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Abstract

In this paper, we shall discuss the existence of positive solutions for the system of
fractional integral boundary value problem

DJ, ui(t) + it ur (0, (1) =0, 0<t<1,i=1,2,
uO=u©=0  u(l)=f u®)dn,

where a € (2,3] is a real number, D, is the standard Riemann-Liouville fractional
derivative of order o and f; € C([0, 1] x R x R*,R),i=1,2. f01 u;(t) dn(t) denotes the
Riemann-Stieltjes integral, i.e., n(t) has bounded variation. By virtue of some
inequalities associated with Green’s function, without the assumption of the
nonnegativity of f;, we utilize the fixed point index theory to establish our main
results. In addition, a square function and its inverse function are used to characterize
coupling behaviors of f,, so that f; are allowed to grow superlinearly and sublinearly.
MSC: 34B10; 34B18; 34A34; 45G15; 45M20

Keywords: fractional integral boundary value problem; positive solution; fixed point
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1 Introduction
In this paper, we study the existence of positive solutions for the system of fractional inte-
gral boundary value problem

D§, ui(t) + fi(t, u1(2), u2(t)) =0, 0<t<1,i=12,

(1.1)
w(0) = w(0) =0,  w(1)= [y ui(e)dn(@),
where o € (2,3] is a real number, D§, is the standard Riemann-Liouville fractional deriva-
tive of order « and f; € C([0,1] x R* x R*,R), i=1,2. fol u;(t) dn(t) denotes the Riemann-
Stieltjes integral, 7 is right continuous on [0, 1), left continuous at ¢ = 1, and nondecreasing
on [0,1], with n(0) = 0.

The subject of multi-point nonlocal boundary value problems, initiated by II'in and Moi-
seev [1], has been addressed by many authors. The multi-point boundary conditions ap-
pear in certain problems of thermodynamics, elasticity, and wave propagation; see [2] and
the references therein. For example, the vibrations of a guy wire of a uniform cross-section
and composed of N parts of different densities can be set up as a multi-point boundary
value problem (see [3]); many problems in the theory of elastic stability can be handled
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by the method of multi-point problems (see [4]). On the other hand, we all know that the
Riemann-Stieltjes integral, as in the form of fol u(s) dn(s), where n is of bounded variation,
that is, dn can be a signed measure, includes as special cases the multi-point boundary
value problems and integral boundary value problems. That is why many authors are par-
ticularly interested in Riemann-Stieltjes integral boundary value problems.

Meanwhile, we also note that fractional differential equation’s modeling capabilities in
engineering, science, economy, and other fields, have resulted in a rapid development of
the theory of fractional differential equations in the last few decades; see the recent books
[5-9]. This may explain the reason why the last few decades have witnessed an overgrow-
ing interest in the research of such problems, with many papers in this direction published.
Recently, there are some papers dealing with the existence of solutions (or positive solu-
tions) of nonlinear fractional differential equation by the use of techniques of nonlinear
analysis (fixed-point theorems, Leray-Schauder theory, upper and lower solution method,
etc.); for example, see [10—18] and the references therein.

However, to the best our knowledge, there are only a few papers dealing with systems
with fractional boundary value problems. In [13] and [18], Bai and Su considered respec-
tively the existence of solutions for systems of fractional differential equations, and ob-
tained some excellent results. Motivated by the works mentioned above, in this paper, we
shall discuss the existence of positive solutions for the system of fractional integral bound-
ary value problem (1.1). It is interesting that a square function and its inverse function are
used to characterize coupling behaviors of f;, so that f; are allowed to grow superlinearly

and sublinearly.

2 Preliminaries
We first offer some definitions and fundamental facts of fractional calculus theory, which

can be found in [5-9].

Definition 2.1 (see [7, 8], [6, pp.36-37]) The Riemann-Liouville fractional derivative of

order « > 0 of a continuous function f : (0, +00) — R is given by

o B 1 d "t fls)
Do, () = F'n-o) (dt) /0 (t — s)a—n+l ds,

where 7 = [] + 1, [«] denotes the integer part of number «, provided that the right-hand

side is pointwise defined on (0, +00).

