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Abstract
In this paper, we investigate the effect of the coefficient f (x) of the subcritical
nonlinearity. Under some assumptions, for sufficiently small ε,λ,μ > 0, there are at
least k (≥ 1) positive solutions of the semilinear elliptic systems

⎧⎪⎨
⎪⎩
–ε2�u + u = λg(x)|u|q–2u + α

α+β
f (x)|u|α–2u|v|β in RN ;

–ε2�v + v =μh(x)|v|q–2v + β
α+β

f (x)|u|α|v|β–2v in RN ;

u, v ∈ H1(RN),

where α > 1, β > 1, 2 < q < p = α + β < 2∗ = 2N/(N – 2) for N ≥ 3.
MSC: 35J20; 35J25; 35J65

Keywords: semilinear elliptic systems; subcritical exponents; Nehari manifold

1 Introduction
For N ≥ , α > , β >  and  < q < p = α + β < ∗ = N/(N – ), we consider the semilinear
elliptic systems

⎧⎪⎪⎨
⎪⎪⎩
–ε�u + u = λg(x)|u|q–u + α

α+β
f (x)|u|α–u|v|β in RN ;

–ε�v + v = μh(x)|v|q–v + β

α+β
f (x)|u|α|v|β–v in RN ;

u > , v > ,

(Eε,λ,μ)

where ε,λ,μ > .
Let f , g and h satisfy the following conditions:
(A) f is a positive continuous function in RN and lim|x|→∞ f (x) = f∞ > .
(A) there exist k points a,a, . . . ,ak in RN such that

f
(
ai

)
= max

x∈RN
f (x) =  for  ≤ i ≤ k,

and f∞ < .
(A) g,h ∈ Lm(RN )∩ L∞(RN ) wherem = (α + β)/(α + β – q), and g,h� .
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In [], if� is a smooth andboundeddomain inRN (N ≤ ), they considered the following
system:

⎧⎪⎪⎨
⎪⎪⎩

ε�u – λu = μu + βuv in �;

ε�v – λv = μv + βuv in �;

u > , v > ,

and proved the existence of a least energy solution in � for sufficiently small ε >  and
β ∈ (–∞,β). Lin and Wei also showed that this system has a least energy solution in RN

for ε =  and β ∈ (,β). In this paper, we study the effect of f (z) of (Eε,λ,μ). Recently, many
authors [–] considered the elliptic systems with subcritical or critical exponents, and
they proved the existence of a least energy positive solution or the existence of at least two
positive solutions for these problems. In this paper, we construct the k compact Palais-
Smale sequences which are suitably localized in correspondence of k maximum points
of f . Then we could show that under some assumptions (A)-(A), for sufficiently small
ε,λ,μ > , there are at least k (≥ ) positive solutions of the elliptic system (Eε,λ,μ). By the
change of variables

x = εz, u(z) = u(εz) and v(z) = v(εz),

System (Eε,λ,μ) is transformed to

⎧⎪⎪⎨
⎪⎪⎩
–�u + u = λg(εz)|u|q–u + α

α+β
f (εz)|u|α–u|v|β in RN ;

–�v + v = μh(εz)|v|q–v + β

α+β
f (εz)|u|α|v|β–v in RN ;

u > , v > .

(Eε,λ,μ)

Let H =H(RN )×H(RN ) be the space with the standard norm

∥∥(u, v)∥∥H =
[∫

RN

(|∇u| + u
)
dz +

∫
RN

(|∇v| + v
)
dz

]/

.

Associated with the problem (Eε,λ,μ), we consider the C-functional Jε,λ,μ, for (u, v) ∈ H ,

Jε,λ,μ(u, v) =


∥∥(u, v)∥∥

H –


α + β

∫
RN

f (εz)|u|α|v|β dz

–

q

∫
RN

(
λg(εz)|u|q +μh(εz)|v|q)dz.

Actually, the weak solution (u, v) ∈H of (Eε,λ,μ) is the critical point of the functional Jε,λ,μ,
that is, (u, v) ∈H satisfies∫

RN
(∇u∇ϕ +∇v∇ϕ + uϕ + vϕ)dz

– λ

∫
RN

g(εz)|u|q–uϕ dz –μ

∫
RN

h(εz)|v|q–vϕ dz

–
α

α + β

∫
RN

f (εz)|u|α–u|v|βϕ dz –
β

α + β

∫
RN

f (εz)|u|α|v|β–vϕ dz = 

for any (ϕ,ϕ) ∈ H .
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We consider the Nehari manifold

Mε,λ,μ =
{
(u, v) ∈H\{(, )}∣∣〈J ′ε,λ,μ(u, v), (u, v)〉 = 

}
, (.)

where

〈
J ′ε,λ,μ(u, v), (u, v)

〉
=

∥∥(u, v)∥∥
H –

∫
RN

f (εz)|u|α|v|β dz –
∫
RN

(
λg(εz)|u|q +μh(εz)|v|q)dz.

The Nehari manifoldMε,λ,μ contains all nontrivial weak solutions of (Eε,λ,μ).
Let

Sα,β = inf
u,v∈H(RN )\{()}

‖(u, v)‖H
(
∫
RN |u|α|v|β dz)/(α+β) , (.)

then by [, Theorem ], we have

Sα,β =
[(

α

β

) β
α+β

+
(

β

α

) α
α+β

]
Sp,

where p = α + β and Sp is the best Sobolev constant defined by

Sp = inf
u∈H(RN )\{}

∫
RN (|∇u| + u)dz
(
∫
RN |u|p dz)/p .

