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1 Introduction

Consider homoclinic solutions of the following p-Laplacian system:

d

E(\a(t) }""%‘;(t)) —a(®)|u@®)|""ut) + VW (t,u(t)) =0, teR, (L1)

wherel<p<(q+2)/2,g>2,teR,uecRN,a:R— R, W:R x RN — R. As usual, we say
that a solution u of (1.1) is a nontrivial homoclinic (to 0) if # € C*(R, RN) such that u # 0,
u(t) > 0 as t — +oo.

When p =2, (1.1) reduces to the following second-order Hamiltonian system:
ii(t) - a() [u(®)| " u(t) + VW (t,u(t)) =0, teR. (1.2)

If we take p = 2 and g = 2, then (1.2) reduces to the following second-order Hamiltonian
system:

i(t) — a(ut) + VW (t,u(t)) =0, teR. (1.3)

The existence of homoclinic orbits for Hamiltonian systems is a classical problem and
its importance in the study of the behavior of dynamical systems has been recognized by
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Poincaré [1]. Up to the year of 1990, a few of isolated results can be found, and the only
method for dealing with such a problem was the small perturbation technique of Melnikov.

Recently, the existence and multiplicity of homoclinic solutions and periodic solutions
for Hamiltonian systems have been extensively studied by critical point theory. For exam-
ple, see [2—20] and references therein. However, few results [21, 22] have been obtained in
the literature for system (1.2). In [22], by introducing a suitable Sobolev space, Salvatore

established the following existence results for system (1.2) when g > 2.

Theorem A [22] Assume that a and W satisfy the following conditions:

(A)  Letq>2,a(t) is a continuous, positive function on R such that for all t € R
a(t) = ao|t”, oo >0, 0> (q-2)/2.

(W1) W e CHR x RN,R) and there exists a constant j1 > q such that
0<uWi(tx) < (VW(t,x),x), Y(t,x) € R x RN\{0}.

(W2) |[VW(t,x)| = o(|x|77Y) as |x| — O uniformly with respect to t € R.
(W3) There exists W € C(RN,R) such that

|W(t,x)| + |[VW(t,x)| < |[W()|, Y(tx) eRxRY.

Then problem (1.2) has one nontrivial homoclinic solution.

When W(t,x) is an even function in x, Salvatore [22] obtained the following existence
theorem of an unbounded sequence of homoclinic orbits for problem (1.2) by the sym-

metric mountain pass theorem.

Theorem B [22] Assume that a and W satisfy (A), (W1)-(W3) and the following condi-
tion:

(W4) W(t,—x)=W(tx),V(t,x) eR x RN,

Then problem (1.2) has an unbounded sequence of homoclinic solutions.

In [21], Chen and Tang improved Theorem A and Theorem B by relaxing conditions
(W1) and (W2) and removing condition (W3). Motivated mainly by the ideas of [18, 21—
23], we will consider homoclinic solutions of (1.1) by the mountain pass theorem and sym-

metric mountain pass theorem. Precisely, we obtain the following main results.

Theorem 1.1 Suppose that a and W satisfy the following conditions:

(A) Letl<p<(q+2)/2andq>2,a(t)is a continuous, positive function on R such that
forallt e R

alt) > alt)f, «>0,8> (g-2p+2)/p.
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(W5) W(t,x) = Wilt,x) — Wa(t,x), Wi, Wo € CHR x RN, R), and there exists a constant
R > 0 such that

1 VW(t,x)| =o(|x|7P7) asx— 0
a(t)

uniformly in t € (—00,—R] U [R, +00).
(W6) There is a constant > g — p + 2 such that

0<uWi(t,x) < (VWl(t,x),x), Y(t,x) € R x RN\{0}.
(W7) Wy(t,0) =0 and there exists a constant ¢ € (q — p + 2, u) such that
Wat,x) >0,  (VWa(tx),x) <oWa(tx), V(tx) eR xRV
Then problem (1.1) has one nontrivial homoclinic solution.
Theorem 1.2 Suppose that a and W satisfy (A)', (W6) and the following conditions:
(W5) W (t,x) = Wi(t,x) — Wa(t,x), Wi, Wy € CHR x RN, R), and

%}V\X/(t,x){ =o(jx[7?") asx— 0

uniformly in t € R.
(W7) Wy(t,0) = 0 and there exists a constant o € (q — p + 2, 1) such that

(VWa(t,x),x) <oWa(t,x), V(tx)eRxRY.
Then problem (1.1) has one nontrivial homoclinic solution.