Definition 2.2 (see [6, Definition 2.1]) The Riemann-Liouville fractional integral of order

a > 0 of a function f : (0, +00) — R s given by

1

ITf(t)= m

t
| -9 r0as
0
provided that the right-hand side is pointwise defined on (0, +00).

From the definition of the Riemann-Liouville derivative, we can obtain the following

statement.


http://www.boundaryvalueproblems.com/content/2013/1/256

Wang Boundary Value Problems 2013, 2013:256
http://www.boundaryvalueproblems.com/content/2013/1/256

Lemma 2.1 (see [11]) Let o > 0. If we assume u € C(0,1) N L(0,1), then the fractional dif-

ferential equation Dy, u(t) = 0 has a unique solution
u@) =t et 2+ ent®™N, ¢ eRi=12,...,N,
where N is the smallest integer greater than or equal to o.

Lemma 2.2 (see [11]) Assume thatu € C(0,1)NL(0,1) with a fractional derivative of order
a > 0 that belongs to C(0,1) N L(0,1). Then

I8, D8 u(t) = u(t) + it + ot 2 4 -+ ent®™,  forsomec;€R,i=1,2,...,N,
where N is the smallest integer greater than or equal to «.

In what follows, we need to consider the following fractional integral boundary value

problem:

D, u(t) + h(t,u) =0, 0<t<l,

X (2.1)
u0)=u'(0)=0,  u()= fyut)dn),
then we present Green’s function for (2.1), and study the properties of Green’s function.
In our paper, we always assume that the following two conditions are satisfied:
(HO) Ko :=1- [y 27 dn(t) > 0.
(H1) & e C([0,1] x R*,R) is bounded from below, i.e., there is a positive constant M
such that a(t, u) > -M, Y(t,u) € [0,1] x R*.

Lemma 2.3 Let (HO), (H1) hold. Then problem (2.1) is equivalent to

1
u(t):/0 G(t,s)h(s,u(s)) ds,

where
1
6(t:9) = Ht,9) + ' [ HE9)dn(o), 22)
0
and
1 t_a_ll_ oz—l_t_ 0‘—1, 0<s<t<l,
H(t,s):= — d-s) t=9) =i=t= (2.3)

[(e) | go1(1 = g)2-L, 0<t<s<l.

Proof By Lemmas 2.1and 2.2, we can reduce the equation of problem (2.1) to an equivalent

integral equation

u(t) = —Ig, h(t) + at® iy ot*? 4 g%

1 t
= —m / (£ = )% h(s)ds + 12" + % + c31%73, (2.4)
0
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where ¢; (i =1,2,3) are fixed constants. By #(0) = 0, there is c3 = 0. Thus,

1

“0 =T

t
/ (£ =) h(s)ds + 1 t*7" + ¢t 2. (2.5)
0
Differentiating (2.5), we have
, o — 1 t —2 -2 -3
ut)=——— | (t—=5)"""h(s)ds +ci(a —1)t“ ™ + ¢ — 2)£%°. (2.6)
') Jo

By (2.6) and #/(0) = 0, we have c; = 0. Then

u(t) = —ﬁ /o (¢ =) Yh(s)ds + ¢, 27 (2.7)

From u(1) = fol u(t) dn(t), we arrive at

1 1 1
u(l) = —m /0 (1-s)*h(s)ds+¢; = ‘/0 u(t) dn(z),

and thus

1

1 1
_ _ el
a= _F(a)/o 1 -8)*"h(s) ds+/0 u(t) dn(z).

