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Abstract

We investigate the existence of heteroclinic solutions to a class of nonlinear
differential equations

(a(x)�(x′(t)))′ = f (t, x(t), x′(t)), a.e. t ∈ R

governed by a nonlinear differential operator F extending the classical p-Laplacian,
with right-hand side f having the critical rate of decay -1 as |t| ® +∞, that is
f (t, ·, ·) ≈ 1

t . We prove general existence and non-existence results, as well as some
simple criteria useful for right-hand side having the product structure f(t, x, x’) = b(t,
x)c(x, x’).
Mathematical subject classification: Primary: 34B40; 34C37; Secondary: 34B15;
34L30.

Keywords: boundary value problems, unbounded domains, heteroclinic solutions,
nonlinear differential operators, p-Laplacian operator, F?Φ?-Laplacian operator

1. Introduction
Differential equations governed by nonlinear differential operators have been exten-

sively studied in the last decade, due to their several applications in various sciences.

The most famous differential operator is the well-known p-Laplacian and its generali-

zation to the generic F-Laplacian operator (an increasing homeomorphism of ℝ with

F(0) = 0). Many articles have been devoted to the study of differential equations of the

type

((�(x′))′(t) = f (t, x(t), x′(t))

for F-Laplacian operators, and recently also the study of singular or non-surjective

differential operators has become object of an increasing interest (see, i.e., [1-10]).

On the other hand, in many applications the dynamic is described by a differential

operator also depending on the state variable, like (a(x)x’)’ for some sufficiently regular

function a(x), which can be everywhere positive [non-negative] (as in the diffusion

[degenerate] processes), or a changing sign function, as in the diffusion-aggregation

models (see [7], [11-13]).

So, it naturally arises the interest for mixed nonlinear differential operators of the

type (a(x)F(x’))’. In this context, in [11] we studied boundary value problems on the

whole real line
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{
(a(x(t))�(x′(t)))′ = f (t, x(t), x′(t))
x(−∞) = ν1, x(+∞) = ν2

obtaining results on both existence and non-existence of heteroclinic solutions. Such

criteria are based on the comparison between the behavior of the right-hand side f(t, x,

x’) as |t| ® +∞ and x’ ® 0, combined to the infinitesimal order of the differential

operator F(x’) as x’ ® 0. Rather surprisingly, the presence of the state variable x inside

the right-hand side and the differential operator does not influence in any way the

existence or the non-existence of solutions, but it only entails a more technical proof

and a sligthly stronger set of assumptions on the operator F. Roughly speaking, if a(x)

is positive and f(t, x, x’) = g(t, x’)h(x) for some positive continuous function h, then the

solvability of the boundary value problem depends neither on a, nor on h. Moreover,

even the prescribed boundary values ν1, ν2 are not involved on the existence of

solutions.

A crucial assumption in [11] is a limitation on the rate of the possible decay of f(·, x,

x’) as |t| ® +∞; precisely, we assumed that f(t, x, x’) ≈ |t|δ for some δ >-1 (possibly

positive).

In the present article we focus our attention on right-hand sides having the critical

rate of decay δ = -1 and show that, contrary to the situation studied in [11], now the

solvability of the boundary value problem is influenced by the behavior of the right-

hand side and of the differential operator with respect to the state variable x. For

instance, when f(t, x, x’) = g(x)h(t, x’) the existence of solutions depends on the ampli-

tude of the range of the values assumed by the functions a and g in the interval [ν1,

ν2] determined by the prescribed boundary values.

In Section 2 we study the existence/non-existence of solutions for general right-hand

sides f(t, x(t), x’(t)) (see Theorems 2.3-2.5); more operative criteria are stated in the

subsequent section for f of product type.

We conclude the article with some examples (see Examples 3.8-3.10), useful to have

a quick glance on the role played by the behavior with respect to x.

The study of the solvability of the boundary value problem for rates of decay δ < -1

is still open.