Theorem 1.3 Suppose that a and W satisfy (A) and (W4)-(W7). Then problem (1.1) has
an unbounded sequence of homoclinic solutions.

Theorem 1.4 Suppose that a and W satisfy (A)', (W4), (W5)', (W6), (W7)'. Then problem
(1.1) has an unbounded sequence of homoclinic solutions.

Remark1.1 When p = 2, condition (A)’ reduces to condition (A). Obviously, Theorem 1.1-
Theorem 1.4 generalize and improve Theorem A, Theorem B and the corresponding re-
sults in [21]. It is easy to see that our results hold true even if p = 2. To the best of our
knowledge, similar results for problem (1.1) cannot be seen in the literature; from this
point, our results are new.

Remark 1.2 If p = 2 and g = 2, then problem (1.1) reduces to problem (1.3). As pointed
out in [23], Theorem A can be proved by replacing (A) with the more general assumption:
a(t) — +00 as |t| — +00.

The rest of this paper is organized as follows. In Section 2, some preliminaries are pre-
sented and we establish an embedding result. In Section 3, we give the proofs of our results.
In Section 4, some examples are given to illustrate our results.
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2 Preliminaries
We set, for any real number 1 < /4 < +00,

L"=L"(R,RN),  L®=L%(R,RY)

with the usual norms

1h
llulln = </|M(t)|hdt) ) ll4llo = max|u(2)].
R teR
Let
w'? = W' (R,RY) = {u: R — RN | u is absolutely continuous, u, i € L* (R, R")}

be the Sobolev space with the norm given by

1/p
tlhpr = ( /R (i + |u@)]) dt) .

If o is a positive, continuous function on R and 1 < s < +00, let
L =L (R,RY;0) = {u € Lj,.(R,RY) ‘ / o (B)|u(®)] dt < +oo}.
R

L} equipped with the norm

1/s
”M”s,a = (/Ra(t)|lxl(t)|sdt>

is a reflexive Banach space. When s = +00, we set
L¥=L2(R,RY;0) = {u | maRxo(t)|u(t)| < +oo}
te
with the norm given by

ll24]l oo, = r;leaﬂgw(tﬂu(t)!.

Set E = W N LI™**, where a is the function given in condition (A)". Then E with its
standard norm || - || is a reflexive Banach space. The functional ¢ corresponding to (1.1)
on E is given by

1. (t) —p+
o(u) = /R [I;{u(t) P+ q_""ﬁwt)v v W(t,u(t))} dt, uckE. (2.1)

Clearly, it follows from (W5) or (W5)' that ¢ : E — R. By Theorem 2.1 of [24], we can
deduce that the map

u— a(t)|u(t)| " u(t)
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is continuous from L% ?** in the dual space ", /gpr1y Where py = T2 2 As the embeddings
a q-p+1
EC W'Y C LY for all y > p are continuous, if (A)’ and (W5) or (W5)’ hold, then ¢ €

CYE,R) and one can easily check that

—p+1

{¢'w),v) = /R [|i()[" 7 (ix(2), #(0)) + a(e) | ()| ™ (ua(2), v(2)

—(VW(t,u(t)),v(t))|dt, uckE. (2.2)
(VW (& u(®),v(®)]

Furthermore, the critical points of ¢ in E are classical solutions of (1.1) with u(4o00) = 0.
To prove our results, we need the following generalization of the Lebesgue dominated
convergence theorem.

Lemma 2.1 [25] Let {f,(t)} and {g,(t)} be two sequences of measurable functions on a mea-
surable set A, and let

()| <gu(t) forae teA.

If
lim f£,(¢) =f(¢), lim g,(t) =g(t) foraeteA
n—0oQ n— 00
and
lim [ g,(¢)dt= /g(t) dt < +00,
n— 00 A A
then

Tim /A fult)dt = /; £(t) dt.