Therefore, we obtain by (2.7)

ta—l
I'a)

¢ 1 1
u(t) = —ﬁ /(; (£ —9)*h(s)ds + /0 (1-8)*h(s)ds + £ /0 u(t) dn(t)
1 1
= / H(t,s)h(s)ds + 7L / u(t) dn(z), (2.8)
0 0

where H(t,s) is defined by (2.3). From (2.8), we have

1 1 1 1 1
/Ou(t)dn(t)zfo dn(t)/0 H(L‘,s)h(s)ds+/0 t“’ldn(t)/(; u(t) dn(z), (2.9)
and by (HO) we find
1 1 1
/(; u(t) dn(t):lcgl/o dn(t)/o H(t,s)h(s) ds. (2.10)

Combining (2.8) and (2.10), we see

1 1 1
u(t):/o H(t,s)lfz(s)ds+11”“1/(51/0 dn(t)/o H(t,s)h(s)ds
1
:/ G(t,s)h(s)ds, (2.11)
0

where G(t, s) is determined by (2.2). This completes the proof. O
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Lemma 2.4 (see [10, Lemma 3.2]) For any (t,s) € [0,1] x [0,1], let k() := t*72(1 — £) +

ko 7 [ L= 1) (), () = U2 = (@ = 1)1+ 1(1)g") > 0. Then the following

two inequalities are satisfied:
(i) k@)p(s) = G(£s) < uep(s),
(ii) H(t,s) <T M) -1t (1-1).

Proof (i) For s <t,wehavel-s>1-t¢, then

C(@)H(t,s) =t 1 -5)* = (t—s)* = (@ - 1) /st"‘_z dx

<(-1)(t—ts)>((t—ts) = (t—5)) = (@ = )" (L - 5)*s(L - ¢)

<(-Dt* 21 -5)"2s(1-5) < (@ = Ds(1 —s)* L. (2.12)
On the other hand, for ¢ < s, since a > 2, we have

C(@)H(t,s) =t 11 -5 < (@ - 1) (1 -s)*!

= (=1t 21 -5 < (@ = 1)t* 2s(1 —5)* L < (@ = 1)s(1 —s)*7L.
Consequently,
1
I'(a)G(t,s) = T'(a)H(t, s) + Kglt“'I/ T'(a)H(t,s)dn(t)
0
1
<(x-1Ds(1-s)"+ Kalt“’l / (a —1)s(1 - s)*Ldn(t)
0

< (@~ D)1+ n(iyY)s(d -5 = ug(s).

Moreover, for s < £, note that (£ —s)* 2 < (t —£s)* 2, (1 —=s)* 2 > (1 —s)*7}, and %72 > 71,
then we find

C(@)H(t,s) =t A —8)* = (£ = )% = (£ = ts)* 2 (t = ts) — (£ — 8)* 2(t — 5)
> (E—8)*2(t—ts) — (E—ts)* 2 (t—5) = t* 2 (1 - 5)*2s(1 - 1)

> 1 -t)s1 —s)* L.
On the other hand, for ¢ < s, we have
T()H(,s) =211 —5)* 1 > 4711 - £)s(1 - s)* 7L,
Therefore, we get
1
I'(a)G(t,s) = T'(a)H(t,s) + Ko_lt"“lf T'(a)H(t,s)dn(t)
0
1
> (1= )51 —8)* 7 4+ iyttt / 711 - £)s(1 - s)* Tdn(t)
0

1
>s(1-5)*" |:t°“1(1 — ) +ay / 71—t dn(t)] =k(t)p(s).

0
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(ii) If t <s, since @ >2, we have (1 —s)* 1 < (1-£)*"1<(1-1¢)and
H(,s) < T H o) o - D11 - ) < T o) (o — 1)e* 71 - 2).
For s <t, we have 1 —s > 1 -, then by (2.12) we get

H(t,s) < T Y o) - 1D)t* 21 - 5)*2s(1 - ¢)

<T Na)o-Dt* 21 -s)"2t1-t) < T Ya) o -1 (1 -2).

This completes the proof. g
al(a+ kT (e L4 d - Wkt
Lemma 2.5 Let «, = r(rz(aé; ST +1)rf(02;+1)(1 D0 i iy = % Then the fol-
lowing inequality holds:
1
400 = [ Gles)ede <iapls), ¥se 0.1 (213)
0
Proof By (i) of Lemma 2.4, we have
al(@+1) &' T(@+1) f; 7 (1= dn) o
+ s
T2a+2) Ta+1) ¢
1 1
= / [t‘“(l — ) + iyt / 11 -9 dn(t)}p(s)ga(t) dt
0 0
1 1
< [ Geawod = [ @=L enweGwod
0 0
(@ =1)(1 +n()kg")
= @(s),
Mo +2)
and we easily obtain (2.13), as claimed. This completes the proof. O
Let
E:=CJ0,1], ||| := m[ax]|u(t) , pP:= {ueE:u(t)zO,Vte[O,l]}.
te(0,1

Then (E, || - ||) is a real Banach space and P is a cone on E.