2. Existence and non-existence theorems
Let us consider the equation

(a(x(t))�(x′(t)))′ = f (t, x(t), x′(t)) for a.e. t ∈ R, (2:1)

where a : ℝ ® ℝ is a positive continuous function, and f : ℝ3 ® ℝ is a given Car-

athéodory function. From now on we will take into consideration increasing homeo-

morphisms F : ℝ ® ℝ, with F(0) = 0.

Our approach is based on fixed point techniques suitably combined to the method of

upper and lower solutions, according to the following definition.

Definition 2.1. A lower [upper] solution to equation (2.1) is a bounded function a Î
C1(ℝ) such that (a ○ a)(F ○ a’) Î W1,1(ℝ) and

(a(α(t))�(α′(t)))′ ≥ [≤] f (t,α(t),α′(t)), for a.e. t ∈ R.
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Throughout this section we will assume the existence of an ordered pair of lower

and upper solutions a, b, i.e., satisfying a(t) ≤ b(t) for every t Î ℝ, and we will adopt

the following notations:

I := [inf
t∈R

α(t), sup
t∈R

β(t)], ν := |I| = sup
t∈R

β(t) − inf
t∈R

α(t)

m := min
x∈I

a(x) > 0, M := max
x∈I

a(x), d := max{|α′(t)| + |β ′(t)| : t ∈ R}.

Note that the value d is well-defined, in fact lim
|t|→+∞

α′(t) = lim
|t|→+∞

β ′(t) = 0, since (a ○

a)(F ○ a’), (a ○ b)(F ○ b’) belong to W1,1(ℝ) and m >0.

Moreover, in what follows [x]+ and [x]- will respectively denote the positive and

negative part of the real number x, and we set x ∧ y := min{x, y}, x ∨ y := max{x, y}.

The next result proved in [11] concerns the convergence of sequences of functions

correlated to solutions of the previous equation.

Lemma 2.2. For all n Î N let In := [-n, n] and let un Î C1(In) be such that:

(a ◦ un)(� ◦ u′
n) ∈ W1,1(In), the sequences (un(0))n and (u′

n(0))nare bounded and finally

(a(un(t))�(u′
n(t)))

′ = f (t, un(t), u′
n(t)) for a.e. t ∈ In.

Assume that there exist two functions H, g Î L1(ℝ) such that

|u′
n(t)| ≤ H(t) and |a(un(t))�(u′

n(t))| ≤ γ (t) a.e. on In, for all n ∈ N.

Then, the sequence (xn)n ⊂ C1(ℝ) defined by

xn(t) :=

⎧⎨
⎩
un(t) for t ∈ In
un(n) for t > n
un(−n) for t < −n

admits a subsequence uniformly convergent in ℝ to a function x Î C1(ℝ), with (a ○ x)

(F ○ x’) Î W1,1(ℝ), solution to equation (2.1).

Moreover, if lim
n→+∞ un(−n) = u−and lim

n→+∞ un(n) = u+, then we have that

lim
t→−∞ x(t) = u− lim

t→+∞ x(t) = u+.

The first existence result concerns differential operators growing at most linearly at

infinity.

Theorem 2.3. Assume that there exists a pair of lower and upper solutions a, b Î C1

(ℝ) of the equation (2.1), satisfying a(t) ≤ b(t), for every t Î ℝ, with a increasing in (-∞,

-L), b increasing in (L, +∞), for some L >0.

Let F be such that

lim sup
|y|→+∞

|�(y)|
|y| < +∞ (2:2)

and

lim inf
y→0+

�(y)
yμ

> 0 (2:3)

for some positive constant μ.

Assume that there exist a constant H >0, a continuous function θ : ℝ+ ® ℝ+ and a

function l Î Lq([-L, L]), with 1 ≤ q ≤ ∞, such that
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|f (t, x, y)| ≤ λ(t)θ(a(x)|�(y)|) for a.e. |t| ≤ L, every x ∈ I, |y| ≥ H (2:4)

∫ +∞ τ
1− 1

q

θ(τ )
dτ = +∞ (2:5)

(with 1
q = 0if q = +∞).