The following lemma is an improvement result of [23] in which the author considered

the case p = 2.

Lemma 2.2 If a satisfies assumption (A), then
the embedding L1+ C I is continuous. (2.3)
Moreover, there exists a Sobolev space Z such that

the embeddings L1P** C Z C L? are continuous, (2.4)

the embedding W™ N Z C IF is compact. (2.5)
Proof LetO =(q—p+2)/(g—2p+2),0 =(q—p+2)/p, we have

’
”I’lllg — /d_1/9 a1/9/|u|pdt
R

L\ N
< (/ a " dt) </ alul?? dt)
R R
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pla-p+2
=a (/ alu|TP+? dt)
R

4
= arllull_ e

where from (A)', a; = ([ a?/472*2 dt)@-2+2/@+2) < 100, Then (2.3) holds.
By (A)’, there exists a continuous positive function p such that p(¢£) — +oo as |t| - +00

and

1/6
as = (/ plat" dt> < +00.
R

Since

= [ plupde= [ paa
R R

Lo\ 10’
< (/ a0 dt) (/ alu|TP+? dt)
R R

'3

= sl

(2.4) holds by taking Z = 7.
Finally, as W' N Z is the weighted Sobolev space I'”(R, p, 1), it follows from [24] that
(2.5) holds. O

The following two lemmas are the mountain pass theorem and symmetric mountain
pass theorem, which are useful in the proofs of our theorems.

Lemma 2.3 [26] Let E be a real Banach space and I € C*(E,R) satisfying (PS)-condition.
Suppose 1(0) = 0 and:

(1) There exist constants p,a > 0 such that Iy, ) > .

(ii) There exists an e € E\B,(0) such that I(e) < 0.
Then I possesses a critical value ¢ > o« which can be characterized as

= inf I ,
o= ity )
where ® = {h € C([0,1],E) | h(0) = 0,h(1) = e} and B,(0) is an open ball in E of radius p

centered at 0.

Lemma 2.4 [26] Let E be a real Banach space and I € C'(E,R) with I even. Assume that
1(0) = 0 and I satisfies (PS)-condition, (i) of Lemma 2.3 and the following condition:
(iii) For each finite dimensional subspace E' C E, there is r = r(E') > 0 such that I(u) < 0
foru € E'\B,(0), B,(0) is an open ball in E of radius r centered at 0.
Then I possesses an unbounded sequence of critical values.

Lemma 2.5 Assume that (W6) and (W7) or (W7) hold. Then, for every (t,x) € R x RN,
(i) s WA(¢,sx) is nondecreasing on (0, +00);
(i) s~@W>(t,sx) is nonincreasing on (0, +00).

The proof of Lemma 2.5 is routine and we omit it.
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3 Proofs of theorems

Proof of Theorem 1.1 Step 1. The functional ¢ satisfies (PS)-condition. Let {u,} C E satis-
fying ¢(u,) be bounded and ¢'(u,) — 0 as n — oo. Hence, there exists a constant C; > 0
such that

lown)| <Ci, ||/ ()| 5 < 1Cr. 3.1)
It is well known [27] that there exists a constant C, > 0 such that
lulloo < Collull, u€kE. (3.2)

From (2.1), (2.2), (3.1), (W6) and (W7), we have
p,,
pCi+pCilluall = po(u,) - ;(w (1), thn)

= M;pllunllﬁ +P/R|:Wz(t, un(t)) - i(vm(t, u,,(t)),u,,(t)):| dt

1
_p / [Wl(r,um) -

P P q-p+2
+<—61_p+2—;)/]R (&) |un()| dt

H=P . p p q-p+2
" I}, + (m - ;) 24l g—pr2.a-

(YWA(t, un(2)), un(t)):| dt

%

It follows from Lemma 2.2, p < (g + 2)/2, i > g — p + 2 and the above inequalities that there
exists a constant C3 > 0 such that

luall < Cs, neN. (3.3)

Now we prove that u#,, — 1y in E. Passing to a subsequence if necessary, it can be assumed
that #,, — ug in E. From Lemma 2.2, we have u,, — 1, in L. From (3.2) and (3.3), we have

”Mn”oo = CZ””VI” = C2C31 Uy € E. (34')