For the semilinear elliptic systems (λ = μ = )

⎧⎪⎪⎨
⎪⎪⎩
–�u + u = α

α+β
f (εz)|u|α–u|v|β in RN ;

–�v + v = β

α+β
f (εz)|u|α|v|β–v in RN ;

(u, v) ∈H ,

(Eε)

we define the energy functional Iε(u, v) = 
‖(u, v)‖H – 

α+β

∫
RN f (εz)|u|α|v|β dz, and

Nε =
{
(u, v) ∈H\{(, )}∣∣〈I ′ε(u, v), (u, v)〉 = 

}
.

If f ≡maxz∈RN f (z) (= ), then we define Imax(u, v) = 
‖(u, v)‖H – 

α+β

∫
RN |u|α|v|β dz and

θmax = inf
(u,v)∈Nmax

Imax(u, v),

where Nmax = {(u, v) ∈H\{(, )}|〈I ′max(u, v), (u, v)〉 = }.
It is well known that this problem

⎧⎨
⎩–�u + u = |u|p–u in RN ;

u ∈H(RN ),
(E)

has the unique, radially symmetric and positive ground state solution w ∈H(RN ). Define
Imax(u) = 


∫
RN (|∇u| + u)dz – 

p
∫
RN |u|p dz and θmax = infu∈Nmax

Imax(u), where

Nmax =
{
u ∈H(RN)\{}∣∣〈I ′max(u),u

〉
= 

}
.
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Moreover, we have that

θmax =
p – 
p

S
p

p–
p > . (See Wang [, Theorems . and .].)

This paper is organized as follows. First of all, we study the argument of the Nehari
manifold Mε,λ,μ. Next, we prove that the existence of a positive solution (u, v) ∈ Mε,λ,μ

of (Eε,λ,μ). Finally, in Section , we show that the condition (A) affects the number of
positive solutions of (Eε,λ,μ); that is, there are at least k critical points (ui, vi) ∈ Mε,λ,μ of
Jε,λ,μ such that Jε,λ,μ(ui, vi) = β i

ε,λ,μ ((PS)-value) for ≤ i≤ k.

Theorem . (Eε,λ,μ) has at least one positive solution (u, v), that is, (Eε,λ,μ) admits at
least one positive solution.

Theorem . There exist two positive numbers ε and 
∗ such that (Eε,λ,μ) has at least k
positive solutions for any  < ε < ε and  < λ + μ < 
∗, that is, (Eε,λ,μ) admits at least k
positive solutions.

2 Preliminaries
By studying the argument of Han [, Lemma .], we obtain the following lemma.

Lemma . Let � ⊂ RN (possibly unbounded) be a smooth domain. If un ⇀ u, vn ⇀ v
weakly in H

(�), and un → u, vn → v almost everywhere in �, then

lim
n→∞

∫
�

|un – u|α|vn – v|β dz = lim
n→∞

∫
�

|un|α|vn|β dz –
∫

�

|u|α|v|β dz.

Note that Jε,λ,μ is not bounded from below in H . From the following lemma, we have
that Jε,λ,μ is bounded from below onMε,λ,μ.

Lemma . The energy functional Jε,λ,μ is bounded from below onMε,λ,μ.

Proof For (u, v) ∈Mε,λ,μ, by (.), we obtain that

Jε,λ,μ(u, v) =
(


–

q

)∥∥(u, v)∥∥
H +

(

q
–

p

)∫
RN

f (εz)|u|α|v|β dz > ,

where p = α + β . Hence, we have that Jε,λ,μ is bounded from below onMε,λ,μ. �

We define

θε,λ,μ = inf
(u,v)∈Mε,λ,μ

Jε,λ,μ(u, v).

Lemma . (i) There exist positive numbers σ and d such that Jε,λ,μ(u, v) ≥ d for
‖(u, v)‖H = σ ;
(ii) There exists (u, v) ∈H\{(, )} such that ‖(u, v)‖H > σ and Jε,λ,μ(u, v) < .

http://www.boundaryvalueproblems.com/content/2012/1/118
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Proof (i) By (.), the Hölder inequality (p = p
p–q , p =

p
q ) and the Sobolev embedding

theorem, we have that

Jε,λ,μ(u, v) =


∥∥(u, v)∥∥

H –

p

∫
RN

f (εz)|u|α|v|β dz

–

q

∫
RN

(
λg(εz)|u|q +μh(εz)|v|q)dz

≥ 

∥∥(u, v)∥∥

H –

p
S–p/α,β

∥∥(u, v)∥∥p
H

–

q
MaxS–

q


p (λ +μ)
∥∥(u, v)∥∥q

H ,

where p = α + β and Max = max{‖g‖m,‖h‖m}. Hence, there exist positive σ and d such
that Jε,λ,μ(u, v)≥ d for ‖(u, v)‖H = σ .
(ii) For any (u, v) ∈H\{(, )}, since

Jε,λ,μ(tu, tv) =
t


∥∥(u, v)∥∥

H –
tp

p

∫
RN

f (εz)|u|α|v|β dz

–
tq

q

∫
RN

(
λg(εz)|u|q +μh(εz)|v|q)dz,

then limt→∞ Jε,λ,μ(tu, tv) = –∞. Fix some (u, v) ∈ H\{(, )}, there exists t >  such that
‖(tu, tv)‖H > σ and Jε,λ,μ(tu, tv) < . Let (u, v) = (tu, tv). �

Define

ψ(u, v) =
〈
J ′ε,λ,μ(u, v), (u, v)

〉
.