The norm on E x E is defined by ||(u,v)| := |lu|| + |V, (#,v) € E x E. Note that E x E is
a real Banach space under the above norm, and P x P is a positive cone on E x E.
By Lemma 2.3, we can obtain that system (1.1) is equivalent to the system of nonlinear

Hammerstein integral equations

1
u;(t) = / G(t,5)fi(s,ur(s), ua(s)) ds, i=1,2, (2.14)
0

where G(t,s) is defined by (2.2).
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Lemma 2.6 (i) If u,(t) is a positive solution of (2.1), then u.(t) + w(t) is a positive solution
of the following differential equation:

D2u = —F(t, u(t) - w(t)),

L (2.15)
u(0) =4/(0) = 0, u(1) = [y u(t)dn(e),
where
h(t,x), tel0,1,x>0,
() = N( x) [0,1],x >
h(t,0), te[0,1],x<0,
the function z(t,x) =h(t,x) + M, e [0,1] x R* — R is continuous,
1
w(t) ::M/ G(t,s)ds, te][0,1]. (2.16)
0

(ii) If u(?) is a solution of (2.15) and u(t) > w(t), t € [0,1], then u.(t) = u(t) — w(t) is a
positive solution of (2.1).

Proof If u,(t) is a positive solution of (2.1), then we obtain

D§, u, = ~h(t, u.(2)),
u(0)=1,(0)=0, (1) = [y u.()dn(®).

By a simple computation, we easily get u,(0) + w(0) = ©,(0) + w(0) = 0, u.(1) + w(1) =
Jo () + w(®)) dn(2) and

D, (u.(2) + w(t)) + F(t, us(2))

= D§, u, (¢) + D, w(t) + h(t, u.(0)) + M

1
:D‘5‘+w(t)+M=D‘(’)‘+M/ G(t,s)ds+M=-M+M=0,
0

i.e., u(t) + w(¢) satisfies (2.15). Therefore, (i) holds, as claimed. Similarly, it is easy to prove
that (ii) is also satisfied. This completes the proof. d

By Lemma 2.3, we obtain that (2.15) is equivalent to the integral equation

u(t) = /1 G(t,s)F(s, u(s) - w(s)) ds := (Tu)(t), (2.17)
0

where G(t,s) is determined by (2.2). Clearly, the continuity and nonnegativity of G and F

imply that T': P — P is a completely continuous operator.

Lemma 2.7 Put P) := {u € P: u(t) > u~ k()| ull for t € [0,1]}. Then T(P) C Py, where i
and T are defined by Lemma 2.4 and (2.17), respectively.
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Proof By (i) of Lemma 2.4, we easily find
1 1
/ k(t)w(s)F(s, u(s) — w(s)) ds < (Tu)(t) = / G(t,s)F(S, u(s) — w(s)) ds
0 0

1
< /0 (@ — 1)(1 + n(l)/cgl)(p(s)F(s, u(s) — w(s)) ds,

and thus
k(t !
(100> s [ D 10065 )5t - wt9)
k(2)

= @-DI+ 1Dk, 7l

This completes the proof.

In this paper, we assume that f; (i = 1,2) satisfy the following condition:

(H2) fi(t,x,9) € C([0,1] x R* x R*,R) and there is a positive constant M such that
filt,x,y) = =M, V(t,x,y) € [0,1] x R* x R*.