Inequality (3.4) implies that |u,(t)| < C,C; for all £ € R. By (W5), we know that

VW (t,x)|

W—m asx — 0,

which implies that for any given constant C > 0, there exists a constant C’ > 0 related to C
such that

VW (t,x)|
— " < forlx| <C.
a(t)|x|a-r+

Hence, there exists a constant C, > 0 such that

VW (%) < Caa(®)x|??* for |x| < CCs. (3.5)
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Hence, from (3.5), we have

VW (t, un(8)) = VW (£, 0(8)) |
< [Caalt) (Jun(®| "™ + |uo(®)]* "]
< [Ca27Pa(t) | (8) — 10(8)[ T + Ca (14 297V a(t) o (8) T
< @I G ()|, () — o () TPV 4 2 C (14 292 @ ()| o )[4

= gn(), (3.6)

where p’ = ﬁ. Moreover, since a(t) is a positive continuous functionon R, p<g—p + 2

and u,(t) — uo(t) for almost every ¢ € R, we have
lim g,(¢) = 2 CZ/ (1+ 2q_p+1)p,6lp/(t)‘uo(t) ’p(HH) :=g(t) forae teR
n— 00
and
lim | g,(t)dt= lim [zp/(q—p+2) Cz’ap/ ( t)|un (©) = o t)|p (g-p+1)
n—0o0 R n— 00 R
o Cf;/ (1 + 2q_p+1)p,a”/(t) ’uo(t) ’p’(q—p+1)] dt
/(q-p+2) P 1 / P (q-p+1)
= ¥ ap+ )C4 nllﬁn;o/Rap (t)|un(t)—u0(t)| dt
+27Cl (L4 2070 / ' (O)uo(@)]” " dt
R
:fqﬁ+ﬂwfffmmmwwmm
R

=/g(t)dt<+oo.
R

It follows from Lemma 2.1, (3.6) and the above inequalities that
mn/ww@%mva@%mwaha
n— 00 ]R

This shows that
VW(t,u,) — VW(t,uo) inL” (R,RY). (3.7)

From (2.2), we have

(¢ () = ' (u0),  — o))

:AwmﬂW”mm—mww*mmmmruw»m
+ /R a(®)(|un(®)]" P (®) = |10(8)|" P 110 (8)) (4 (£) — o (2)) it

- A(VW(L un(t)) = VW (£, u0(2)), un(t) — uo(t)) dt

Page 8 of 18
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. . . . -1 . . -1
= il + N l12 = it lplitall2™ = litally o

+ /R a(®)(|un@)|" " (&) — |0 (®)|" " 10 (1)) (un(£) — uo (8)) dt

_Aww@%mva@%mpmnﬂmmm
= (litallZ™ = Wit 127) (litall = ol )

0 /R a(®)(|un@)|" P un(t) = |0 ()| 10 (1)) (un(£) — 1o (8)) dt

- /R(VW(t, un(t)) = VW (£, u0(2)), un(t) — uo(t)) dt. (3.8)

It is easy to see that for any « > 1 there exists a constant Cs > 0 such that

(|x|°’_1x - |y|°’_1y) (x—9y) > Cslx—y|*"t, VxyeR. (3.9)
Inequality (3.9) implies that
(e s = Naso 1271 (Nltnllp = Nlito ) = C|lldtll,p — llito l,p|” (3.10)

and
/R a(t)(|tn(@®)| "7 1 (®)  |00(®)| "7 140(8)) (4 (8) — w0 (2)) it

>Cy /R a(®)|ua(t) — uo(8)| " dt, (3.11)

where C; and C are positive constants. Since ¢’(i,) — 0 as n — +00, u, — u in E and
the embeddings E C W? C LY for all y > p are continuous, it follows from Lemma 2.2,
(3.7), (3.8), (3.10) and (3.11) that

litnll, = litoll, asn— oo (3.12)
and
/dMW@VWuh»/dM%MF%%t%n%w. (3.13)
R R

Hence, by (3.12) and (3.13), u, — uo in E. This shows that ¢ satisfies (PS)-condition.
Step 2. From (W5), there exists § € (0,1) such that

