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Abstract
In this paper we propose a new method for solving the mixed boundary value
problem for the Laplace equation in unbounded multiply connected regions. All
simple closed curves making up the boundary are divided into two sets. The Dirichlet
condition is given for one set and the Neumann condition is given for the other set.
The mixed problem is reformulated in the form of a Riemann-Hilbert (RH) problem
which leads to a uniquely solvable Fredholm integral equation of the second kind.
Three numerical examples are presented to show the effectiveness of the proposed
method.
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1 Introduction
In the present paper, we continue the research concerned with the study of mixed bound-
ary value problems in the plane started in []. We consider a mixed boundary value prob-
lem for the Laplace equation in an unbounded multiply connected regions. Recently, the
interplay of the RH boundary value problem and integral equations with the general-
ized Neumann kernel on unbounded multiply connected regions has been investigated
in []. Based on the reformulations of the Dirichlet problem, the Neumann problem and
conformal mappings as RH problems, boundary integral equations with the generalized
Neumann kernel have been implemented successfully in [] to solve the Dirichlet prob-
lem and the Neumann problem and in [–] to compute the conformal mappings of un-
bounded multiply connected regions onto the classical canonical slit domains.
The mixed boundary value problem also can be reformulated as an RH problem (see,

e.g., [–]). Recently, Nasser et al. [] have presented a uniquely solvable boundary inte-
gral equation with the generalized Neumann kernel for solving the mixed boundary value
problem in bounded multiply connected regions. The idea of this paper is to reformulate
the mixed boundary value problem to the form of the RH problem in unboundedmultiply
connected regions. Based on this reformulation, we present a newboundary integral equa-
tion method for two-dimensional Laplace’s equation with the mixed boundary condition
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in unbounded multiply connected regions. The method is based on a uniquely solvable
boundary integral equation with the generalized Neumann kernel.
This paper is organized as follows. After presenting some auxiliary materials in Sec-

tion , we present in Section  the mixed boundary value problem in unbounded multi-
ply connected regions. In Section , we give an explanation of an integral equation with
the generalized Neumann kernel and its solvability. The reduction of the mixed bound-
ary value problem to the form of the RH problem is given in Section . In Section , we
present the solution of the mixed boundary problem via an integral equation method. In
Section , we explain briefly the numerical implementation of the method. In Section ,
we illustrate the method by presenting two numerical examples with exact solutions and
also one example without an exact solution.

2 Notations and auxiliary material
In this section, we review some properties of the generalized Neumann kernel from [, ,
, ].
We consider an unbounded multiply connected region G of connectivity m ≥  with

boundary � = ∂G =
⋃m

j= �j consisting of m clockwise oriented smooth closed Jordan
curves �j, j = , , . . . ,m. The complement G– :=C \G consists ofm bounded simply con-
nected componentsGj interior to�j, j = , , . . . ,m.We assume∞ ∈G,  ∈G (see Figure ).
The curves �j are parametrized by π-periodic twice continuously differentiable

complex-valued functions ηj(t) with non-vanishing first derivatives, i.e.,

η̇j(t) = dηj(t)/dt �= , t ∈ Jj := [, π ], j = , , . . . ,m. ()

The total parameter domain J is the disjoint union of the intervals Jj, j = , , . . . ,m. We de-
fine a parametrization of the whole boundary � as the complex-valued function η defined
on J by

η(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η(t), t ∈ J,
...

ηm(t), t ∈ Jm.

()

Let H be the space of all real Hölder continuous functions on the boundary �. In view
of the smoothness of η, a function φ ∈ H can be interpreted via φ̂(t) := φ(η(t)), t ∈ J , as a
real Hölder continuous π-periodic function φ̂(t) of the parameter t ∈ J , i.e.,

φ̂(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ̂(t), t ∈ J,
...

φ̂m(t), t ∈ Jm,

()

Figure 1 An unboundedmultiply connected
region G of connectivitym.
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with real Hölder continuous π-periodic functions φ̂j defined on Jj. So, here and in what
follows, we do not distinguish between functions of the form ψ(η(t)) and ψ(t).
The subspace of H which consists of all piecewise constant functions defined on � is

denoted by S, i.e., a function h ∈ S has the representation

h(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h, t ∈ J,
...

hm, t ∈ Jm,

()

where h, . . . ,hm are real constants. For simplicity, the function h is denoted by

h(t) = (h, . . . ,hm). ()

3 Themixed boundary value problem
Let Sd and Sn be two subsets of the set {, . . . ,m} such that

Sd �= ∅, Sn �= ∅, Sd ∪ Sn = {, . . . ,m} and Sd ∩ Sn = ∅.