Finally, suppose that for every C >0 there exist a function hC Î L1(ℝ) and a function

KC ∈ W1,1
loc ([0, +∞)), null in [0, L] and strictly increasing in [L, +∞),

such that:∫ +∞
e
− 1

μMKC(t) dt < +∞ (2:6)

and put

NC(t) := �−1
(
M
m

�(C) e−
1
MKC(|t|)

)
(2:7)

we have⎧⎨
⎩
f (t, x, y) ≤ −K ′

C(t)�(|y|)
for a.e. t ≥ L, every x ∈ I, |y| ≤ NC(t),

f (−t, x, y) ≥ K ′
C(t)�(|y|)

(2:8)

|f (t, x, y)| ≤ ηC(t) if x ∈ I, |y| ≤ NC(t) + |α′(t)| + |β ′(t)|, for a.e. t ∈ R. (2:9)

Then, there exists a function x Î C1(ℝ), with (a ○ x)(F ○ x’) Î W1,1(ℝ), such that⎧⎨
⎩
(a(x(t))�(x′(t)))′ = f (t, x(t), x′(t)) for a.e. t ∈ R
α(t) ≤ x(t) ≤ β(t) for every t ∈ R
x(−∞) = α(−∞), x(+∞) = β(+∞).

Proof. In some parts the proof is similar to that of Theorem 3.2 [11]. So, we provide

here only the arguments which differ from those used in that proof.

By (2.2), without loss of generality we assume H > ν
2L and

|�(y)| ≤ K|y| whenever |y| > H, (2:10)

for some constant K >0.

Moreover, by (2.5), there exists a constant C > �−1(Mm�(H)) ≥ H such that

∫ m�(C)

M�(H)

τ
1−1

q

θ(τ )
dτ > (KMν)

1−1
q ||λ||q. (2:11)

Fix n Î N, n > L, and put In := [-n, n].

Let us consider the following auxiliary boundary value problem on the compact

interval In:

(P∗
n)

⎧⎨
⎩
(a(Tx(t))�(x′(t)))′ = f (t,Tx(t),Qx(t)) + arctan(w(t, x(t))), a.e. t ∈ In

x(−n) = α(−n), x(n) = β(n)
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where T : W1,1(In) ® W 1,1(In) is the truncation operator defined by

Tx(t) := [β(t) ∧ x(t)] ∨ α(t);
Qx(t) := −(NC(t) + |α′(t)| + |β ′(t)|) ∨ [T′

x(t) ∧ (NC(t) + |α′(t)| + |β ′(t)|)];

and finally w : ℝ2 ® ℝ is the penalty function defined by w(t, x) := [x - b(t)]+ - [x -a
(t)]-.

By the same argument used in the proof of Theorem 3.2 [11], one can show, using

only assumption (2.9), that for every n > L problem (P∗
n) admits a solution un such that

α(t) ≤ un(t) ≤ β(t) for all t ∈ In, (2:12)

hence Tun(t) ≡ un(t) and w(t, un(t)) ≡ 0. Moreover, it is possible to prove that

u′
n(t) ≥ 0 whenever L ≤ |t| ≤ n (2:13)

u′
n(t0) = 0 for some t0 ∈ [L,n) ⇒ u′

n(t) ≡ 0 in [t0,n) (2:14)

(see Steps 3 and 4 in the proof of Theorem 3.2 [11]).

Now our goal is to prove an a priori bound for the derivatives, that is

|u′
n(t)| ≤ NC(t) for a.e. t Î In. We split this part into two steps.

Step 1. We have |u′
n(t)| < C ≤ NC(t) for every t Î [-L, L].

Indeed, since un Î C1(In) and un([−L, L]) ⊂ I , we can apply Lagrange Theorem to

deduce that for some τ0 Î [-L, L] we have

|u′
n(τ0)| =

1
2L

|un(L) − un(−L)| ≤ sup β − infα
2L

=
ν

2L
< H < C.

Assume, by contradiction, the existence of an interval (τ1, τ2) ⊂ (-L, L) such that

H < |u′
n(t)| < C in (τ1, τ2) and |u′

n(τ1)| = H, |u′
n(τ2)| = C or viceversa.