1
VW (5,%)| < —a(®)lx|??*" for |¢] = R, |x| < 6. (3.14)
p
By (3.14), we have

1
|W(t,x)| < ————a(®)|x|"?** for |t| > R, |x| < 6. (3.15)
pl@-p+2)
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Let

Ce = sup{ W;Z)x) ‘ te[-RR],xc R, |x| = 1}. (3.16)

Set o = min{1/(p(q — p + 2)Cs + 1)VW-2+7-2) 8} and ||u|| = 0/C, := p, it follows from (3.2)
that
lulloo < Collull <o,

which shows that |u(t)| < o < § < 1. From Lemma 2.5(i) and (3.16), we have

R M(t) "
Wi (t,u(t)) dt < wil t, | @)|" dt
-R (te[-R,R]:u(£)70) J2a(

R
< Ce/ a(t)|u(t)|" dt
R

R
< Cgot 12 / a(®)|u(e)|""? dt
-R

1 K q-p+2

It follows from (W7), (3.15), (3.17) that

v “(t 2 e [ Wt ) d
/|u(t)| £+ / |(t)| t— /R (t,u(t)) dt

1 1 —p+2 R
= D e — 2 ez a—/ W (e, u(t) dt—/ W (&, u()) de
p P g-p+2 P o vy ( ) - ( )

R

1 1 R
Sy ) — P —/Wt,ut dt
_p” 115 q—p+2” lg—p+2.a . 1, u(®))

1 —p+
_/ —a)|u)|*" ar
R\[-RR] PG —p +2)

1 . 1 —p+2 1 R q-p+2
> — )l + ———|lull2] ——/ a(t)|u(t) dt

p P q-p+2 TP plg-p+2) )¢ @)
a(t)|u®)|*7* dt

1
~[R\[—R,R] plg-p+2)

p— —p+2
lluellZ 25

1 . »
=—||M||p+m g-p+2a:

Therefore, we can choose a constant & > 0 depending on p such that ¢(u#) > « for any
u € E with ||u|| = p
Step 3. From Lemma 2.5(ii) and (3.2), we have for any u € E

2
/ W (t, u(t)) dt = / W (2, u(t)) dt + / W (¢, u(t)) dt
-2 {te[-2,2]:u(?)[>1}

{te[-22]:|u(®)| <1}

2
< / Wy ( ut) )| (2) |th+ max W5 (t,x) dt
(te[=2,20:u(B)I>1) |u(t)] _g lxl<1

Page 10 of 18
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2

2
< ||u||§o/ max W (t,x)dt + | max Ws(t,x)dt
—2 lxl=1 _o lxl=1

2 2
< C§||u||9/ max Wz(t,x)dt+/ max Wy (t, x) dt
_g Ix|= _p x|=

= Gy llull® + Cs, (3.18)

where C; = Cy fi maxy -1 Wa(t,x)dt, Cg = fi maxy <1 Wa(t,x) dt. Take w € E such that

1 forlt <1,
|lo(t)] = (3.19)
0 for|t|>2

and |w(t)| <1for || € (1,2]. For s > 1, from Lemma 2.5(i) and (3.19), we get

f 1 Wi (t, sw(t)) dt > s* / 1 Wi (6 w(t)) dt = Cos", (3.20)

1 -1
where Cy = f_ll Wi (L, w(t)) dt > 0. From (W7), (2.1), (3.18), (3.19), (3.20), we get for s > 1

g—p+2

sF . S q-p+2
o(sw) = ;||w||£ + mnm I iaa*t R[Wg(t,sw(t)) - Wi(t,s0(2)) ] dt

o sTP+2 q-p+2 > d ! d
< ollf + — + | Wa(t,so())dt— | Wi(tso(t))dt
= P) “w”p q_p+2||w”q—p+2,a [2 2( Sw( )) ‘/_1 1( S(,()( ))
q-p+2

)92+ CrsC|w||© + Cg — Cos. (3.21)
2 q
+

s
< ol + .

Since u >0 >q—p +2 and Cy > 0, it follows from (3.21) that there exists s; > 1 such that
[Isiw]l > p and p(s1w) < 0. Let e = syw(t), then e € E, ||e|| = ||siw| > p and ¢(e) = p(s;w) < 0.
By Lemma 2.3, ¢ has a critical value d > o given by

d = inf ) 3.22
iy o) -

where
® ={geC([0,1],E) : g(0) = 0,g(1) = ¢}.