Let n be the exterior unit normal to � and let φ ∈ H be a given function. We consider
the mixed boundary value problem

�u(z) = , z ∈ G, (a)

u
(
η(t)

)
= φj(t), t ∈ J , j ∈ Sd, (b)

∂u(η(t))
∂n

= φj(t), t ∈ J , j ∈ Sn, (c)

for a real function u in G. We call (b) and (c) Dirichlet conditions and Neumann con-
ditions, respectively.
Problem (a)-(c) reduces to theDirichlet problem for Sn = ∅ and to theNeumann prob-

lem for Sd = ∅. Both problems have been considered in []. So, we assume in this paper
that Sn �= ∅ and Sd �= ∅.
The mixed boundary value problem (a)-(c) is uniquely solvable []. Its unique solu-

tion u can be regarded as a real part of an analytic function F in G which is not necessary
single-valued. The function F can be written as

F(z) = f (z) –
m∑
j=

aj log(z – zj), ()

where f is a single-valued analytic function inG, zj are fixed points inGj, j = , , . . . ,m; and
a, . . . ,am are real constants uniquely determined by φ (see []).Without lost of generality,
we assume that Im f (∞) = . The constants a, . . . ,am are chosen to ensure that (see [,
p.] and [])

∫
�j

f ′(η)dη = , j = , , . . . ,m,
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i.e., aj are given by (see [])

aj =


π i

∫
�j

F ′(η)dη, j = , , . . . ,m. ()

The constants aj satisfy

m∑
j=

aj =
m∑
j=


π i

∫
�j

F ′(η)dη =


π i

∫
�

F ′(η)dη = . ()

4 Integral equation
In this paper we assume that the function A is a continuously differentiable complex-
valued function given by

A(t) := e–iθ (t), ()

where θ is the real piecewise constant function

θ (t) = (θ, . . . , θm) ()

with either θj =  or θj = π/, j = , . . . ,m. Here the function A(t) is different from the ones
used in [, ]. The generalized Neumann kernel formed with A and η(t) is defined by

N(s, t) :=

π
Im

(
A(s)
A(t)

η̇(t)
η(t) – η(s)

)
. ()

We also define a real kernelM by

M(s, t) :=

π
Re

(
A(s)
A(t)

η̇(t)
η(t) – η(s)

)
. ()

The kernel N is continuous and the kernelM has a cotangent singularity type (see [] for
more details). Hence, the operator

Nμ(s) :=
∫
J
N(s, t)μ(t)dt, s ∈ J , ()

is a Fredholm integral operator and the operator

Mμ(s) :=
∫
J
M(s, t)μ(t)dt, s ∈ J , ()

is a singular integral operator.
The solvability of boundary integral equations with the generalized Neumann kernel is

determined by the index (the change of the argument of A on the curves �j divided by
π ) of the function A (see []). For the function A given by (), the indices κj of A on the
curves �j and the index κ =

∑m
j= κj of A on the whole boundary curve � are given by

κj = , j = , . . . ,m, κ = . ()
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The generalized Neumann kernel for an integral equation associated with the mixed
boundary value problem which will be presented in this paper is different from the gener-
alized Neumann kernel for the integral equation considered in [, ]. Thus, not all of the
properties of the generalized Neumann kernel which have been studied in [] are valid for
the generalized Neumann kernel which will be studied in this paper. For example, it is still
true that λ =  is not an eigenvalue of the generalized Neumann kernel which means that
the presented integral equation is uniquely solvable.
By using the same approach used in [] for unbounded multiply connected regions, we

can prove that the properties of the generalized Neumann kernel proved in [], except
Theorem, Theorem  andCorollary , are still valid for the generalizedNeumann kernel
formed with the function A(t) in () above (see []).
Thus, we have from [] the following theorem (see also [, ]).