By (H2) and Lemma 2.6, (2.14) is turned into the following integral equation:

1
u;(t) = / G(£,5)Fi(s, u1(s) — w(s), ua(s) — w(s)) ds, (2.18)
0

where

fit,xy), tel0,1],xy>0,
Fi(t,%,y) = {-
fi(t,0,0), te[0,1],x,y<0,

the functionﬁ(t,x,y) =filt,x,y) + M,ﬁ € C([0,1] x R* x R*,R*) and w(t) is denoted by
(2.16). By Lemma 2.6, we know if (1, u7) is a solution of (2.18) and u;(¢) > w(¢), t € [0,1],

then (4] = uy —w, uj = uy — w) is a positive solution of (1.1).
Define the operator A as follows:

Alur, up)(t) = (A1, ua), Aa (1, 12)) (2), (2.19)

where

1
mmem=f<mma@m®—mnmw—mmm.
0

It is obvious that A; (i=1,2): P x P — P, A: P x P — P x P are completely continu-
ous operators. Clearly, (#; — w,uy — w) € P x P is a positive solution of (1.1) if and only if

(11, u2) € (P x P) \ {0} is a fixed point of A and u; > w, i =1,2.

The following two lemmas play some important roles in our proofs involving fixed point

index.

Lemma 2.8 ([19]) Let Q C E be a bounded open set, and let A : QNP — P be a completely
continuous operator. If there exists vo € P\ {0} such that v—Av # \v, forallv € 0Q NP and

A >0, then i(A, 2N P,P) = 0.

Page 8 of 14
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Lemma 2.9 ([19]) Let Q C E be a bounded open set with 0 € Q. Suppose that A: QNP —
P is a completely continuous operator. If v # AAv for all v e 0Q NP and 0 < 1 <1, then
i(A,QNP,P)=1.

3 The existence of positive solutions for (1.1)
We list the assumptions on F; (i = 1,2) in this section.

(H3) Therearec>0and§;>0,i=1,2, satisfying 5152% /L_% rs (a)k? > 1 such that
Ftxy) =& y-¢ Fy(t,x,9) > &x* —¢, V(t,x,9) € [0,1] x R* x R*.
(H4) There exists Q(¢) : [0,1] — (00, +00) such that
Fi(t,%y) <Q(8), tel0,1],i=12,xy€[0,Mul " (a)(x-1)],
| p(6)Q5) ds < M @) -1
(H5) Thereare c>0and&; >0, i = 3,4, satisfying 2ul" "} (a)&&2x7 < 1 such that
Fi(t,x,y) <&y +¢, Fy(t,x,9) <&~/x+c¢, VY(txy) €[0,1] x R* x R,
(H6) There exist Q:[0,1] — (~o00,+00), 8 € (0, %), and to € [0,1 — 0] such that
Fi(t,%,) = Q8), telh,1-0),i=12,xy€[0,Mul " (a)(x-1)],
/  Khp(9Q(9) ds = My ela - 1),

We adopt the convention in the sequel that cj,cy,... stand for different positive con-
stants. We denote B, := {u € E: ||ul| < p} for p > 0 in the sequel.

Theorem 3.1 Suppose that (H2)-(H4) hold, (1.1) has at least a positive solution.

Proof By Lemma 2.6, it suffices to find a fixed point (11, u,) of A satisfying u;(¢£) > w(¢),
t € [0,1]. By Lemma 2.7, for any u; € P and ¢ € [0,1], noting (ii) of Lemma 2.4, together
with

1 1 1
_ —10-1
/(; G(t,s) ds—v/0 (H(t,s)+fc0 t /0 H(t,s) dn(t)) ds

1 1
-1 _ a-1 _ -1,a-1 a-1 _
<T(a)(« 1)./0 (t 1-t)+Ky ¢t ‘/0 1 t)dn(t)) ds
=TMo)(a — Dk(2),
we have
1
u; () — w(t) = u;(t) —M/ G(t,8) ds > u;(t) — MT o) (o — Dk(2)
0
> u;(t) - MpT @)@ - D@ lwil ™, i=1,2. (3.1)

Therefore, ||u;|| > MuI' " (a)(a — 1) leads to u;(£) > w(¥), t € [0,1].