Hence, there exists u* € E such that

The function u* is a desired solution of problem (1.1). Since d > 0, #* is a nontrivial ho-

moclinic solution. The proof is complete. d

Proof of Theorem 1.2 In the proof of Theorem 1.1, the condition W5(¢,x) > 0 in (W7) is
only used in the proofs of (3.3) and Step 2. Therefore, we only need to prove that (3.3) and
Step 2 still hold if we use (W5)" and (W7) instead of (W5) and (W7). We first prove that
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(3.3) holds. From (W6), (W7)/, (2.1), (2.2) and (3.1), we have

plg-p+2)Ciu
p@—p+2xn+————5——i4mm

(q—p+2nd

> plg—p+2eu,) - £ (14 1)

:(Q—zﬂ)(qr—lﬂ+2)”L.hq”ﬁZ

+plg—p+ 2)f [Wz(t, un(t)) - l(VWZ(::, un(t)),un(t)):| dt
R Q
1

—P(q—l? + 2)/ |:W1(t, Mn(t)) - _(vwl(t; un(t))r un(t))] dt
R Q

+p(1—w>/a(t)’un(t)|qp+2dt
o R

q—p+2)
Q

q-p+2

(e-pP)g-p+2)
> N2t |l g—ps2,00

nuag+p<1—

which implies that there exists a constant C; > 0 such that (3.3) holds. Next, we prove
Step 2 still holds. From (W5)’/, there exists § € (0,1) such that

1
’VW(t,x)’ < —a(t)|x|7P1 forteR,|x| <5. (3.23)
P
By (3.23), we have

1
|W(t,x)| <——a@®)x|TP*? forteR,|x| <4. (3.24)
p@-p+2)

Let 0 <o <48 and ||u|| = 0/C; := p, it follows from (3.2) that
lullo < Collull <o,

which shows that |u(t)| < o < § < 1. It follows from (2.1) and (3.24) that

B l NG a(t) 2 g,
o = [fopars [ 20w a- [ wieuw)a

1 1
= 21507 + q-p+2 _/ -
= p“l/l”p _q_p+2||M||q—p+2,a Rp(q_p+2)

p-1
plg-p+2)

a(t)|uo)|*"* dr

—p+2
” u ”Z-§+2,a‘

1 .
= —Jll +
Therefore, we can choose a constant & > 0 depending on p such that ¢(u#) > « for any
u € E with ||u|| = p. The proof of Theorem 1.2 is complete. O

Proof of Theorem 1.3 Condition (W4) shows that ¢ is even. In view of the proof of The-
orem 1.1, we know that ¢ € C}(E,R) and satisfies (PS)-condition and assumptions (i) of
Lemma 2.3. Now, we prove that (iii) of Lemma 2.4. Let E’ be a finite dimensional subspace
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of E. Since all norms of a finite dimensional space are equivalent, there exists ¢ > 0 such
that

llaell < cllae| oo (3.25)

Assume that dim E’ = m and {u1, u»,...,u,,} is a base of E’ such that

luill=c, i=1,2,...,m. (3.26)

For any u € E/, there exists A; € R, i =1,2,...,m such that

m
u(t) =y riut) forteR. (327)
i=1
Let
m
laall =y illlag ] (3.28)
i=1
It is easy to see that || - ||, is a norm of E’. Hence, there exists a constant ¢’ > 0 such that

clull« < |lull. Since u; € E, by Lemma 2.2, we can choose R; > R such that

/

o) .
()| < ——, [tl>R,i=1,2,...,m, (3.29)
l+c

where § is given in (3.24). Let
m m
O={> () : i €Ri=12,...,m Y |Al=1¢ ={ueE |ul.=c}. (3.30)
i=1 i=1

Hence, for u € O, let £y = to(u#) € R such that
|u(t0)| = llull - (3.31)