Theorem  For a given function γ ∈H , there exist unique functions h ∈ S and μ ∈H such
that

Ag = γ + h + iμ ()

are boundary values of a unique analytic function g(z) in G with g(∞) = . The function μ

is the unique solution of the integral equation

(I –N)μ = –Mγ ()

and the function h is given by

h =
[
Mμ – (I –N)γ

]
/. ()

5 Reformulation of themixed boundary value problem as an RH problem
The mixed boundary value problem can be reduced to an RH problem as follows. Let the
boundary values of the multi-valued analytic function F be given by

F = ψ + iϕ. ()

Although, the function F(z) is in general multi-valued, its derivative F ′ is a single-valued
analytic function on G. The boundary values of the function F ′(z) are given by

η̇F ′ = ψ ′ + iϕ′. ()

For the Dirichlet conditions, i.e., t ∈ Jj and j ∈ Sd, the functions ψj are equal to the known
functions φj(t) (see (b)). Thus, the function F(z) satisfies the RH problem

Re
[
F
(
ηj(t)

)]
= φj(t), t ∈ Jj, j ∈ Sd. ()

The Neumann conditions can also be reduced to an RH problem by using the Cauchy-
Riemann equations and integrating along the boundaries �j, j ∈ Sn. Let T(ζ ) be the unit
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tangent vector and n(ζ ) be the unit external normal vector to � at ζ ∈ �. Let also ν(ζ ) be
the angle between the normal vector n(ζ ) and the positive real axis, i.e., n(ζ ) = eiν(ζ ). Then

eiν(η(t)) = –iT
(
η(t)

)
= –i

η̇(t)
|η̇(t)| .

Thus,

∂u
∂n

= ∇u · n = cosν
∂u
∂x

+ sinν
∂u
∂y

= Re

[
eiν

(
∂u
∂x

– i
∂u
∂y

)]
. ()

Since u(z) = ReF(z), then by the Cauchy-Riemann equations, we have

F ′(z) =
∂u(z)
∂x

– i
∂u(z)
∂y

.

Thus, the function F ′(z) satisfies the RH problem

Re
[
–iη̇j(t)F ′] = ∣∣η̇j(t)∣∣∂u

∂n
, t ∈ Jj, j ∈ Sn. ()

If we define the real piecewise constant function

θ (t) =

⎧⎨
⎩
, t ∈ Jj, j ∈ Sd,

π/, t ∈ Jj, j ∈ Sn,
()

the boundary values of the function F(z) satisfy on the boundary � the condition

Re
[
e–iθ (t)F

(
η(t)

)]
= φ̂(t), ()

where

φ̂(t) =

⎧⎨
⎩

φj(t), t ∈ Jj, j ∈ Sd,

ϕj(t), t ∈ Jj, j ∈ Sn,
()

is known and

ϕ′
j (t) = Re

[
–iη̇j(t)F ′(ηj(t))] = φj(t)

∣∣η̇j(t)∣∣, t ∈ Jj, j ∈ Sn. ()

The functions φj(t) for j ∈ Sd ∪ Sn are given by (b) and (c). The functions ϕj(t) can be
then computed for t ∈ Jj and j ∈ Sn by integrating the functions ϕ′

j (t). Then it follows from
(), () and () that the function f (z) is a solution of the RH problem

Re
[
e–iθ (t)f

(
η(t)

)]
= φ̂(t) +

m∑
k=

ak Re
[
e–iθ (t) log

(
η(t) – zk

)]
, ()

or briefly,

Re
[
e–iθ (t)f

(
η(t)

)]
= φ̂(t) +

∑
k∈Sn

akγ [k](t) +
∑
k∈Sd

akγ [k](t), ()
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where

γ [k](t) = Re
[
e–iθ (t) log

(
η(t) – zk

)]
, ()

for k = , , . . . ,m. In view of () and (), the real constants ak are known for k ∈ Sn and
are given by

ak =

π

∫
Jk

φk(t)
∣∣η̇k(t)∣∣dt, k ∈ Sn. ()

However, for k ∈ Sd, the real constants ak are unknown. Thus, the boundary condition ()
can be written as

Re
[
e–iθ (t)f

(
η(t)

)]
= ψ̂(t) +

∑
k∈Sd

akγ [k](t), t ∈ J , ()

where the function ψ̂(t) is known and is given by

ψ̂(t) =

⎧⎨
⎩

φj(t) +
∑

k∈Sn akγ
[k]
j (t), t ∈ Jj, j ∈ Sd,

ϕj(t) +
∑

k∈Sn akγ
[k]
j (t), t ∈ Jj, j ∈ Sn.

()

Obviously, the functions ψ̂j(t) are known explicitly for t ∈ Jj with j ∈ Sd. However, for t ∈ Jj
with j ∈ Sn, it is required to integrate ϕ′

j (t) to obtain ϕj(t).
The functions ϕj(t) are not necessary π-periodic. In order to keep dealingwith periodic

functions numerically, we do not compute ϕj(t) directly by integrating the functions ϕ′
j (t).

