
RESEARCH Open Access

Existence and multiplicity of positive solutions for
a nonlocal differential equation
Yunhai Wang1*, Fanglei Wang2,3 and Yukun An3

* Correspondence: yantaicity@163.
com
1College of Aeronautics and
Astronautics, Nanjing University of
Aeronautics and Astronautics,
Nanjing 210016, People’s Republic
of China
Full list of author information is
available at the end of the article

Abstract

In this paper, the existence and multiplicity results of positive solutions for a nonlocal
differential equation are mainly considered.
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Introduction
In this paper, we are concerned with the existence and multiplicity of positive solutions

for the following nonlinear differential equation with nonlocal boundary value condi-

tion ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−�

(
1∫
0

|u(s)|qdϕ(s)

)
u′′(t) = h(t)f (u(t)), in 0 < t < 1,

αu(0) − βu′(0) = 0, γ u(1) + δu′(1) = g

(
1∫
0
u(s)dϕ(s)

)
,

(1)

where a, b, g, δ are nonnegative constants, r = ag + aδ + bg > 0, q ≥ 1;∫ 1
0 |u(s)|qdϕ(s),

∫ 1
0 |u(s)|qdϕ(s) denote the Riemann-Stieltjes integrals.

Many authors consider the problem

−�u = M
f (u)α( ∫
	
f
(
u
))β

, in 	 ⊂ Rn, u = 0, on ∂	, (2)

because of the importance in numerous physical models: system of particles in ther-

modynamical equilibrium interacting via gravitational potential, 2-D fully turbulent

behavior of a real flow, one-dimensional fluid flows with rate of strain proportional to

a power of stress multiplied by a function of temperature, etc. In [1,2], the authors use

the Kras-noselskii fixed point theorem to obtain one positive solution for the following

nonlocal equation with zero Dirichlet boundary condition

−a

⎛
⎝ 1∫

0

|u(s)|q
⎞
⎠ u′′(t) = h(t)f (u(t)),

when the nonlinearity f is a sublinear or superlinear function in a sense to be established

when necessary. Nonlocal BVPs of ordinary differential equations or system arise in a vari-

ety of areas of applied mathematics and physics. In recent years, more and more papers
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were devoted to deal with the existence of positive solutions of nonlocal BVPs (see [3-9]

and references therein). Inspired by the above references, our aim in the present paper is

to investigate the existence and multiplicity of positive solutions to Equation 1 using the

Krasnosel’skii fixed point theorem and Leggett-Williams fixed point theorem.

This paper is organized as follows: In Section 2, some preliminaries are given; In Sec-

tion 3, we give the existence results.

Preliminaries
Lemma 2.1 [3]. Let y(t) Î C([0, 1]), then the problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−u′′(t) = y(t), in 0 < t < 1,

αu(0) − βu′(0) = 0, γ u(1) + δu′(1) = g

⎛
⎝ 1∫

0

u(s)dϕ(s)

⎞
⎠ ,

has a unique solution

u(t) =
β + αt

ρ
g

⎛
⎝ 1∫

0

u(s)dϕ(s)

⎞
⎠ +

1∫
0

G(t, s)y(s)ds,

where the Green function G(t, s) is

G(t, s) =
1
ρ
,
{
(β + αs)(δ + γ − γ t), in 0 ≤ s ≤ t ≤ 1,
(β + αt)(δ + γ − γ s), in 0 ≤ t ≤ s ≤ 1.

It is easy to see that

G(t, s) > 0, 0 < t, s < 1; G(t, s) ≤ G(s, s), 0 ≤ t, s ≤ 1,

and there exists a θ ∈ (0, 12) such that G(t, s) ≥ θ G(s, s), θ ≤ t ≤ 1 - θ, 0 ≤ s ≤ 1.

