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Abstract

We study the existence and uniqueness of a positive solution for the singular
nonlinear fractional differential equation boundary value problem

Dgeult) =f(t,u(®),u(®), 0<t<1,
u0)=u()=d(0)=d(1) =0,

where 3 <o < 4is areal number, Df, is the Riemann-Liouville fractional derivative
and f:(0,1] x [0,+00) x [0,4+00) — [0, +00) is continuous, lim;_.o+ f(t,-,-) = +oo (f is
singular at t = 0). Our approach is based on a coupled fixed point theorem on ordered
metric spaces. An example is given to illustrate our main result.
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1 Introduction

Fractional differential equations arise in many engineering and scientific disciplines as
the mathematical modeling of systems and processes in the fields of physics, fluid flows,
electrical networks, viscoelasticity, aerodynamics, and many other branches of science.
For details, see [1-11].

In the last few decades, fractional-order models are found to be more adequate
than integer-order models for some real world problems. Recently, there have been
some papers dealing with the existence and multiplicity of solutions (or positive so-
lutions) of nonlinear initial fractional differential equations by the use of techniques
of nonlinear analysis (fixed point theorems, Leray-Schauder theory, etc.); see [2, 4, 5,
11].

Recently, there have been many exciting developments in the field of fixed point theory
on partially ordered metric spaces. The first result in this direction was given by Turinici
[12]. In [13], Ran and Reurings extended the Banach contraction principle in partially or-
dered sets with some applications to matrix equations. The obtained result by Ran and
Reurings was further extended and refined by many authors; see [14—19].

Very recently, Shurong Sun et al. [20] discussed the existence and uniqueness of a pos-
itive solution to the singular nonlinear fractional differential equation boundary value
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problem

D§.u(t) =f(t,u(t)), 0<t<l,

u(0)=u(l)=u/(0)=u/(1) =0,

where 3 < o < 4 is a real number, Dj. is the Riemann-Liouville fractional derivative and
f:(0,1] x [0, +00) — [0, +00) is continuous, lim,_ ¢+ f(£,-) = +oo (f is singular at ¢ = 0),
f(t,-) is nondecreasing for all ¢ € (0,1].

Motivated by the above mentioned work, in this paper we investigate the existence and
uniqueness of a positive solution for the singular nonlinear fractional differential equation

boundary value problem

D{u(t) :f(t, u(t), u(t)), 0<t<l, 1)

u(0) = u(1) =u/'(0) =/'(1) = 0, (2)

where 3 <« < 4 is a real number, Dj. is the Riemann-Liouville fractional derivative and
£:(0,1] x [0, +00) x [0, +00) — [0, +00) is continuous, lim,_, ¢+ f(t,+,-) = +00 (f is singular
att=0),forall t € (0,1], f(¢, -, -) is nondecreasing with respect to the first component, and
it is decreasing with respect to the second component. Our approach is based on a recent
coupled fixed point theorem on ordered metric spaces established by Harjani et al. [17].

We end the paper with an example that illustrates our main result.

2 Preliminaries
In this section, we recall some basic definitions and properties from fractional calculus

theory. For more details about fractional calculus, we refer the readers to [1, 3, 10].

Definition 2.1 The Riemann-Liouville fractional derivative of order « > 0 of a continuous

function ¢ : (0, +00) — R is given by

. 1 d (n) pt o(s)
Pt () [ o

where 7 = [«] + 1, [] denotes the integer part of number «, provided that the right side is

pointwise defined on (0, +00).

Definition 2.2 The Riemann-Liouville fractional integral of order & > 0 of a function ¢ :

(0,+00) — R is given by

1

15 p(t) = m

/ (=5 p(s) ds,
0

provided that the right side is pointwise defined on (0, +00).

From the definition of the Riemann-Liouville derivative, we can obtain the following
statement.
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Lemma 2.1 (see [10]) Let o > 0. If we assume u € C(0,1) N L(0,1), then the fractional dif-
ferential equation

Dg+ M(t) = O

has u(t) = cit* + cot* 2 + -+ cnt*™N, c; €R, i =1,2,...,N as unique solutions, where N
is the smallest integer greater than or equal to «.