Then by (3.25)-(3.28), (3.30) and (3.31), we have

m m
o =cc Y hil=¢ > Iallull = lul,

i=1 i=1
< llull < cllulloo = c|ulto)|
m
< CZ Ihil|luito)|, ue®. (3.32)
i=1

This shows that |u(ty)| > ¢’ and there exists i € {1,2,...,m} such that |u;, ()] > ¢, which
together with (3.29), implies that |£o| < R;. Let Ry = R; + 1 and

/

y = min{ Wi(t,): Ry < ¢ < Ry, 2?—/17 <|xl < ccz}. (3.33)
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Since W,(t,x) > 0 for all t € R and x € RN\ {0}, and W; € C}(R x RN, R), it follows that
y > 0. For any u € E, from Lemma 2.5(i) and (3.2), we have

Ry
/ W (t, u(t)) dt = / W (t, u(t)) dt + / W (¢, u(t)) dt
Ry {t€[~Ro, R J:u()|>1) {te[-Ra RoJ:lu(2)| <1}

M(t) 0 Ra
< / Wz(t,—>|u(t)| dt + max Ws (¢, x) dt
(=R, Ry J:|u(®)|>1) lu(t)] Ry =1

Ry Ry
< |lull%, max W (t,x) dt + max Ws(t,x) dt
R, ll=1 Ry W<
Ry Ry
< C3llul® max Wa (¢, x) dt + max Wa(t,x) dt
—Ry =1 —Ry l¥I=1
= Cyollull® + Cu, (3.34)

where Cyg = C; f_RI§2 max|y -1 Wa(t,x)dt, Cry = f_R]?z max <1 Wa(t, x)dt. Since it; € LP(R), i =
1,2,...,m, it follows that there exists ¢ € (0,1) such that

t—e t—¢ 1/
| |m(s)|dss<2s>lfp’</ |m(s)|”ds) ’

1/p -
< (2&)"7 |l

/
<5 forteRi=1,2,...,m, (3.35)

N

where 1/p’ + 1/p = 1. Then, for u € ® with |u(ty)| = ||#|l« and ¢ € [ty — &, £ + €], it follows
from (3.27), (3.30), (3.31), (3.32) and (3.35) that

@ = [uto)| +p / |u(s) [P~ (in(s), u(s)) ds

to+e

> [ulto) - p f lu(s) [P is(s)| i

to—¢

to+e

lutto)? - plutto)” / li(s)| s

to—¢

v

/
%|M(to)|p_1

v

c”?
—. 3.36
. (336)

v

On the other hand, since ||«| < ¢ for u € ©®, then

<Cy, teRueO. (3.37)

|u(®)] < llulloo

Therefore, from (3.33), (3.36) and (3.37), we have

Ry to+e
/ Wi (¢, u(t)) dt > f Wi(t,u(t))dt =26y foru e ©. (3.38)

Ry to—€
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From (3.29) and (3.30), we have

m
<> Wllur)| <8 for|t| > Ri,ue®. (3.39)

i=1
By (2.1), (3.15), (3.34), (3.38), (3.39) and Lemma 2.5, we have for # € ® and r > 1

() = i+ g2 [Wa (¢, ru(t)) - Wi (& rue))] de
(ru) = » up+q—p+2 ullgpina * W2 STl 1t ru

r (22|12 7_1”2 Il ||q_p+2 Q/ W (t (t)) dt ”/ W (t (t)) dt
u|l? + u +7r U —r U
p P g-p+2 TP R : R !

IA

—p+2

r? . —p+2
= — i) + ———u||i2 +r9f Wo (8, u(t)) dt
p P g-p+2 TP R\(-Ry,R2) ( )

Ry
—rt / Wi (6, u(t)) dt + r° / W (t, u(?)) dt
R\(=R2,R2) -Ry
Ry
—r# / Wi (t, u(t)) dt
—Ry
r’ rt 2 —p+2
< —llalt + ———llulll2:5 , - r° W (£, u(t)) dt
p P oq-p+2 AP R\(—Ry,R3) ( )
Ry Ry
—rt / Wi (6 u(e)) dt +r° / W (¢, u(t)) dt
—Ry —Ry
o K 2 re q-p+2
< i+ ||W“ —————/ a(©)|u0)] 7" dt
p 7 q- 22" L p+2) Jovrory gl
+ rQ(Cm ||le]|© + Cu) —2eyrt
rr . —p+2 re _
< —illy + ———— lull 5, + 2275

q p+2a P(q_P + 2) u q-p+2,a

+7%(Cyo ||u||9 + Cu) —2eyrt

P ra-p+2 0
< —Ft———TP2 P2
P q-p+2 plg-p+2)
+ Cio(rc)? + Cyyr —2eyrt. (3.40)