For convenience, we assume the following conditions hold throughout this paper:

(H1) f, g, F: R+ ® R+ are continuous and nondecreasing functions, and F (0) > 0;

(H2) �(t) is an increasing nonconstant function defined on [0, 1] with �(0) = 0;

(H3) h(t) does not vanish identically on any subinterval of (0, 1) and satisfies

0 <

1−θ∫
θ

G(t, s)h(s)ds < +∞.

Obviously, u Î C2(0, 1) is a solution of Equation 1 if and only if u Î C(0, 1) satisfies

the following nonlinear integral equation

u(t) =
β + αt

ρ
g

⎛
⎝ 1∫

0

u(s)dϕ(s)

⎞
⎠ +

1∫
0

G(t, s)
h(s)f (u(s))

�
(∫ 1

0 |u|qdϕ
)ds.

At the end of this section, we state the fixed point theorems, which will be used in

Section 3.

Let E be a real Banach space with norm || · || and P ⊂ E be a cone in E, Pr = {x Î P

: ||x|| <r}(r > 0). Then, Pr = {x ∈ P : ||x|| ≤ r}. A map a is said to be a nonnegative

continuous concave functional on P if a: P ® [0, +∞) is continuous and

α(tx + (1 − t)y) ≥ tα(x) + (1 − t)α(y)
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for all x, y Î P and t Î [0, 1]. For numbers a, b such that 0 <a <b and a is a nonne-

gative continuous concave functional on P, we define the convex set

P(α, a, b) = {x ∈ P : a ≤ α(x), ||x|| ≤ b}.
Lemma 2.2 [10]. Let A : Pc → Pc be completely continuous and a be a nonnegative

continuous concave functional on P such that a (x) = ||x|| for all x ∈ Pc. Suppose

there exists 0 <d <a <b = c such that

(i) {x Î P (a, a, b): a (x) >a} ≠ ∅ and a (Ax) >a for x Î P (a, a, b);
(ii) ||Ax|| <d for ||x|| ≤ d;

(iii) a(Ax) >a for x Î P (a, a, c) with ||Ax|| >b.

Then, A has at least three fixed points x1, x2, x3 satisfying

||x1|| < d, a < α(x2),

||x3|| > d and α(x3) < a.

Lemma 2.3 [10]. Let E be a Banach space, and let P ⊂ E be a closed, convex cone in

E, assume Ω1, Ω2 are bounded open subsets of E with 0 ∈ 	1, 	̄1 ⊂ 	2, and

A : P ∩ (	̄2\	1) → P be a completely continuous operator such that either

(i) ||Au|| ≤ ||u||, u Î P ∩ ∂Ω1 and ||Au|| ≥ ||u||, u Î P ∩ ∂Ω2; or

(ii) ||Au|| ≥ ||u||, u Î P ∩ ∂Ω1 and ||Au|| ≤ ||u||, u Î P ∩ ∂Ω2.

Then, A has a fixed point in P ∩ (	̄2\	1).

Main result
Let E = C[0, 1] endowed norm ||u|| = max0≤t≤1 |u|, and define the cone P ⊆ E by

P =
{
u ∈ E : u(t) ≥ 0, min

θ≤t≤1−θ

u(t) ≥ θ ||u||
}
.

Then, it is easy to prove that E is a Banach space and P is a cone in E.

Define the operator T: E ® E by

T(u)(t) =
β + αt

ρ
g

⎛
⎝ 1∫

0

u(s)dϕ(s)

⎞
⎠ +

1∫
0

G(t, s)
h(s)f (u(s))

�
(∫ 1

0 |u|qdϕ
)ds.

Lemma 3.1. T: E ® E is completely continuous, and Te now prove thatP ⊆ P.

Proof. For any u Î P, then from properties of G(t, s), T (u)(t) ≥ 0, t Î [0, 1], and it

follows from the definition of T that

||T(u)|| ≤ α + β

ρ
g

⎛
⎝ 1∫

0

u(s)dϕ(s)

⎞
⎠ +

1∫
0

G(s, s)
h(s)f (u(s))

�
(∫ 1

0 |u|qdϕ
)ds.