Lemma 2.2 (see [10]) Assume that u € C(0,1) NL(0,1) with a fractional derivative of order
a > 0 that belongs to C(0,1) N L(0,1). Then

I3 Dy u(t) = u(t) + at® ot et N,
orsomec; €R,i=1,2,...,N, where N is the smallest integer greater than or equal to .
ger g q

The Green function of fractional differential equation boundary value problem is given
by

Lemma 2.3 (see [10]) Let h € C([0,1]) and 3 < a < 4. The unique solution to

Diu(t)=h(t), 0<t<l, (3)

u(0) = u(1) =u/'(0) =/'(1) = 0, (4)

1
u(t):/ G(t,s)h(s) ds,
0

where
(t-9)*1+(1- S)a_Ztal:z(i(; —O e D=0 , 0<s=<t<],
G(t,s) = 21— 8)¥2[(s — £) + (o — 2)(1 — B)s] , 0<t<s<l.
I'(x)

Here G(t,s) is called the Green function of boundary value problem (3)-(4).
The following properties of the Green function will be used later.

Lemma 2.4 (see [10]) The following properties hold:
(i) G(t,s)=G(1-s1-t)fort,se(0,1);
(ii) (o —2)t*2(1 - £)2s2(1 — 5)*"2 < T () G(t, ) < Mos*(1 —5)*2, t,s € (0,1);
(iii) G(t,s) >0, fort,s € (0,1);
(iv) (o —2)s2(1—5)* 22 2(1 - £)? < T (o) G(t, s) < Mot*2(1 - 1)?, t,5 € (0,1), where
My = max{o — 1, (o — 2)?}.

Let (X, <) be a partially ordered set endowed with a metric d such that (X, d) is complete
metric space. Let F: X x X — X be a given mapping.
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Definition 2.3 We say that (X, <) is directed if for every (x,) € X2 there exists z € X such

thatx <zandy < z.

Definition 2.4 We say that (X, <,d) is regular if the following conditions hold:

(c1) if {x,} is a nondecreasing sequence in X such that x, — x € X, then x,, < x for all #;

(c2) if {y,} is a decreasing sequence in X such that y, — y € X, then y, > y for all n.

Example 2.1 Let X = C([0,T]), T > 0, be the set of real continuous functions on [0, T].
We endow X with the standard metric 4 given by

d(u,v) = oIEfLXTW(t) -u(t)|, wu,velX.

We define the partial order < on X by
uveX, u=<v <= ut)<vit) foralte[0,T].

Let u,v € X. For w = max{u, v}, that is, w(t) = max{u(t), v(¢)} forall t € [0, T], wehave u < w
and v < w. This implies that (X, <) is directed. Now, let {x,} be a nondecreasing sequence
in X such that d(x,,x) — 0 as # — o0, for some x € X. Then, for all ¢ € [0, T], {x,(¢)} is
a nondecreasing sequence of real numbers converging to x(£). Thus we have x,(¢) < x(¢)
for all n, that is, x,, < x for all ». Similarly, if {y,} is a decreasing sequence in X such that
d(yn,y) = 0 as n — oo, for some y € X, we get that y, > y for all n. Then we proved that
(X, <,d) is regular.

Definition 2.5 (see [15]) An element (x,y) € X? is called a coupled fixed point of F if
F(x,y) =x and F(y,x) = y.

Definition 2.6 (see [15]) We say that F has the mixed monotone property if for all (x, y),

(u,v) € X2, we have
x=u,y>v = Fxy) 2F(u,v).

Denote by @ the set of functions ¢ : [0, +00) — [0, +00) satisfying:

(¢1) @ is continuous;
(¢2) @ is nondecreasing;
(p3) ¢7'({0}) ={0}.