Instead, we integrate the functions

ψ̂ ′
j (t) = φj(t)

∣∣η̇j(t)∣∣ + ∑
k∈Sn

ak
d
dt

γ
[k]
j (t).

According to the definitions of the constants ak and the functions γ [k], we have

∫ π


ψ̂ ′

j (t)dt = ,

which implies that the functions ψ̂j(t) = ϕj(t) +
∑

k∈Sn akγ
[k]
j (t) are always π-periodic. By

using the Fourier series for t ∈ Jj with j ∈ Sn, the functions ψ̂ ′
j (t) can be written as

ψ̂ ′
j (t) =

∞∑
i=

a[j]i cos it +
∞∑
i=

b[j]i sin it. ()

Then the functions ψ̂j(t) are given for t ∈ Jj with j ∈ Sn by

ψ̂j(t) = ψ̃j(t) + cj, ()

where cj are undetermined real constants and the functions ψ̃j(t) are given by

ψ̃j(t) =
∞∑
i=

a[j]i
i

sin it –
∞∑
i=

b[j]i
i

cos it, t ∈ Jj, j ∈ Sn. ()
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Hence, the boundary condition () can then be written as

Re
[
e–iθ (t)f

(
η(t)

)]
= γ̂ (t) + h̃(t) +

∑
k∈Sd

akγ [k](t), t ∈ J , ()

where h̃(t) is the real piecewise constant function

h̃(t) =

⎧⎨
⎩
, t ∈ Jj, j ∈ Sd,

cj, t ∈ Jj, j ∈ Sn,
()

and the function γ̂ (t) is given by

γ̂ (t) =

⎧⎨
⎩

φj(t) +
∑

k∈Sn akγ
[k]
j (t), t ∈ Jj, j ∈ Sd,

ψ̃j(t), t ∈ Jj, j ∈ Sn.
()

Let c := f (∞) (unknown real constant) and g(z) be the analytic function defined on G by

g(z) := f (z) – c, z ∈G. ()

Then g(z) is analytic onGwith g(∞) = . The function g(z) is a solution of the RH problem

Re
[
A(t)g

(
η(t)

)]
= γ̃ (t) + h(t) +

∑
j∈Sd

ajγ [j](t), t ∈ J , ()

where the function A(t) is given by () and the function h(t) is defined by

h(t) = ĥ(t) – c cos θ (t), t ∈ J . ()

6 The solution of themixed boundary value problem
Let μ(t) := Im[A(t)g(η(t))]. Then the boundary values of the function g(z) are given on the
boundary � by

A(t)g
(
η(t)

)
= γ̂ (t) + h(t) +

∑
j∈Sd

ajγ [j](t) + iμ(t), t ∈ J , ()

where γ̂ (t), γ [], . . . ,γ [m] are knowns and h, μ are unknowns. The real constants aj are
known for j ∈ Sn and unknown for j ∈ Sd.
For j ∈ Sd, let the functions μ̂ and μ[j] be the unique solutions of the integral equations

(I –N)μ̂ = –Mγ̂ , (I –N)μ[j] = –Mγ [j], ()

respectively, ĥ(t) and h[j] be given by

ĥ(t) =
[
Mμ̂ – (I –N)γ̂

]
/, h[j] =

[
Mμ[j] – (I –N)γ [j]]/. ()

Then it follows from Theorem  that

A(t)ĝ
(
η(t)

)
= γ̂ + ĥ + iμ̂ +

∑
j∈Sd

aj
(
γ [j] + h[j] + iμ[j]) ()
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are boundary values of an analytic function ĝ(z). By the uniqueness of the functions h and
μ in (), it follows from () and () that

μ(t) = μ̂ +
∑
j∈Sd

ajμ[j], ()

and

h(t) = ĥ +
∑
j∈Sd

ajh[j]. (a)

Equation (a) with the following equation (from ()),

∑
j∈Sd

aj = –
∑
j∈Sn

aj, (b)

represents a linear system of m equations. Since from () the function h(t) is given by

h(t) =

⎧⎨
⎩
–c, t ∈ Jj, j ∈ Sd,

cj, t ∈ Jj, j ∈ Sn,

only the constants c, aj for j ∈ Sd and cj for j ∈ Sn are unknowns. Thus, linear equations
(a) and (b) represent a linear system ofm+ equations inm+ unknowns aj for j ∈ Sd
and cj for j ∈ Sn.
By obtaining the values of the constants aj, we obtain the functions μ from () and h

from (a). Consequently, the boundary values of the function g are given by

A(t)g
(
η(t)

)
= γ (t) + h(t) + iμ(t), t ∈ J , ()

where

γ (t) = γ̂ (t) +
∑
j∈Sd

ajγ [j](t), t ∈ J . ()

The function g(z) can be computed for z ∈ G by the Cauchy integral formula. Then the
function f (z) is computed from

f (z) = c + g(z). ()

Finally, the solution of the mixed boundary value problem can be computed from u(z) =
ReF(z), where F(z) is given by ().