Thus, it follows from above that

min
θ≤t≤1−θ

T(u)(t) = min
θ≤t≤1−θ

⎡
⎣β + αt

ρ
g

⎛
⎝ 1∫

0

u(s)dϕ(s)

⎞
⎠ +

1∫
0

G(t, s)
h(s)f (u(s))

�
(∫ 1

0 |u|qdϕ
)ds

⎤
⎦

≥ θ
α + β

ρ
g

⎛
⎝ 1∫

0

u(s)dϕ(s)

⎞
⎠ + θ

1∫
0

G(s, s)
h(s)f (u(s))

�
(∫ 1

0 |u|qdϕ
)ds

≥ θ ||T(u)||
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From the above, we conclude that TP ⊆ P. Also, one can verify that T is completely

continuous by the Arzela-Ascoli theorem. □
Let

l = min
0≤t≤1

1−θ∫
θ

G(t, s)h(s)ds, L = min
θ≤t≤1−θ

1−θ∫
θ

G(t, s)h(s)ds,

L = min
0≤t≤1

1∫
0

G(t, s)h(s)ds.

Then, it is clear to see that 0 <l ≤ L < L.

Theorem 3.2. Assume (H1) to (H3) hold. In addition,

(H4)

lim
r→0+

inf
f (θr)

r�(rqϕ(1))
≥ 1

l
;

(H5) There exists a constant 2 ≤ p1 such that

lim
r→∞ sup

f (r)
r�((ϕ(1 − θ) − ϕ(θ))θqrq)

≤ 1
p1Ł

;

(H6) There exists a constant p2 with
1
p1

+
1
p2

= 1 such that

lim
r→∞ sup

g(r)
r

≤ ρ

p2ϕ(1)(β + α)

Then, problem (Equation 1) has one positive solution.

Proof. From (H4), there exists a 0 <h < ∞ such that

f (θr)
r�(rqϕ(1))

≥ 1
l
, ∀0 < r ≤ η. (3)

Choosing R1 Î (0, h), set Ω1 = {u Î E : ||u|| <R1}. We now prove that

||Tu|| ≥ ||u||, ∀u ∈ P ∩ ∂	1. (4)

Let u Î P ∩ ∂Ω1. Since minθ≤t≤1-θ u(t) ≥ θ ||u|| and ||u|| = R1, from Equation 3,

(H1) and (H3), it follows that

Tu(t) =
β + αt

ρ
g

⎛
⎝ 1∫

0

u(s)dϕ(s)

⎞
⎠ +

1∫
0

G(t, s)
h(s)f (u(s))

�
(∫ 1

0 |u|qdϕ
)ds

≥
1∫

0

G(t, s)
h(s)f (u(s))

�
(∫ 1

0 |u|qdϕ
)ds

≥
1−θ∫
θ

G(t, s)
h(s)f (u(s))

�
(∫ 1

0 |u|qdϕ
)ds

≥ f (θR1)

�(Rq
1ϕ(1))

1−θ∫
θ

G(t, s)h(s)ds

≥ f (θR1)

�(Rq
1ϕ(1))

l

≥ R1 = ||u||.
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Then, Equation 4 holds.

On the other hand, from (H5), there exists R1 > 0 such that

f (r)
r�((ϕ(1 − θ) − ϕ(θ))θqrq)

≤ 1
p1Ł

, ∀r ≥ R1. (5)

From (H6), there exists R2 > 0 such that

g(r)
r

≤ ρ

p2ϕ(1)(β + α)
, ∀r ≥ R2. (6)

Choosing R2 = max
{
R1,R1, R2

θ(ϕ(1−θ)−ϕ(θ))

}
+ 1, set Ω2 = {u Î E : ||u|| <R2}. We now

prove that

||Tu|| ≤ ||u||, ∀u ∈ P ∩ ∂	2. (7)

If u Î P ∩ ∂Ω2, we have

0∫
1

u(s)dϕ(s) ≥
1−θ∫
θ

u(s)dϕ(s) ≥ θR2(ϕ(1 − θ) − ϕ(θ)) ≥ R2.

