequentially compact values since L(�;R) is reflex-
ive, and according to Corollary ., it is weakly compact-valued. Furthermore, according
to the Pettis measurability theorem (see Theorem .), it is possible to show that the maps
t �→ pi(t, ·, Iα(·))ϕ(t, ·), i = , , are measurable selection of F(·,α) for every α ∈ L(�;R);
hence condition (F) is satisfied.
For y ∈ L(�;R) we have that Ly = y(a) and then, as showed in Section , it satisfies

both (L) and (L). Whereas M : C([a,b];L(�;R)) → L(�;R) is such that M(y) = y –∑n
i=ciy(ti) and it satisfies condition (M) (see Introduction); estimate (.), in particular,

depends on (v). All the assumptions of Theorem . are then satisfied, and hence problem
(.) is solvable. It implies that themultipoint boundary value problem (.) has a solution
u ∈ C([a,b];L(�;R)).

Remark . Similarly as before, it is possible to show that also the nonlocal boundary
value problem given by the differential inclusion in (.) associated with the boundary
condition

u(a,x) =


b – a

∫ b

a
g
(
u(s,x)

)
ds, x ∈ �,

is solvable, provided that g : R →R is Lipschitzian of some constant k < .
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Remark . In (.) and (.) it is possible to substitute the Laplacian operator with a
more general operator L :W ,(�;R) ∩ W ,

 (�;R) → L(�;R) in divergence form of the
following type:

(Lu)(x) =
n∑

i,j=

∂

∂xj

(
ai,j(x)

∂

∂xi
u(x)

)

with t ∈ [a,b], x ∈ � and
(a) ai,j ∈ L∞(�), ai,j = aj,i, i, j = , , . . . ,n;
(b) there exists c >  such that, for a.a. x ∈ � and every ξ ∈R

n, c‖ξ‖ ≤ ∑n
i,i=ai,j(x)ξiξj.
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