Page 9 of 14
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In what follows, we first show that there exists an adequately big positive number R >

MuT () (e - 1) such that the following claim holds:

(ur, u) # A(uy, uz) + AW, W),  V(ug,up) € 0Br N (P x P), A > 0,

(3.2)

where ¢ € Pisa given function. Indeed, if the claim is false, there exist (&, v) € dBr N (P x P)
and A > 0 such that («,v) = A(u,v) + A(Y, ¥), then u > A;(u,v) and v > A, (1, v). In view of

(H3) and the definition of A; (i = 1,2), we get

1
ult) = /0 Glt,5)1y/v(s) — w(s) ds — 1
1 1
2/ G(t,s)éh/v(s)ds—/ G(t,s)E1/w(s)ds — ¢;
0 0
1
- / Glt,5)61y/v(9) ds - ¢,
0
and
1
w92 [ 66, e (ue) - 0) de -
0

By the concavity of /%, we have by (3.4)

V() = Vvls) + ¢ — e

1
> // G(s, 1)& (u(r) - w(1))* dr - &
0

1
= [ Ve om(un - wo)ar - va

1
_ / VAT @) n T (@G, 1) (u(t) - w()) dr — /e
0
1
> fo T (@)E 1 T (@)Gls, 7) () - w(D)) dr - /&
11 Lol
> otrhee) [ 66 oumdr-c.
0
Combining (3.3) and (3.5), we easily find
1 1 pl
u(t) > / G(t,s)gl[u—%r%(a)s; / G(s,r)u(t)dt—c?,:l ds—c,
0 0

1 1.1 el
zélsfu‘fﬁ(a)/ / G(t,5)G(s, T)u(r) dr ds — cs.
o Jo

(3.3)

(3.4)

(3.5)

(3.6)

Multiply the both sides of the above by ¢(t) and integrate over [0,1] and use Lemma 2.5

to obtain

1 1 1 1 1
/ W(O)g(t)dt > Ei51 w3 T H (e / u(t)o(6)dt - cs,
0 0

(3.7)

Page 10 of 14
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and thus
1 ¢
u(t)p(t)dt < TR— . (3.8)
0 g6 T @) -1
Noting Lemma 2.7, we obtain
1 b ! )
whalul = [ kel < [ uop@de s —— (39)
0 0 £1& 1T 2 ()i -1
Hence,
c
Juf) < ——E = M. (3.10)
£& T2 (@)K -
On the other hand, noting (3.3), together with the concavity of /-, we arrive at
el + ca > u(t) + ¢y > f G(t,5)€1/v(s)ds > G(t s)v(s)d (3.11)
Vv ||

Multiply the both sides of the above by ¢(¢) and integrate over [0,1] and use Lemma 2.5,
Lemma 2.7 to obtain

1
T o +2)([lull +c2) =/0 (1]l + c2) () dt > j% /Olv(t)go(t) dt

K
>‘§11

> Tt J B kOWIe@) e = n T Vv (3.12)

Consequently,

_ 2
vl < [F o+ DM ”2)] . (3.13)

wlEikt

Taking R > max{\, Mul' (o) (a - 1), [%M] }, which contradicts (u,v) € 9Bz N
(P x P). As aresult, (3.2) is true. Lemma 2.8 1mphes

i(A,BN (P x P),P x P) = 0. (3.14)
On the other hand, by (H4), we have, for i =1, 2,
1
A 1)(0) = [ G (5.106) - W), 16) ~w(5)
0
1
< [ ko9 ds < Mur e 1) =
0
for any (¢, u1,us) € [0,1] x 3By x 0By (N = MuT' " (a)(a — 1)), from which we obtain

A G, u0)|| < | (s, V(u1, u3) € 3By N (P x P).
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This leads to
(11, ua) # MA(u1, uz),  Y(uy,uz) € 0By N (P x P), A €[0,1]. (3.15)
Now Lemma 2.9 implies
i(A,By N (P x P),P x P) =1. (3.16)
Combining (3.14) and (3.16) gives
i(A,(BR\BN) N (P x P),P x P) =0-1=-L

Therefore the operator A has at least one fixed point in (Bg\By) N (P x P). Equivalently,
(1.1) has at least one positive solution. This completes the proof. O

Theorem 3.2 Suppose that (H2), (H5), and (H6) hold, (1.1) has at least a positive solution.