From Equations 5, 6, we can prove

Tu(t) =
β + αt

ρ
g

⎛
⎝ 1∫

0

u(s)dϕ(s)

⎞
⎠ +

1∫
0

G(t, s)
h(s)f (u(s))

�
( ∫ 1

0 |u|qdϕ
)ds

≤ β + α

ρ
g

⎛
⎝ 1∫

0

u(s)dϕ(s)

⎞
⎠ +

1∫
0

G(t, s)
h(s)f (u(s))

�
( ∫ 1

0 |u|qdϕ
)ds

≤ β + α

ρ

ρ

p2ϕ(1)(β + α)

1∫
0

u(s)dϕ(s) + f (||u||)
1∫

0

G(t, s)
h(s)

�
( ∫ 1−θ

θ
|u|qdϕ

)ds

≤ β + α

ρ

ρ

p2ϕ(1)(β + α)
||u||ϕ(1) + f (||u||)

�((ϕ(1 − θ) − ϕ(θ))θq||u||q)

1∫
0

G(t, s)h(s)ds

≤ R2

p1
+
R2

p2
= R2 = ||u||.

Then, Equation 7 holds.

Therefore, by Equations 4 and 7 and the second part of Lemma 2.3, T has a fixed

point in P ∩ (	̄2\	1), which is a positive solution of Equation 1. □

Example. Let q = 2, h(t) = 1, F(s) = 2 + s, �(t) = 2t, f (u) = θ2(1−2θ)
4Ł (u

1
3 + u3) and

g(s) = s
1
2, namely,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
(
2 +

1∫
0

|u(s)|2d(2s)
)
u′′(t) = θ2(1−2θ)

4Ł (u
1
3 + u3), in 0 < t < 1,

αu(0) − βu′(0) = 0, γ u(1) + δu′(1) =

[
1∫
0
u(s)d(2s)

] 1
2

.
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It is easy to see that (H1) to (H3) hold. We also can have

lim
r→0+

inf
f (θr)

r�(rqϕ(1))
= lim

r→0+
inf

θ2(1 − 2θ)
4Ł

((θr)
1
3 + (θr)3)

r(2 + 2r2)
= ∞,

lim
r→∞ sup

f (r)
r�((ϕ(1 − θ) − ϕ(θ))θqrq)

= lim
r→∞ sup

θ2(1 − 2θ)
4Ł

(r
1
3 + r3)

r(2 + 2(1 − 2θ)θ2r2)
=

1
8Ł

.

Take p1 = 2, then it is clear to see that (H4) and (H5) hold. Since

lim
r→∞ sup

g(r)
r

= lim
r→∞ sup

r
1
2

r
= 0,

then (H6) hold.

Theorem 3.3. Assume (H1) to (H3) hold. In addition,

(H7) There exists a constant 2 ≤ p1 such that

lim
r→0

sup
f (r)

r�((ϕ(1 − θ) − ϕ(θ))θqrq)
≤ 1

p1Ł
;

(H8) There exists a constant p2 with
1
p1

+
1
p2

= 1 such that

lim
r→0

sup
g(r)
r

≤ ρ

p2ϕ(1)(β + α)
;

(H9)

lim
r→∞ inf

f (θr)
r�(rqϕ(1))

≥ 1
l
.

Then, problem (Equation 1) has one positive solution.