The following two lemmas are fundamental in the proofs of our main results.
Lemma 2.5 (see [17]) Let (X, <) be a partially ordered set and suppose that there exists a

metric d on X such that (X, d) is a complete metric space. Let F : X x X — X be a mapping

having the mixed monotone property on X such that

Y (d(F(x,p), F(u,v))) < v (max{d(x,u),d(y,v)}) — ¢(max{d(x, u),d(y,v)}) (5)
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for all x,y,u,v € X with x > u and y < v, where ¥, € ®. Suppose also that (X, <X,d) is
regular and there exist xo,yo € X such that

x0 = F(x0,%0), yo > F(yo,x0).

Then F has a coupled fixed point (x°,y") € X%. Moreover, if {x,} and {y,} are the sequences
in X defined by

KXn+l = F(xmyn)r Yne1 = F(Yn:xn)r n=0,1,...,
then
Jm, d) = fim dly.77) = 0. ©

Lemma 2.6 (see [17]) Adding to the hypotheses of Lemma 2.5 the condition (X, <) is reg-
ular, we obtain the uniqueness of the coupled fixed point. Moreover, we have the equality

x =y,
3 Main result
Let Banach space E = C([0,1]) be endowed with the norm ||| = maxo<;<1 |u(t)|. We
define the partial order < on E by

u,veE, u=<xv <= u(t)<v(t) foralltel0,1]. (7)
In Example 2.1, we proved that (E, <) with the classic metric given by

d(u,v) = gg?ﬁu(t) - v(t)!, u,veE

satisfies the following properties: (E, <) is directed and (E, <,d) is regular.
Define the closed cone P C E by

P={uceE:u>0},

where 0 denotes the zero function.

Definition 3.1 (see [15]) We say that (u~,u*) € C([0,1]) x C([0,1]) is a coupled lower and
upper solution to (1)-(2) if

1
u (t) < / G(t,s)f(s, u~(s), u*(s)) ds, forall0<t<1
0
and
1
u*(t) > / G(t, S)f(S, u*(s), u_(s)) ds, forall0<t<1.
0

Our main result is the following.
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Theorem 3.1 LetO<o <1, 3<a <4, f:(0,1) x [0,+00) X [0, +00) — [0, +00) is continu-
ous, limy_, o+ f(¢,-,-) = +00 and t — t°f(t,x,y) is continuous on [0,1] x [0, +00) x [0, +00).
Assume that there exists 0 <A < (1-0)['(a¢ — o +1)/(2'(3 — 0)) such that for x,y,z,w €
[0, +00) withx >z, y <wand t € [0,1],

0 <7 (f(t,%,9) —f (t,z,w)) < An(max{(x - 2), (w - y)}), (8)

where 1 : [0, +00) — [0, +00), B : u+> u—n(u) € ®. Suppose also that (1)-(2) has a coupled
lower and upper solution (u™,u*) € P x P. Then the boundary value problem (1)-(2) has a
unique positive solution u” € C([0,1]). The sequences {u,} and {v,} defined by

1
Up=u, Uyl = / G(t,s)f(s, un(s),vn(s)) ds, n=0,1,...,
0
1
vo=ut, Vel = / G(t,s)f(s, Vu(s), un(s)) ds, n=0,1,...
0
converge uniformly to u’.
Proof Suppose that u is a solution of boundary value problem (1)-(2). Then
1
u(t) = / G(t,s)f (s, u(s), u(s)) ds, t€[0,1]. 9)
0

We define the operator F: P x P — E by

1
F(u,v)(t) = / G(t, s)f(s,u(s),v(s)) ds, te][0,1].
0
e Step 1. We shall prove that
F(Px P)CP. (10)

Let u,v € P. Let us prove that F(u, v) € C([0,1]). We have

1
F(u,v)(t) = / G(t, S)s_“s"f(s, u(s),v(s)) ds, te[0,1].
0

By the continuity of s7f (s, u(s), v(s)) in [0, 1], it is easy to check that F(u,v)(0) = 0. Now, let
tp € [0,1]. We have to prove that

|F(u, v)(¢) — F(u, v)(t0)| — 0 ast— .
We distinguish three cases:
th=0, to €(0,1] and ¢ e (t,1], to €(0,1] and ¢€][0,tp).