7 Numerical implementations
Since the functions Aj and ηj are π-periodic, the integrals in the operators N and M
in integral equations () are best discretized on an equidistant grid by the trapezoidal
rule []. The computational details are similar to previous works in [, , , ]. For ana-
lytic integrands, the rate of convergence is better than /nk for any positive integer k (see,
e.g., [, p.]). The obtained approximate solutions of the integral equations converge to

http://www.boundaryvalueproblems.com/content/2013/1/54
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the exact solutions with a similarly rapid rate of convergence (see, e.g., [, p.]). Since
the smoothness of the integrands in () depends on the smoothness of the function η(t),
results of high accuracy can be obtained for very smooth boundaries.
By using the trapezoidal rule with n (an even positive integer) equidistant collocation

points on each boundary component, solving integral equations () reduces to solving
mn by mn linear systems. Since integral equations () are uniquely solvable, then for
sufficiently large values of n, the obtained linear systems are also uniquely solvable [].
In this paper, the linear systems are solved using the Gauss eliminationmethod. By solv-

ing the linear systems, we obtain approximations to μ̂ and μ[j] for j ∈ Sd, which give ap-
proximations to ĥ and h[j] for j ∈ Sd from (). By solving (a) and (b), we get approx-
imations to the constants c, aj for j ∈ Sd and cj for j ∈ Sn. These give approximations to
the boundary values of the function g(z) from (). Then the values of g(z) for z ∈ G are
calculated by the Cauchy integral formula. For points z which are not close to the bound-
ary �, the integrals in the Cauchy integral formula are approximated by the trapezoidal
rule. However, for points z near the boundary �, the integrand is nearly singular. For the
latter case, the integral in the Cauchy integral formula can be calculated accurately using
the method suggested in [, Eq. ()]. Then approximate values of the function f (z) are
computed from (). Finally, in view of (), the approximate solution of the mixed bound-
ary value problem can be computed from

u(z) = ReF(z) = Re f (z) –
m∑
j=

aj log |z – zj|. ()

In this paper, we have considered regions with smooth boundaries. For some ideas on
how to solve numerically boundary integral equations with the generalized Neumann ker-
nel on regions with piecewise smooth boundaries, see [].

8 Numerical examples
In this section, the proposed method is used to solve three mixed boundary value prob-
lems in unbounded multiply connected regions with smooth boundaries.

Example  In this example, we consider an unboundedmultiply connected region of con-
nectivity  bounded by the four circles (see Figure )

�: η(t) =  + .i + .e–it ,

�: η(t) =  + i + .e–it ,

�: η(t) =  – i + .e–it ,

�: η(t) = – + .e–it ,

where  ≤ t ≤ π .

We assume that the conditions on the boundaries �, � are the Neumann conditions
and the conditions on the boundaries �, � are the Dirichlet conditions. The functions
φj in (b)-(c) are obtained based on choosing an exact solution of the form

u(z) = Re


z – i – 
.
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Figure 2 The region for Example 1.

Figure 3 The error norm (54) for Example 1.

We use the error norm

∫ π



∣∣u(
 + i + .e–it

)
– un

(
 + i + .e–it

)∣∣ dt, ()

where u(z) is the exact solution of the mixed boundary value problem and un(z) is the ap-
proximate solution obtained with n collocation points. The error norm vs. the total num-
ber of calculation points n by using the presented method is shown in Figure , where the
integral in () is discretized by the trapezoidal rule. By using only n =  ( calculation
points on the whole boundary), we obtain error norm less that –. The absolute errors
|u(z) – un(z)| at selected points in the entire domain are plotted in Figure . The graph of
the approximate solution un(z) is illustrated in Figure .

Example  In this example, we consider an unboundedmultiply connected region of con-
nectivity  (see Figure ). The boundary � = ∂G is parametrized by

http://www.boundaryvalueproblems.com/content/2013/1/54
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Figure 4 The absolute error for Example 1.