Proof. From (H7), there exists h1 > 0 such that

f (r)
r�((ϕ(1 − θ) − ϕ(θ))θqrq)

≤ 1
p1Ł

, ∀0 < r < η1. (8)

From (H8), there exists h2 > 0 such that

g(r)
r

≤ ρ

p2ϕ(1)(β + α)
, ∀0 < r < η2. (9)

Choosing R1 = min{η1, η2
ϕ(1) }, set Ω1 = {u Î E : ||u|| <R1}. We now prove that

||Tu|| ≤ ||u||, ∀u ∈ P ∩ ∂	1. (10)

If u Î P ∩ ∂Ω1, we have

1∫
0

u(s)dϕ(s) ≤
1∫

0

R1dϕ(s) ≤ R1ϕ(1) ≤ η2.
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From Equations 8, 9, we can prove

Tu(t) =
β + αt

ρ
g

⎛
⎝ 1∫

0

u(s)dϕ(s)

⎞
⎠ +

1∫
0

G(t, s)
h(s)f (u(s))

�
( ∫ 1

0 |u|qdϕ
)ds

≤ β + α

ρ
g

⎛
⎝ 1∫

0

u(s)dϕ(s)

⎞
⎠ +

1∫
0

G(t, s)
h(s)f (u(s))

�
( ∫ 1

0 |u|qdϕ
)ds

≤ β + α

ρ

ρ

p2ϕ(1)(β + α)

1∫
0

u(s)dϕ(s) + f (||u||)
1∫

0

G(t, s)
h(s)

�
( ∫ 1−θ

θ
|u|qdϕ

)ds

≤ β + α

ρ

ρ

p2ϕ(1)(β + α)
||u||ϕ(1) + f (||u||)

�((ϕ(1 − θ) − ϕ(θ))θq||u||q)

1∫
0

G(t, s)h(s)ds

≤ R1

p1
+
R1

p2
= R1 = ||u||.

Then, Equation 10 holds.

On the other hand, from (H7), there exists R1 > 0 such that

f (θr)
r�(rqϕ(1))

≥ 1
l
, ∀r ≥ R1. (11)

Choosing R2 = max{R1, (
R1

θ q(ϕ(1−θ)−ϕ(θ)))
1
q } + 1, set Ω2 = {u Î E : ||u|| <R2}. We now

prove that

||Tu|| ≥ ||u||, ∀u ∈ P ∩ ∂	2. (12)

If u Î P ∩ ∂Ω2, Since minθ≤t≤1-θ u(t) ≥ θ ||u|| and ||u|| = R2, we have

1∫
0

|u|qdϕ(s) ≥
1−θ∫
θ

|u|qdϕ ≥ θ qRq
2(ϕ(1 − θ) − ϕ(θ)) ≥ R1. (13)

By Equation 11, (H1) and (H3), it follows that

Tu(t) =
β + αt

ρ
g

⎛
⎝ 1∫

0

u(s)dϕ(s)

⎞
⎠ +

1∫
0

G(t, s)
h(s)f (u(s))

�
( ∫ 1

0 |u|qdϕ
)ds

≥
1∫

0

G(t, s)
h(s)f (u(s))

�
( ∫ 1

0 |u|qdϕ
)ds

≥
1−θ∫
θ

G(t, s)
h(s)f (u(s))

�
(∫ 1

0 |u|qdϕ
)ds

≥ f (θR2)

�(Rq
2ϕ(1))

1−θ∫
θ

G(t, s)h(s)ds

≥ f (θR2)

�(Rq
2ϕ(1))

l

≥ R2 = ||u||.
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Then, Equation 12 holds.

Therefore, by Equations 10 and 12 and the first part of Lemma 2.3, T has a fixed

point in P ∩ (	̄2\	1), which is a positive solution of Equation 1. □
Example. Let q = 2, h(t) = t, F(s) = 2 + s, �(t) = 2t, f (u) = 2

lθ3 u2 and g(s) = s2.

Theorem 3.4. Assume that (H1) to (H3) hold. In addition, �(1) ≥ 1, and the func-

tions f, g satisfy the following growth conditions:

(H10)

lim
r→∞ sup

f (r)
�((ϕ(1 − θ) − ϕ(θ))θqrq)r

<
1
4Ł

,

lim
r→∞ sup

g(r)
r

<
ρ

4(β + α)ϕ(1)
;

(H11)

lim
r→0

sup
f (r)

�((ϕ(1 − θ) − ϕ(θ))θqrq)r
<

1
2Ł

,

lim
r→0

sup
g(r)
r

<
ρ

2(β + α)ϕ(1)
;

(H12) There exists a constant a > 0 such that

f (u) >
�(( a

θ
)qϕ(1))a

L
, for u ∈ [a,

a

θ
].