Then for (u, v) ∈Mε,λ,μ, we obtain that

〈
ψ ′(u, v), (u, v)

〉
= 

∥∥(u, v)∥∥
H – p

∫
RN

f (εz)|u|α|v|β dz

– q
∫
RN

(
λg(εz)|u|q +μh(εz)|v|q)dz

= (p – q)
∫
RN

(
λg(εz)|u|q +μh(εz)|v|q)dz – (p – )

∥∥(u, v)∥∥
H (.)

= ( – q)
∥∥(u, v)∥∥

H + (q – p)
∫
RN

f (εz)|u|α|v|β dz < . (.)

Lemma . For each (u, v) ∈ H\{(, )}, there exists a unique positive number tu,v such
that (tu,vu, tu,vv) ∈Mε,λ,μ and Jε,λ,μ(tu,vu, tu,vv) = supt≥ Jε,λ,μ(tu, tv).

Proof Fixed (u, v) ∈H\{(, )}, we consider

R(t) = Jε,λ,μ(tu, tv)

=
t


∥∥(u, v)∥∥

H –
tp

p

∫
RN

f (εz)|u|α|v|β dz – tq

q

∫
RN

(
λg(εz)|u|q +μh(εz)|v|q)dz.

http://www.boundaryvalueproblems.com/content/2012/1/118
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Since R() = , limt→∞ R(t) = –∞, by Lemma .(i), then supt≥ R(t) is achieved at some
tu,v > . Moreover, we have that R′(tu,v) = , that is, (tu,vu, tu,vv) ∈ Mε,λ,μ. Next, we claim
that tu,v is a unique positive number such that R′(tu,v) = . Consider

r(t) =
∥∥(u, v)∥∥

H – tp–
∫
RN

f (εz)|u|α|v|β dz – tq–
∫
RN

(
λg(εz)|u|q +μh(εz)|v|q)dz,

then R′(t) = tr(t). Since r() = ‖(u, v)‖H > ,

r′(t) = –(p – )tp–
∫
RN

f (εz)|u|α|v|β dz

– (q – )tq–
∫
RN

(
λg(εz)|u|q +μh(εz)|v|q)dz < ,

there exists a unique positive number tu,v such that r(tu,v) = . It follows that R′(tu,v) = .
Hence, tu,v = tu,v. �

Remark . By Lemma .(i) and Lemma ., then θε,λ,μ ≥ d >  for some constant d.

Lemma . Let (u, v) ∈Mε,λ,μ satisfy

Jε,λ,μ(u, v) = min
(u,v)∈Mε,λ,μ

Jε,λ,μ(u, v) = θε,λ,μ,

then (u, v) is a solution of (Eε,λ,μ).

Proof By (.), 〈ψ ′(u, v), (u, v)〉 <  for (u, v) ∈ Mε,λ,μ. Since Jε,λ,μ(u, v) =
min(u,v)∈Mε,λ,μ Jε,λ,μ(u, v), by the Lagrange multiplier theorem, there is τ ∈ R such that
J ′ε,λ,μ(u, v) = τψ ′(u, v) in H–. Then we have

 =
〈
J ′ε,λ,μ(u, v), (u, v)

〉
= τ

〈
ψ ′(u, v), (u, v)

〉
.

It follows that τ =  and J ′ε,λ,μ(u, v) =  in H–. Therefore, (u, v) is a nontrivial solution
of (Eε,λ,μ) and Jε,λ,μ(u, v) = θε,λ,μ. �

3 (PS)γ -condition in H for Jε,λ,μ
First of all, we define the Palais-Smale (denoted by (PS)) sequence and (PS)-condition in
H for some functional J .

Definition . (i) For γ ∈ R, a sequence {(un, vn)} is a (PS)γ -sequence in H for J if
J(un, vn) = γ + on() and J ′(un, vn) = on() strongly in H– as n → ∞, where H– is the dual
space of H ;
(ii) J satisfies the (PS)γ -condition in H if every (PS)γ -sequence in H for J contains a

convergent subsequence.

Applying Ekeland’s variational principle and using the same argument as in Cao-Zhou
[] or Tarantello [], we have the following lemma.

Lemma . (i) There exists a (PS)θε,λ,μ -sequence {(un, vn)} inMε,λ,μ for Jε,λ,μ.

http://www.boundaryvalueproblems.com/content/2012/1/118
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In order to prove the existence of positive solutions, we want to prove that Jε,λ,μ satisfies
the (PS)γ -condition in H for γ ∈ (, p–p

(Sα,β )p/(p–)

(f∞)/(p–) ).

Lemma . Jε,λ,μ satisfies the (PS)γ -condition in H for γ ∈ (, p–p
(Sα,β )p/(p–)

(f∞)/(p–) ).