Case 1. t = 0. Since s +— s°f (s, u(s), v(s)) is continuous on [0, 1], there exists a constant
M > 0 such that |s7f(s, u(s), v(s))| <M for all s € [0,1]. We have

1
|F(u, v)(t) = F(u, v)(t0)| = ’fo G(t, s)s_”s”f(s, u(s), v(s)) ds|.
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Using Lemma 2.3, we have

|F(u, v)(2) = F(u, v)(t0) |

/1 (1 -5)"[(s—t) + (@ = 2)A - t)s]
o I'(w)

sOs°f (s, u(s), v(s)) ds

t (t_s)a—l o
+/0 M) = ° f(s,u(s), v(s)) ds

/1 ta—Z(l _ S)Ut—z [(3 — t) + ((x - 2)(1 - t)S]
o I'(x)

<

s“’s”f(s, u(s), V(s)) ds

e

<M/oz1)t"‘21 s)"‘zlad M/ ls)"‘2

Ztall t al
M/“ 97 0o g M/ " o s

I'(a) I (er)
=Mﬂ3(2 g,0 — 1) (a) (1 o,0 — 1)
M(“_Z)tale(z n+mi B )—>0 ast—> 0"
+ T) —o,a—-1)+ T -o,0)—>0 ast— 0",

where B(., -) denotes the beta function.
Case 2. ty € (0,1) and ¢ € (9, 1]. In this case,

|F(u,v)(®) - F(u,v) (%)

(Ol (t“ 2 tg 2)(1 S)a -2 1 -

s7f (s, u(s), v(s)) ds

INGY)
/ (! - ;)(S)_S)a S pls ) 9) s
R e
. /0 [(t—5)*! - ((Z))— 5" s s7f (s, u(s), v(s)) ds

+ /mt %saf(s, M(S), V(S)) ds

Now, we have

|F(u, v)(2) = F(u, v)(t0) |

-1 tOI—Z_ta—z o l_tOKI
<@ 0)/(1 o250 gs ¢ L~ %00) 0)/1 §)*2570 ds

')

Ot 2 tal tocl
M 1— a21r7
) /( AR

NG

+ % /:0 [(t R (. s)“’l]s"’ ds + % tot(t —8)* s ds

Page 7 of 11
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~ (trx—2 _ tg—Z)
—MWB(z—O',Ol —1)
M(tot—l _ tot—l)
T)O[B(l—a,a -1)+(@-2)B2-0,a-1)]
Mt Mg
+ r@) B(l-o,a)- r@) B(l-o0,a)

—0 ast— .

Case 3. tp € (0,1] and t € [0, £y). The proof is similar to that of Case 2, so we omit it.

Thus we proved that F(i, v) is continuous on [0,1] for all &, v € C([0,1]). Moreover, tak-
ing into account Lemma 2.4 and as t°f(¢,x,y) > 0 for all £ € [0,1], x,y > 0, our claim (10)
is proved. Now the mapping

F:PxP—P

is well defined.
e Step 2. We shall prove that F has the mixed monotone property with respect to the

partial order < given by (7).
Let (x,), (1, v) € P x P such that x < & and y > v. From (8), we have

s7f (s,%(5), y(5)) < s7f (s, u(s), v(s)),
for all s € [0,1]. This implies that
1 1
/ G(t,5)s7s°f (s, %(s), y(s)) ds < / G(t,5)s77s°f (s, u(s), v(s)) dis,
0 0

that is,

/01 G(t,s)f (s, %(s), y(s)) ds < /01 G(t,5)f (s, u(s), v(s)) ds,
which gives us that

F(x,y)(t) < F(u,v)(2),
for all ¢ € [0,1], and then we have

F(x,y) < F(u,v).
Then F has the mixed monotone property.

e Step 3. We shall prove that F satisfies the contractive condition (5) for some ¥, € ®.
Let (x,9), (u,v) € P x P such thatx > u and y < v. For all ¢ € [0, 1], using (8), we have

1
|F(x,)(¢) = F(u,v)(8)| = /0 G(t, 9)[f (5,%(), ¥(5)) = f (s, us), v(s)) ] ds

1
= / G(t,s)s°s” [f(s,x(s),y(s)) —f(s, u(s), V(s))] ds

0
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< /01 G(t, s)s’“kn(max{x(s) —u(s), v(s) —y(s)}) ds
< An(max{d(x, u),d(y,v)}) /01 G(t,s)s™ ds

1
< Mz(max{d(x, u),d(y, V)}) Zr;l{gy)l(]fo Gl(z,s)s% ds.