Then, BVP (Equation 1) has at least three positive solutions.

Proof. For the sake of applying the Leggett-Williams fixed point theorem, define a

functional s(u) on cone P by

σ (u) = min
θ≤t≤1−θ

u(t), ∀u ∈ P.

Evidently, s: P ® R+ is a nonnegative continuous and concave. Moreover, s(u) ≤ ||

u|| for each u Î P.

Now, we verify that the assumption of Lemma 2.2 is satisfied.

Firstly, it can verify that there exists a positive number c with c ≥ b = a
θ such that

T : Pc → Pc.

By (H10), it is easy to see that there exists τ > 0 such that

f (r)
�((ϕ(1 − θ) − ϕ(θ))θqrq)r

<
1
4Ł

, ∀r ≥ τ ,

g(r)
r

<
ρ

4(β + α)ϕ(1)
, ∀r ≥ τ ,

Set

M1 =
f (τ )
�(0)

, M2 = g(τ ).

Taking

c > max{b, 4ŁM1,
4M2(β + α)

ρ
}.
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If u ∈ Pc, then

||Tu(t)|| = max
t∈[0,1]

|Tu(t)|

= max
t∈[0,1]

β + αt
ρ

g

⎛
⎝ 1∫

0

u(s)dϕ(s)

⎞
⎠ + max

t∈[0,1]

1∫
0

G(t, s)
h(s)f (u(s))

�(
∫ 1
0 |u|qdϕ)

ds

≤ β + α

ρ
g

⎛
⎝ 1∫

0

u(s)dϕ(s)

⎞
⎠ + max

t∈[0,1]

1∫
0

G(t, s)
h(s)f (u(s))

�(
∫ 1
0 |u|qdϕ)

ds

≤ β + α

ρ
g(ϕ(1)||u||) + max

t∈[0,1]
f (||u||)

�((ϕ(1 − θ) − ϕ(θ))θq||u||q)

1∫
0

G(t, s)h(s)ds

≤ β + α

ρ

(
ρ

4(β + α)ϕ(1)
ϕ(1)||u|| +M2

)
+ Ł

( ||u||
4Ł

+M1

)
< c.

by (H1) to (H3) and (H10).

Next, from (H11), there exists d’ Î (0, a) such that

f (r)
�((ϕ(1 − θ) − ϕ(θ))θqrq)r

<
1
2Ł

, ∀r ∈ [0, d′],

g(r)
r

<
ρ

2(β + α)ϕ(1)
, ∀r ∈ [0, d′].

Take d = d′
ϕ(1). Then, for each u ∈ Pd, we have

||Tu(t)|| = max
t∈[0,1]

|Tu(t)|

= max
t∈[0,1]

β + αt
ρ

g

⎛
⎝ 1∫

0

u(s)dϕ(s)

⎞
⎠ + max

t∈[0,1]

1∫
0

G(t, s)
h(s)f (u(s))

�(
∫ 1
0 |u|qdϕ)

ds

≤ β + α

ρ
g

⎛
⎝ 1∫

0

u(s)dϕ(s)

⎞
⎠ + max

t∈[0,1]

1∫
0

G(t, s)
h(s)f (u(s))

�(
∫ 1
0 |u|qdϕ)

ds

≤ β + α

ρ
g(ϕ(1)||u||) + max

t∈[0,1]
f (||u||)

�((ϕ(1 − θ) − ϕ(θ))θq||u||q)

1∫
0

G(t, s)h(s)ds

≤ β + α

ρ

(
ρ

2(β + α)ϕ(1)
ϕ(1)||u||

)
+ Ł

( ||u||
2Ł

)
< d.