Since i > 0 > g — p + 2 > p, we deduce that there exists rg = ro(c, ¢, Cig, C11, Ry, Ro, 6,7) =
ro(E") > 1 such that

o(ru) <0 foru e ® andr > ry.

It follows that

@(u) <0 foru € E and ||u| > cro,

which shows that (iii) of Lemma 2.4 holds. By Lemma 2.4, ¢ possesses an unbounded

sequence {d,}, of critical values with d, = ¢(u,), where u, is such that ¢'(%,) = 0 for
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n=12,....If {Jlu,||} is bounded, then there exists C;5 > 0 such that
luyll < Crp formeN. (3.41)
By (3.2) and (3.41), we get
|u,,(t)| <(CyCp;p formeN. (3.42)
From (W5), we can choose Ci3 > 0 and Rz > R such that
[VW(t,%)| < Ciza(®)|x|77*" for |¢] > Rs, |x| < CyCi,
which implies that

C
[W(t,%)] < ———a(@)x|"?** for|t| > Ry, |x| < CyCpo. (3.43)
q—-p+2

Hence, by (2.1) and (3.43), we have

1. 1 —p+2
il + ———— Nl 2075

=d, + / W (£, un(2)) dt
R

R3

=d, +f W (£, un(t)) dt+f W (&, un(t)) dt
R\[-R3,R3] -R3

Ci3

R3
> dy - B / al0)|n(0)| " dit - / W (6, un0)) | dt
q—P+2 Jr\[-Rs,R5] R

3
>d, - 1p+2 max |W(t, x)| dt,
= ———— tnllgpina — |x|<C2C12| (tx)|

which, together with (3.41), implies that

1 Ci3 2 Rs
d, < =i, ||P + a-pr max |W(t,x)|dt < +o00.
v =Nl + S e |

This contradicts the fact that {d,,} 3, is unbounded, and so {||#,|} is unbounded. The proof

is complete. d

Proof of Theorem 1.4 In view of the proofs of Theorem 1.2 and Theorem 1.3, the conclu-
sion of Theorem 1.4 holds. The proof is complete. 0

4 Examples
Example 4.1 Consider the following system:

%(|i¢(t)|i¢(t)) - a(t)|u(t)|3u(t) + VW(t, u(t)) =0, aetelR, (4.1)
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where p=3,9=6,tcR,uecRY,a e C(R,(0,00)) and a satisfies (A)". Let
m n
Wt x) = a)| D adxl =) blal |,
i=1 j=1
where py >y > > U >01>02>-->0>5a;,b;>0,i=1,...,m,j=1,...,n. Let

Witx)=a(t) Y ailxl",  Walt,x)=a() ) bilxl.

i=1 j=1

Then it is easy to check that all the conditions of Theorem 1.3 are satisfied with u = 1,
and g = 0;. Hence, problem (4.1) has an unbounded sequence of homoclinic solutions.

Example 4.2 Consider the following system:

-1/2.

%(|i;(t)| w(t)) — a()|u(®)|ut) + VW (t,u(t)) =0, ae.teR, (4.2)

where p=3/2,4=5/2,t R, u e RN, a € C(R,(0,00)) and a satisfies (A)'. Let
W(t,%) = a(t)[arxl"t + aslal"? — by(cos Dlxl — bylx|®2],

where w; >y > 01> 02 >3, ar,az >0, by, by > 0. Let
Wi(t,%) = a(t) (ar|x" + az|x]"2), Wa(t, %) = a(t)[by(cos £)[x]% + by |x]?2].

Then it is easy to check that all the conditions of Theorem 1.4 are satisfied with p = 5 and
o = 01- Hence, by Theorem 1.4, problem (4.2) has an unbounded sequence of homoclinic

solutions.
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