Proof We first find that there exists an adequately big positive number R > MuI' () x
(o — 1) such that the following claim holds:

(11, u2) # MA(u1, u3),  Y(ur,uz) € 0B N (P x P), A € [0,1]. (3.17)

If the claim is false, there exist (¢, v) € dBr N (P x P) and A € [0,1] such that (,v) = AA(u, v).
Therefore, u < A1(4,v) and v < Ay (i, v). In view of (H5), we have

1
u(t) < /0 G(t,s) [‘53 (V(S) - W(S))2 + C] ds

1 1
< / Glt, e () ds - / Glt,)esw™(s) ds + ¢,
0 0

1
< / G(t,8)E3v*(s) ds + c1, (3.18)
0
and
1
v(s) < / G(s, r)[&\/ u(t) —w(r) + c] dr. (3.19)
0

By (3.19), the convexity of a square function enables us to obtain

2

Vi (s) < (/01 w T (@)G(s, r)uF’l(a)[f;‘m/u(r) —-w(t) + c] dr)
1
< / T (@)G(s, 7) (ul ™ e) [Ea/ulT) — w(T) + c])2 dr
0
< ul Ya) /1 G(s, r)[2f‘;‘f (u(r) - W(T)) + 2c2] dr
0

1
< ZMF_I(“)EE/(; G(s,T)u(r)dt + c6. (3.20)
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We find from (3.18) and (3.20) that

1 1
u(t) < / G(t,s)&3 |:2/,LF1(01)§Z / G(s,T)u(r)dr + c6] ds +¢;
0 0

1 pl
< ZMF‘I(a)“;‘g’;‘f / / G(t,s)G(s,T)u(r)dr ds + ¢7. (3.21)
o Jo
Multiply the both sides of the above by ¢(¢) and integrate over [0,1] and use Lemma 2.5
to obtain
1 1
/ u(®)p(t)dt < Z;Ll"’l(oz)&éflc% / u(t)p(t) dt + cg. (3.22)
0 0

Noting Lemma 2.7, we obtain

1 1
@) ullg(t) dt < / u(B)p(t)dt < ce , (3.23)
./0 o v o Y 1— 20l (0)&sE 2K
and hence
C
]l < ] = Ny (3.24)

i1 = 2N o)EsE ikcs

Multiply the both sides of (3.19) by ¢(¢) and integrate over [0,1] and use Lemma 2.5,
Lemma 2.7, note (3.24), to obtain

1 1
e /0 WE)o(t) dt < /0 o (0)[Ea/u0) — w(0) + ] e

1
<Ky / (O[Eav/Ns + ) dt = TN a + 2)ka(Ea/ N +€). (3.25)
0
Consequently,
IV < nI™Ma + 2)k7 k2 (Ean/ N2 + €). (3.26)

Take R > max{/Ny, Ml (o) (o — 1), uT o + 2)k7 k2 (Ean/ N3 + )}, which contradicts
(¢4,v) € 0Br N (P x P). As a result, (3.17) is true. So, we have from Lemma 2.9 that

i(A,BkN(P x P),P x P) =1. (3.27)

On the other hand, by (H6), we have, for i =1, 2,
1
Ai(ur, up)(to) = / G(to, )F;(s, ur(s) — w(s), uz(s) — w(s)) ds
0

1-0
> /9 K(t0)p()Q(s) ds = MuT™ (@) (e 1) = [Ju],

and thus [|A;|| > A;(uy, uz)(to) > |lu;l| for any (¢, uy,u;) € [0,1] x 9By x 9By (N =
MuTYa)(a - 1)). This yields

(u1, u) # Auy, uz) + AW, W),  V(ur,up) € 0By N (P x P),A > 0.

Page 13 of 14
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Lemma 2.8 gives

i(A,By N (P x P),P x P) =0. (3.28)
Combining (3.27) and (3.28) gives

i(A,(BR\BNy) N (P x P),P x P) =1-0=1.

Therefore the operator A has at least one fixed point in (Bg\By) N (P x P). Equivalently,
(1.1) has at least one positive solution. This completes the proof. d
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