Proof Let {(un, vn)} be a (PS)γ -sequence in H for Jε,λ,μ such that Jε,λ,μ(un, vn) = γ + on()
and J ′ε,λ,μ(un, vn) = on() in H–. Then

γ + cn +
dn‖(un, vn)‖H

q
≥ Jε,λ,μ(un, vn) –


q
〈
J ′ε,λ,μ(un, vn), (un, vn)

〉

=
(


–

q

)∥∥(un, vn)∥∥
H +

(

q
–

p

)∫
RN

f (εz)|un|α|vn|β dz

≥ q – 
q

∥∥(un, vn)∥∥
H ,

where cn = on(), dn = on() as n → ∞. It follows that {(un, vn)} is bounded in H . Hence,
there exist a subsequence {(un, vn)} and (u, v) ∈H such that

un ⇀ u, vn ⇀ v weakly in H(RN)
;

un → u, vn → v strongly in Lsloc
(
RN)

for any  ≤ s < ∗;

un → u, vn → v a.e. in RN .

Moreover, we have that J ′ε,λ,μ(u, v) =  inH–.We use the Brézis-Lieb lemma to obtain (.)
and (.) as follows:

∫
RN

g(εz)|un – u|q dz =
∫
RN

g(εz)|un|q dz –
∫
RN

g(εz)|u|q dz + on(); (.)
∫
RN

h(εz)|vn – v|q dz =
∫
RN

h(εz)|vn|q dz –
∫
RN

h(εz)|v|q dz + on(). (.)

Next, we claim that
∫
RN

g(εz)|un – u|q dz →  as n→ ∞ (.)

and ∫
RN

h(εz)|vn – v|q dz →  as n→ ∞. (.)

Since g ∈ Lm(RN ), where m = p/(p – q), then for any σ > , there exists r >  such that∫
[BNr ()]c g(εz)

p
p–q dz < σ . By the Hölder inequality and the Sobolev embedding theorem, we

get

∣∣∣∣
∫
RN

g(εz)|un – u|q dz
∣∣∣∣

≤
∫
BNr ()

g(εz)|un – u|q dz

http://www.boundaryvalueproblems.com/content/2012/1/118
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+
∫
[BNr ()]c

g(εz)|un – u|q dz

≤ ‖g‖m
(∫

BNr ()
|un – u|p dz

)q/p

+ S–
q


p

(∫
[BNr ()]c

g(εz)
p

p–q dz
) p–q

p
(∫

RN

∣∣∇(un – u)
∣∣ + |un – u| dz

)q/

≤ C′σ + on()
(
∵ {un} is bounded in H(RN)

and un → u in Lploc
(
RN))

.

Similarly,
∫
RN h(εz)|vn – v|q dz →  as n → ∞. By (A) and un → u, vn → v strongly in

Lploc(R
N ), we have that

∫
RN

f (εz)|un – u|α|vn – v|β dz =
∫
RN

f∞|un – u|α|vn – v|β dz = on(). (.)

Let pn = (un – u, vn – v). By (.)-(.) and Lemma ., we deduce that

‖pn‖H =
(‖un‖H + ‖vn‖H

)
–

(‖u‖H + ‖v‖H
)
+ on()

=
∫
RN

f (εz)|un|α|vn|β dz +
∫
RN

(
λg(εz)|un|q +μh(εz)|vn|q

)
dz

–
∫
RN

f (εz)|u|α|v|β dz –
∫
RN

(
λg(εz)|u|q +μh(εz)|v|q)dz + on()

=
∫
RN

f (εz)|un – u|α|vn – v|β dz + on(),

and



‖pn‖H –


α + β

∫
RN

f (εz)|un – u|α|vn – v|β dz = γ – Jε,λ,μ(u, v) + on(). (.)

We may assume that

‖pn‖H → l and
∫
RN

f (εz)|un – u|α|vn – v|β dz → l as n→ ∞. (.)

Recall that

Sα,β = inf
u,v∈H(RN )\{()}

‖(u, v)‖H
(
∫
RN |u|α|v|β dz)/p , where p = α + β .

If l > , by (.), then

Sα,β l

p = Sα,β

(∫
RN

f (εz)|un – u|α|vn – v|β dz
)/p

+ on()

= Sα,β

(∫
RN

f∞|un – u|α|vn – v|β dz
)/p

+ on()

≤ (f∞)/p‖pn‖H + on() = (f∞)/pl.

http://www.boundaryvalueproblems.com/content/2012/1/118
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This implies l ≥ (Sα,β )p/(p–)/(f∞)/(p–). By (.) and (.), we obtain that

γ =
(


–

p

)
l + Jε,λ,μ(u, v)≥ p – 

p
(Sα,β)p/(p–)

(f∞)/(p–)
,

which is a contradiction. Hence, l = , that is, (un, vn)→ (u, v) strongly in H . �

4 Existence of k solutions
Let w ∈ H(RN ) be the unique, radially symmetric and positive ground state solution of
equation (E) in RN . Recall the facts (or see Bahri-Li [], Bahri-Lions [], Gidas-Ni-
Nirenberg [] and Kwong []):
(i) w ∈ L∞(RN )∩C,θ

loc (R
N ) for some  < θ <  and lim|z|→∞ w(z) = ;

(ii) for any ε > , there exist positive numbers C, Cε
 and Cε

 such that for all z ∈RN

Cε
 exp

(
–( + ε)|z|) ≤ w(z) ≤ C exp

(
–|z|)

and

∣∣∇w(z)
∣∣ ≤ Cε

 exp
(
–( – ε)|z|).

By Lien-Tzeng-Wang [], then

Sp =
∫
RN (|∇w| +w)dz
(
∫
RN wp dz)/p

. (.)