Finally, we will show that {u Î P (s, a, b): s(u) >a} ≠ ∅ and s(Tu) >a for all u Î P

(s, a, b).
In fact,

u(t) =
a + b
2

∈ {u ∈ P(σ , a, b) : σ (u) > a}.

For u Î P (s, a, b), we have

b ≥ ||u|| ≥ u ≥ min
t∈[θ ,1−θ ]

u(t) ≥ a,
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for all t Î [θ, 1 -θ]. Then, we have

min
t∈[θ ,1−θ ]

Tu(t) = min
t∈[θ ,1−θ ]

β + αt
ρ

g

⎛
⎝ 1∫

0

u(s)dϕ(s)

⎞
⎠ + min

t∈[θ ,1−θ ]

1∫
0

G(t, s)
h(s)f (u(s))

�
( ∫ 1

0 |u|qdϕ
)ds

≥ min
t∈[θ ,1−θ ]

1∫
0

G(t, s)
h(s)f (u(s))

�
( ∫ 1

0 |u|qdϕ
)ds

≥ 1
�(ϕ(1)bq)

min
t∈[θ ,1−θ ]

1−θ∫
θ

G(t, s)h(s)f (u(s))ds

>
1

�(ϕ(1)bq)
�(bqϕ(1))a

L
min

t∈[θ ,1−θ ]

1−θ∫
θ

G(t, s)h(s))ds

= a

by (H1) to (H3), (H12). In addition, for each u Î P (θ, a, c) with ||Tu|| >b, we have

min
t∈[θ ,1−θ ]

(Tu)(t) ≥ θ ||Tu|| > θb ≥ a.

Above all, we know that the conditions of Lemma 2.2 are satisfied. By Lemma 2.2,

the operator T has at least three fixed points ui(i = 1, 2, 3) such that

||u1|| < d,

a < min
t∈[θ ,1−θ ]

u2(t)

||u3|| > d with min
t∈[θ ,1−θ ]

u3(t) < a.

The proof is complete. □
Example. Let q = 2, h(t) = t, F(s) = 2 + s, �(t) = 2t, f (u) = 41+θ2

Lθ2 u2 and,

g(s) = ρ

16(β+α)
s2

2+s, namely,

⎧⎪⎪⎨
⎪⎪⎩

−
(
2 +

1∫
0

|u(s)|2d(2s)
)
u′′(t) = t41+θ2

lθ2 u2, in 0 < t < 1,

αu(0) − βu′(0) = 0, γ u(1) + δu′(1) = ρ

16(β+α)
(
∫ 1
0 u(s)d(2s))

2

2+
∫ 1
0 u(s)d(2s)

.

From a simple computation, we have

lim
r→∞ sup

f (r)
�((ϕ(1 − θ) − ϕ(θ))θ2r2)r

= lim
r→∞ sup

41+θ2

Lθ2 r2

(2 + 2(1 − 2θ)θ2r2)r
= 0,

lim
r→∞ sup

g(r)
r

= lim
r→∞ sup

ρ

16(β+α)
r2

2+r

r
=

ρ

16(β + α)
<

ρ

4(β + α)ϕ(1)
,

lim
r→0

sup
f (r)

�((ϕ(1 − θ) − ϕ(θ))θqrq)r
= lim

r→0
sup

41+θ2

Lθ2 r2

(2 + 2(1 − 2θ)θ2r2)r
= 0,

lim
r→0

sup
g(r)
r

= lim
r→0

sup
ρ

16(β+α)
r2

2+r

r
= 0,

Then, it is easy to see that (H1) to (H3) and (H10) to (H11) hold. Especially, take a =

1, by f (a) = f (1) = 41+θ2

Lθ2 > 21+θ2

Lθ2 =
�(( a

θ
)
q
ϕ(1))a

L
and (H1), then (H12) holds.
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