Thus we have
1
d(F(x,y),F(u, v)) < An(max{d(x, u),d(y, v)}) m[ng(]/ G(z,s)s™% ds. (1)
ze|0, 0

Now, let z € [0,1]. We have

1
/ Gl(z,8)s % ds
0

_/1 2221 =8)*?[(s—2) + (@ — 2)(1 - 2)s] 0 dsa Z(z—s) 1 y
N ') ()
Ya-Dz2(1-s)*2 |, L l(1-s)22
S/O ) s ds+/0 @ s%ds
1 (O{ _2)201—1(1_5)01—2 o z (Z_S)a—l Y
+/0 T s ds+/0 @) s ds
P 2 Za—l
= F(a—l)B(2 -1+ (o )B(1 oo
(Ot _ 2)th—l Peand
WB(Z—U,O[—I) + F(a)B(l_G’a)
(a-2)
SF(a—l)B(Z o,0 — 1)+mB(l o,a—1)+ r@) B2-0,aa-1)
! B(1 )
+ m -0,
2r(3-0)

TU-o)a-0+1)
which implies that

2I'(3-o0)
1-0)(e-0+1)

1
max / G(z,8)s%ds <

z€[0,1] 0

(1-0)l(a—0+1)

Now, using the above inequality, (11) and the fact that A < =575

, we get

d(F(x,y),F(u, V)) < n(max{d(x, u),d(y, v)})
= max{d(x, u),d(y, V)} - ﬁ(max{d(x, u),d(y, V)}).

Thus we proved that for all (x,y), (u,v) € P x P such that x > u and y < v, we have
w(d(F(x,y),F(u, v))) < W(max{ u),d(y,v }) (max{ (x, u),d(y, v)}),

where ¥ (¢) = t and ¢(¢) = B(¢).
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e Step 4. Existence of (xg,y0) € P x P such that xy < F(xo,y0) and yo > F(yo,x0).

We take (x9,%0) = (4™, u"), the coupled lower and upper solution to (1)-(2).

Now, from Lemmas 2.5 and 2.6, there exists a unique " € P such that u” = F(u',u’), that
is u" is the unique positive solution to (1)-(2). The convergence of the sequences {u,} and

{v,} to u” follows immediately from (6). O
Now, we end this paper with the following example.

Example 3.1 Consider the boundary value problem

o (E=1/2)? ( )
Dyfu(t) = 72\/2 u(t) + 0+1) 0<t<l, 12)
u(0) =u(l) =4/ (0)=u/(1) = 0. (13)
In this case, f(£,x,y) = %(x + ﬁ), for (t,x,y) € (0,1] x [0, +00) x [0, +00). Note that f

is continuous on (0,1] x [0, +00) X [0, +00) and lim;—,¢+ f(£,-,+) = +00. Let 0 =1 =1/2 and
n(t) = (1/2)t. For all x,y,z,w € [0, +00) with x > z, y < wand ¢ € [0,1], we have

0< t”z(f(t,x,y) —f(t,z,w))

1/9)2
- %[(x—zmw—y)]

< (t-1/2)* max{x —z,w —y}

1
< Zmax{x—z,w—y}

An(max{x -z, w —y}).

On the other hand,
(1—0)F(a—a+1)_ 3 2 i =
2I'(3-0) C2I(5/2) Jm T2

Consider now, the pair (4~,u*) € P x P defined by 4= = 0 and u* = 7/17. Using
Lemma 2.4(iv), one can show easily that (z~,u") is a coupled lower and upper solution
to (12)-(13).

Finally, applying Theorem 3.1, we deduce that (12)-(13) has one and only one positive
solution " € C([0,1]).
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