For  ≤ i≤ k, we define

wi
ε(z) = w

(
z –

ai

ε

)
, where f

(
ai

)
= max

z∈RN
f (z) = .

Clearly, wi
ε(z) ∈H(RN ).

First of all, we want to prove that

lim
ε→+

sup
t≥

Jε,λ,μ
(
t
√

αwi
ε , t

√
βwi

ε

) ≤ p – 
p

(Sα,β )p/(p–) uniformly in i.

Lemma . For λ >  and μ > , then

lim
ε→+

sup
t≥

Jε,λ,μ
(
t
√

αwi
ε , t

√
βwi

ε

) ≤ p – 
p

(Sα,β )p/(p–) uniformly in i.

Moreover, we have that

 < θε,λ,μ ≤ p – 
p

(Sα,β )p/(p–).

Proof Part I: Since Jε,λ,μ is continuous in H , Jε,λ,μ(, ) = , and {(√αwi
ε ,

√
βwi

ε)} is uni-
formly bounded in H for any ε >  and  ≤ i ≤ k, then there exists t >  such that for
 ≤ t < t and any ε > ,

Jε,λ,μ
(
t
√

αwi
ε , t

√
βwi

ε

)
<
p – 
p

(Sα,β)p/(p–) uniformly in i.
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From (A), we have that infz∈RN f (z) > . Then

Jε,λ,μ
(
t
√

αwi
ε , t

√
βwi

ε

) ≤ t


∥∥(√αw,

√
βw)

∥∥
H

–
tα+β

α + β

(
inf
z∈RN

f (z)
)∫

RN
|√αw|α|√βw|β dz

→ –∞ as t → ∞.

It follows that there exists t >  such that for t > t and any ε > ,

Jε,λ,μ
(
t
√

αwi
ε , t

√
βwi

ε

)
<
p – 
p

(Sα,β)p/(p–) uniformly in i.

From now on, we only need to show that

lim
ε→+

sup
t≤t≤t

Jε,λ,μ
(
twi

ε

) ≤ p – 
p

(Sα,β)p/(p–) uniformly in i.

Since

sup
t≥

(
t


a –

tα+β

α + β
b
)
=

α + β – 
(α + β)

(
a

b


α+β

) α+β
α+β–

, where a,b > ,

and by (.), then

sup
t≥

{
t


∥∥(√

αwi
ε ,

√
βwi

ε

)∥∥
H –

tα+β

α + β

∫
RN

∣∣√αwi
ε

∣∣α∣∣√αwi
ε

∣∣β dz}

=
p – 
p

[ (α + β)
∫
RN (|∇w| +w)dz

(α α
 β

β

∫
RN wp dz)/p

] p
p–

=
p – 
p

(Sα,β )p/(p–). (.)

For t ≤ t ≤ t, by (.), we have that

Jε,λ,μ
(
t
√

αwi
ε , t

√
βwi

ε

)
=

t


∥∥(√

αwi
ε ,

√
βwi

ε

)∥∥
H –

tα+β

α + β

∫
RN

f (εz)
∣∣√αwi

ε

∣∣α∣∣√βwi
ε

∣∣β dz
–
tq

q

∫
RN

(
λg(εz)

∣∣√αwi
ε

∣∣q +μh(εz)
∣∣√βwi

ε

∣∣q)dz
≤ p – 

p
(Sα,β)p/(p–)

+
tp
p

∫
RN

(
 – f (εz)

)∣∣√αwi
ε

∣∣α∣∣√αwi
ε

∣∣β dz.
Since

∫
RN

(
 – f (εz)

)∣∣√αwi
ε

∣∣α∣∣√βwi
ε

∣∣β dz
= α

α
 β

β


∫
RN

(
 – f

(
εz + ai

))
wp dz = o() as ε → + uniformly in i,

http://www.boundaryvalueproblems.com/content/2012/1/118
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then

lim
ε→+

sup
t≤t≤t

Jε,λ,μ
(
t
√

αwi
ε , t

√
βwi

ε

) ≤ p – 
p

(Sα,β )p/(p–),

that is, for λ >  and μ > ,

lim
ε→+

sup
t≥

Jε,λ,μ
(
t
√

αwi
ε , t

√
βwi

ε

) ≤ p – 
p

(Sα,β )p/(p–) uniformly in i.

Part II: By Lemma ., there is a number tiε >  such that (tiε
√

αwi
ε , tiε

√
βwi

ε) ∈ Mε,λ,μ,
where  ≤ i≤ k. Hence, from the result of Part I, we have that for λ >  and μ > ,

 < θε,λ,μ ≤ lim
ε→+

sup
t≥

Jε,λ,μ
(
t
√

αwi
ε , t

√
βwi

ε

) ≤ p – 
p

(Sα,β )p/(p–). �

Proof of Theorem . By Lemma., there exists a (PS)θε,λ,μ-sequence {(un, vn)} inMε,λ,μ for

Jε,λ,μ. Since  < θε,λ,μ ≤ p–
p (Sα,β )p/(p–) < p–

p
(Sα,β )p/(p–)

(f∞)/(p–) for λ >  and μ > , by Lemma .,
there exist a subsequence {(un, vn)} and (u, v) ∈ H such that (un, vn) → (u, v) strongly
in H . It is easy to check that (u, v) is a nontrivial solution of (Eε,λ,μ) and Jε,λ,μ(u, v) =
θε,λ,μ. Since Jε,λ,μ(u, v) = Jλ,μ(|u|, |v|) and (|u|, |v|) ∈ Mε,λ,μ, by Lemma ., we may
assume that u ≥ , v ≥ . Applying the maximum principle, u >  and v >  in �. �

Choosing  < ρ <  such that

BN
ρ

(
ai

) ∩ BN
ρ

(
aj

)
=∅ for i �= j and  ≤ i, j ≤ k,

where BN
ρ (a

i) = {z ∈ RN ||z–ai| ≤ ρ} and f (ai) =maxz∈RN f (z) = , defineK ={ai| ≤ i≤ k}
and Kρ/ =

⋃k
i= BN

ρ/(a
i). Suppose

⋃k
i= BN

ρ (a
i) ⊂ BN

r () for some r > . Let Qε be given
by

Qε(u, v) =
∫
RN χ (εz)|u|α|v|β dz∫

RN |u|α|v|β dz ,

where χ :RN → RN , χ (z) = z for |z| ≤ r and χ (z) = rz/|z| for |z| > r.
For each  ≤ i≤ k, we define

Oi
ε,λ,μ =

{
(u, v) ∈ Mε,λ,μ|∣∣Qε(u, v) – ai

∣∣ < ρ
}
,

∂Oi
ε,λ,μ =

{
(u, v) ∈Mε,λ,μ|∣∣Qε(u, v) – ai

∣∣ = ρ
}
,

β i
ε,λ,μ = inf

(u,v)∈Oi
ε,λ,μ

Jε,λ,μ(u, v) and β̃ i
ε,λ,μ = inf

(u,v)∈∂Oi
ε,λ,μ

Jε,λ,μ(u, v).

By Lemma ., there exists tiε >  such that (tiε
√

αwi
ε , tiε

√
βwi

ε) ∈ Mε,λ,μ for each  ≤ i ≤ k.
Then we have the following result.

Lemma . There exists ε >  such that if ε ∈ (, ε), then Qε(tiε
√

αwi
ε , tiε

√
βwi

ε) ∈ Kρ/

for each  ≤ i≤ k.

http://www.boundaryvalueproblems.com/content/2012/1/118
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Proof Since

Qε

(
tiε

√
αwi

ε , t
i
ε

√
βwi

ε

)
=

∫
RN χ (εz)|w(z – ai

ε
)|p dz∫

RN |w(z – ai
ε
)|p dz

=
∫
RN χ (εz + ai)|w(z)|p dz∫

RN |w(z)|p dz
→ ai as ε → +,

there exists ε >  such that

Qε

(
tiε

√
αwi

ε , t
i
ε

√
βwi

ε

) ∈ Kρ/ for any ε ∈ (, ε) and each ≤ i ≤ k. �

We need the following lemmas to prove that β i
λ,μ < β̃ i

λ,μ for sufficiently small ε, λ, μ.

Lemma . θmax = p–
p (Sα,β )p/(p–).

Proof From Part I of Lemma ., we obtain supt≥ Imax(t
√

αwi
ε , t

√
βwi

ε) =
p–
p (Sα,β)p/(p–)

uniformly in i. Similarly to Lemma ., there is a sequence {simax} ⊂ R+ such that
(simax

√
αwi

ε , simax

√
βwi

ε) ∈Nmax and

θmax ≤ Imax
(
simax

√
αuiε , s

i
max

√
βuiε

)
= sup

t≥
Jmax

(
t
√

αuiε , t
√

βuiε
)
=
p – 
p

(Sα,β )p/(p–).

Let {(un, vn)} ⊂Nmax be aminimizing sequence of θmax for Imax. It follows that ‖(un, vn)‖H =∫
RN |un|α|vn|β dz and

θmax =


∥∥(un, vn)∥∥

H –

p

∫
RN

|un|α|vn|β dz + on()

=
p – 
p

∥∥(un, vn)∥∥
H + on().

We may assume that ‖(un, vn)‖H → l and
∫
RN |un|α|vn|β dz → l as n → ∞, where l =

p
p–θmax > . By the definition of Sα,β , then Sα,β l


p ≤ l. We can deduce that Sα,β ≤ l

p–
p =

( p
p–θmax)

p–
p , that is, p–

p (Sα,β)p/(p–) ≤ θmax. �

Lemma . There exists a number δ >  such that if (u, v) ∈ Nε and Iε(u, v) ≤ θmax + δ,
then Qε(u, v) ∈ Kρ/ for any  < ε < ε.

Proof On the contrary, there exist the sequences {εn} ⊂R+ and {(un, vn)} ⊂Nεn such that
εn → , Iεn (un, vn) = θmax ( > ) + on() as n → ∞ and Qεn (un, vn) /∈ Kρ/ for all n ∈ N.
It is easy to check that {(un, vn)} is bounded in H . Suppose that

∫
RN |un|α|vn|β dz →  as

n→ ∞. Since

∥∥(un, vn)∥∥
H =

∫
RN

f (εnz)|un|α|vn|β dz for each n ∈N,

then

θmax + on() = Iεn (un, vn) =
(


–

p

)∫
RN

f (εnz)|un|α|vn|β dz ≤ on(),

http://www.boundaryvalueproblems.com/content/2012/1/118
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which is a contradiction. Thus,
∫
RN |un|α|vn|β dz �  as n → ∞. Similarly to the

concentration-compactness principle (see Lions [, ] or Wang [, Lemma .]), then
there exist a constant c >  and a sequence {z̃n} ⊂RN such that