Figure 5 The graph of the approximate solution for Example 1.

ηj(t) = zj + eiνj (αj cos t + iβj sin t), j = , . . . , , ()

where the values of the complex constants zj and the real constants αj, βj, νj are as in
Table .

The region in this example has been considered in [, , ] for the Dirichlet problem
and the Neumann problem. In this example, we consider a mixed boundary value prob-
lem where we assume that the conditions on the boundaries �, �, � are the Dirichlet
conditions and the conditions on the boundaries �, �, � are the Neumann conditions.
The functions φj in (b)-(c) are obtained based on choosing an exact solution of the form

u(z) =  +
∑
j=

(j – /) log
(|z – ζj|

)
,

http://www.boundaryvalueproblems.com/content/2013/1/54


Al-Hatemi et al. Boundary Value Problems 2013, 2013:54 Page 13 of 17
http://www.boundaryvalueproblems.com/content/2013/1/54

Figure 6 The region for Example 2.

Table 1 The values of constants αj , βj , zj , νj and ζj for Example 2

j αj β j zj νj ζ j

1 0.3626 -0.1881 0.1621 + 0.5940i 3.3108 0.10 + 0.50i
2 0.5061 -0.6053 –1.7059 + 0.3423i 0.5778 –1.60 + 0.40i
3 0.6051 -0.7078 0.3577 – 0.9846i 4.1087 0.30 – 0.90i
4 0.7928 -0.3182 1.0000 + 1.2668i 2.6138 0.95 + 1.20i
5 0.3923 -0.4491 –1.9306 – 1.0663i 4.4057 –1.85 – 1.00i
6 0.2976 -0.6132 –0.8330 – 2.1650i 5.7197 –0.80 – 2.10i

where the values of the complex constants ζj are as in Table . For the error, we use the
error norm (see Figure )

∫ π



∣∣u(
–. – .i + .e–it

)
– un

(
–. – .i + .e–it

)∣∣ dt. ()

The absolute errors |u(z) – un(z)| at selected points in the entire domain are plotted in
Figure . The graph of the approximate solution un(z) is shown in Figure .

Example  This example aims to give an impression how themethodworks for a problem
with an unknown exact solution.We assume that the boundaries of an unbounded doubly
connected region are represented as follows (see Figure ):

�: η = – – i + ( + . cost)e–it ,

�: η =  – i + cos t – i sin t.

We assume the Dirichlet condition on the star-shape boundary with Dirichlet data φ(t) =
, while on the ellipse-shape boundary is the Neumann condition with Neumann data
∂u
∂n = φ(t) = –. The graph of the approximate solution is illustrated in Figure .
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Figure 7 The error norm (56) for Example 2.

Figure 8 The absolute error for Example 2.

Figure 9 The graph of the approximate solution for Example 2.
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Figure 10 The region for Example 3.

Figure 11 The graph of the approximate solution for Example 3.

9 Conclusion
We have constructed a new boundary integral equation with the generalized Neumann
kernel for solving a mixed boundary value problem in unbounded multiply connected re-
gions. The generalized Neumann kernel used in this paper is formed with A(t) = e–iθ (t)

which is different from the ones used in [, ]. Numerical evidences show that Theorem 
in [], which claims that the eigenvalues of the generalized Neumann kernel lie in [–, ), is
no longer true for the function A(t) of this paper (see Figures  and ). Three numerical
examples are presented to illustrate the accuracy of the presented method. The numerical
examples illustrate that the proposedmethod yields approximations of high accuracy. This
paper only applies to the explicitly mixed Dirichlet and Neumann boundary conditions in
unbounded multiply connected regions, but the method can be extended to a boundary
with both mixed boundary conditions in a boundary component �k . For this case, the
function A(t) is discontinuous on Jk , where A(t) =  on the part of �k corresponding to the
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Figure 12 The eigenvalues of the coefficient matrix of the linear systems obtained by discretizing
integral equations (45) with n = 256 for the region in Example 1.

Figure 13 The eigenvalues of the coefficient matrix of the linear systems obtained by discretizing
integral equations (45) with n = 256 for the region in Example 2.

Dirichlet condition and A(t) = –i on the part of �k corresponding to the Neumann con-
dition. Hence, the RH problem () will be a problem with discontinuous coefficient A(t).
Thus, further investigations are required. This will be considered in future work.
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