∫
BN (z̃n ;)

|un|
αl
p |vn|

βl
p dz ≥ c > , (.)

where  < l < p = α + β < ∗ and p = l( – t) + ∗t for some t ∈ ((N – )/N , ). Let
(ũn(z), ṽn(z)) = (un(z + z̃n), vn(z + z̃n)). Then there are a subsequence {(ũn, ṽn)} and (̃u, ṽ) ∈
H such that ũn ⇀ ũ and ṽn ⇀ ṽ weakly in H(RN ). Using the similar computation of
Lemma ., there is a sequence {snmax} ⊂R+ such that (snmaxũn, snmaxṽn) ∈Nmax and

 < θmax ≤ Imax
(
snmaxũn, s

n
maxṽn

)
= Imax

(
snmaxun, s

n
maxvn

)
≤ Iεn

(
snmaxun, s

n
maxvn

) ≤ Iεn (un, vn) = θmax + on() as n→ ∞.

We deduce that a subsequence {snmax} satisfies snmax → s > . Then there are a subsequence
{(snmaxũn, snmaxṽn)} and (sũ, s̃v) ∈ H such that snmaxũn ⇀ sũ and snmaxṽn ⇀ s̃v weakly in
H(RN ). By (.), then ũ �=  and ṽ �= . Applying Ekeland’s variational principle, there
exists a (PS)θmax -sequence {(Un,Vn)} for Imax and ‖(Un – snmaxũn,Vn – snmaxṽn)‖H = on().
Similarly to the proof of Lemma ., there exist a subsequence {(Un,Vn)} and (U,V) ∈ H
such that Un → U, Vn → V strongly in H(RN ) and Imax(U,V) = θmax. Now, we want
to show that there exists a subsequence {zn} = {εnz̃n} such that zn → z ∈K.
(i) Claim that the sequence {zn} is bounded in RN . On the contrary, assume that

|zn| → ∞, then

θmax = Imax(U,V) <


∥∥(U,V)

∥∥
H –


p

∫
RN

f∞|U|α|V|β dz

≤ lim inf
n→∞

[
(snmax)


∥∥(ũn, ṽn)∥∥

H –
(snmax)p

p

∫
RN

f (εnz + zn)|ũn|α|ṽn|β dz
]

= lim inf
n→∞

[
(snmax)


∥∥(un, vn)∥∥

H –
(snmax)p

p

∫
RN

f (εnz)|un|α|vn|β dz
]

= lim inf
n→∞ Iεn

(
snmaxun, s

n
maxvn

) ≤ lim inf
n→∞ Iεn (un, vn) = θmax,

which is a contradiction.
(ii) Claim that z ∈ K. On the contrary, assume that z /∈ K, that is, f (z) <  =

maxz∈RN f (z). Then use the argument of (i) to obtain that

θmax = Imax(U,V) ≤ Imax(sU, sV)

<
(s)


∥∥(U,V)

∥∥
H –

(s)p

p

∫
RN

f (z)|U|α|V|β dz

≤ lim inf
n→∞

[
(snmax)


∥∥(ũn, ṽn)∥∥

H –
(snmax)p

p

∫
RN

f (εnz + zn)|ũn|α|ṽn|β dz
]

≤ θmax,

which is a contradiction.
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Since ‖(Un – snmaxũn,Vn – snmaxṽn)‖H = on() and Un → U, Vn → V strongly in H(RN ),
we have that

Qεn (un, vn) =
∫
RNχ (εnz)|ũn(z – z̃n)|α|ṽn(z – z̃n)|β dz∫

RN |ũn(z – z̃n)|α|ṽn(z – z̃n)|β dz

=
∫
RNχ (εnz + εnz̃n)|U|α|V|β dz∫

RN |U|α|V|β dz → z ∈Kρ/ as n→ ∞,

which is a contradiction.
Hence, there exists δ >  such that if (u, v) ∈ Nε and Iε(u, v) ≤ θmax + δ, then Qε(u, v) ∈

Kρ/ for any  < ε < ε. �

Lemma. If (u, v) ∈Mε,λ,μ and Jε,λ,μ(u, v) ≤ θmax+δ/, then there exists a number
∗ > 
such that Qε(u, v) ∈Kρ/ for any  < ε < ε and  < λ +μ < 
∗.

Proof Using the similar computation in Lemma ., we obtain that there is the unique
positive number

sε =
( ‖(u, v)‖H∫

RN f (εz)|u|α|v|β dz
)/(p–)

such that (sεu, sεv) ∈ Nε . We want to show that there exists 
 >  such that if  < λ +μ <

, then sε < c for some constant c >  (independent of u and v). First, for (u, v) ∈Mε,λ,μ,

 < d ≤ θε,λ,μ ≤ Jε,λ,μ(u, v) ≤ θmax + δ/.

Since 〈J ′ε,λ,μ(u, v), (u, v)〉 = , then

θmax + δ/ ≥ Jε,λ,μ(u, v)

=
(


–

q

)∥∥(u, v)∥∥
H +

(

q
–

p

)∫
RN

f (εz)|u|α|v|β dz

≥ q – 
q

∥∥(u, v)∥∥
H , that is,

∥∥(u, v)∥∥
H ≤ c =

q
q – 

(θmax + δ/), (.)

and

d ≤ Jε,λ,μ(u, v)

=
(


–

p

)∥∥(u, v)∥∥
H –

(

q
–

p

)∫
�

(
λg(εz)|u|q +μh(εz)|v|q)dz

≤ p – 
p

∥∥(u, v)∥∥
H , that is,

∥∥(u, v)∥∥
H ≥ c =

p
p – 

d. (.)

Moreover, we have that
∫

�

f (εz)|u|α|v|β dz = ∥∥(u, v)∥∥
H –

∫
RN

(
λg(εz)|u|q +μh(εz)|v|q)dz

≥ c –MaxS–
q


p (λ +μ)cq/ ,

http://www.boundaryvalueproblems.com/content/2012/1/118


Lin Boundary Value Problems 2012, 2012:118 Page 15 of 17
http://www.boundaryvalueproblems.com/content/2012/1/118

where Max = max{‖g‖m,‖h‖m}. It follows that there exists 
 >  such that for  < λ +
μ < 
∫

RN
f (εz)|u|α|v|β dz ≥ c –MaxS–

q


p (λ +μ)(c)q/ > . (.)

Hence, by (.), (.) and (.), sε < c for some constant c >  (independent of u and v) for
 < λ +μ < 
. Now, we obtain that

θmax + δ/ ≥ Jε,λ,μ(u, v) = sup
t≥

Jε,λ,μ(tu, tv) ≥ Jε,λ,μ(sεu, sεv)

=


∥∥(sεu, sεv)∥∥

H –

p

∫
RN

f (εz)|sεu|α|sεv|β dz

–

q

∫
RN

(
λg(εz)|sεu|q +μh(εz)|sεv|q

)
dz

≥ Iε(sεu, sεv) –

q

∫
RN

(
λg(εz)|sεu|q +μh(εz)|sεv|q

)
dz.

From the above inequality, we deduce that for any  < ε < ε and  < λ +μ <
,

Iε(sεu, sεv) ≤ θmax + δ/ +

q

∫
RN

(
λg(εz)|sεu|q +μh(εz)|sεv|q

)
dz

≤ θmax + δ/ +Max(λ +μ)S–
q


p
∥∥(sεu, sεv)∥∥q

H

< θmax + δ/ +MaxS–
q


p (λ +μ)cq(c)q/.

Hence, there exists 
∗ ∈ (,
) such that for  < λ +μ < 
∗,

Iε(sεu, sεv) ≤ θmax + δ, where (sεu, sεv) ∈Nε .

By Lemma ., we obtain

Qε(sεu, sεv) =
∫
RN χ (εz)|sεu|α|sεv|β dz∫

RN |sεu|α|sεv|β dz ∈ Kρ/,

or Qε(u, v) ∈ Kρ/ for any  < ε < ε and  < λ +μ < 
∗. �

Since f∞ < , then by Lemma .,

θmax =
p – 
p

(Sα,β )p/(p–) <
p – 
p

(Sα,β)p/(p–)

(f∞)/(p–)
. (.)

By Lemmas ., . and (.), for any  < ε < ε (< ε) and  < λ +μ <
∗,

β i
ε,λ,μ ≤ Jε,λ,μ

(
tiε

√
αwi

ε , t
i
ε

√
βwi

ε

)
<
p – 
p

(Sα,β )p/(p–)

(f∞)/(p–)
. (.)

Applying above Lemma ., we get that

β̃ i
ε,λ,μ ≥ θmax + δ/ for any  < ε < ε and  < λ +μ < 
∗. (.)
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For each  ≤ i ≤ k, by (.) and (.), we obtain that

β i
ε,λ,μ < β̃ i

ε,λ,μ for any  < ε < ε and  < λ +μ < 
∗.

It follows that

β i
ε,λ,μ = inf

(u,v)∈Oi
ε,λ,μ∪∂Oi

ε,λ,μ

Jε,λ,μ(u, v) for any  < ε < ε and  < λ +μ < 
∗.

Then applying Ekeland’s variational principle and using the standard computation, we
have the following lemma.

Lemma . For each  ≤ i ≤ k, there is a (PS)βi
ε,λ,μ

-sequence {(un, vn)} ⊂ Oi
ε,λ,μ in H for

Jε,λ,μ.

Proof See Cao-Zhou []. �

Proof of Theorem . For any  < ε < ε and  < λ + μ < 
∗, by Lemma ., there is a
(PS)βi

ε,λ,μ
-sequence {(un, vn)} ⊂Oi

ε,λ,μ for Jε,λ,μ where  ≤ i≤ k. By (.), we obtain that

β i
ε,λ,μ <

p – 
p

(Sα,β)p/(p–)

(f∞)/(p–)
.

Since Jε,λ,μ satisfies the (PS)γ -condition for γ ∈ (–∞, p–p
(Sα,β )p/(p–)

(f∞)/(p–) ), then Jε,λ,μ has at least
k critical points in Mε,λ,μ for any  < ε < ε and  < λ + μ < 
∗. Set u+ = max{u, } and
v+ =max{v, }. Replace the terms

∫
RN f (εz)|u|α|v|β dz and ∫

RN (λg(εz)|u|q + μh(εz)|v|q)dz
of the functional Jε,λ,μ by

∫
RN f (εz)uα

+v
β
+ dz and

∫
RN (λg(εz)uq+ +μh(εz)vq+)dz, respectively. It

follows that (Eε,λ,μ) has k nonnegative solutions. Applying themaximum principle, (Eε,λ,μ)
admits at least k positive solutions. �
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