Since NC(t) = �−1(Mm�(C)) ≥ C for every t Î (τ1, τ2), we have |u′
n(t)| < NC(t) for

every t Î (τ1, τ2). Then, by the definition of (P∗
n) and assumption (2.4), for a.e. t Î (τ1,

τ2) we have

|(a(un(t))�(u′
n(t)))′| = |(a(Tun(t))�(u′

n(t)))′| = |f (t,Tun(t),Qun(t))|
= |f (t, un(t), u′

n(t))| ≤ λ(t)θ(a(un(t))|�(u′
n(t))|).

Therefore, using a change of variable and the Hölder inequality, we get

∫ m�(C)
M�(H)

τ
1− 1

q

θ(τ )
dτ ≤ ∫ τ2

τ1

|a(un(t))�(u′
n(t))|1− 1

q

θ(|a(un(t))�(u′
n(t))|) |(a(un(t))�(u′

n(t)))′| dt

≤ ∫ τ2
τ1

λ(t)|a(un(t))�(u′
n(t))|1−1

q dt ≤ ‖ λ‖q
(
M

∫ τ2
τ1

|�(u′
n(t))| dt

)1− 1
q .

(2:15)

Moreover, since u′
n has constant sign in (τ1, τ2), using (2.12) we have∫ τ2

τ1

|u′
n(t)| dt = |un(τ2) − un(τ1)| ≤ ν.

Therefore, by (2.10), from the previous chain of inequalities we deduce

∫ m�(C)

M�(H)

τ
1− 1

q

θ(τ )
dτ ≤ ‖ λ‖q

(
KM

∫ τ2

τ1

|u′
n(t)| dt

)1−1
q ≤ ‖ λ‖q(KMν)

1− 1
q (2:16)
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in contradiction with (2.11). Thus, we get |u′
n(t)| < C for every t Î [-L, L] and the

claim is proved.

Step 2. We have u′
n(t) < NC(t) for every t Î In \ [-L, L].

Define t̂ := sup{t > L : u′
n(τ ) < NC(τ ) for every τ ∈ [L, t]}, and assume by contradic-

tion that t̂ < n. Hence, u′
n(t̂) = NC(t̂) > 0 and by (2.13), (2.14) we deduce that

u′
n(t) > 0 in [L, t̂]. Moreover, by (2.12) and the definition of Qun we get

(a(un(t))�(u′
n(t)))

′ = f (t, un(t), u′
n(t)) in [L, t̂],

so, by (2.8) we have

(a(un(t))�(u′
n(t)))

′ ≤ −K ′
C(t)�(u′

n(t)) ≤ −K ′
C(t)
M

a(un(t))�(u′
n(t)), a.e. in [L, t̂].

Then, recalling that KC (L) = 0 and u′
n(t) > 0 for every t ∈ [L, t̂], we infer

a(un(t))�(u′
n(t))

a(un(L))�(u′
n(L))

= e

∫ t
L

(a(un(s))�(u′
n(s)))′

a(un(s))�(u′
n(s))

ds

≤ e−
1
MKC(t)

implying

a(un(t))�(u′
n(t)) ≤ a(un(L))�(u′

n(L))e
− 1
MKC(t) < M�(C) e−

1
MKC(t)

since u′
n(L) < C. Therefore, u′

n(t) ≤ NC(t) for every t ∈ [L, t̂], in contradiction with

the definition of t̂. The same argument works in the interval [-n, -L] and the claim is

proved.

Summarizing, since |u′
n(t)| ≤ NC(t) for every t Î In, by the definition of Qun we have

(a(un(t))�(u′
n(t)))

′ = f (t, un(t), u′
n(t)) for a.e. t ∈ In.

Observe now that condition (2.3) implies that lim sup
ξ→0+

�−1(ξ)
ξ1/μ < +∞. Hence, by

assumption (2.6) we get NC Î L1(ℝ) and applying Lemma 2.2 with H(t) = NC(t) and g
(t) = hC(t) we deduce the existence of a solution x to problem (P). □
In order to deal with differential operators having superlinear growth at infinity, we

need to strengthen condition (2.5), taking a Nagumo function with sublinear growth at

infinity, as in the statement of the following result.

Theorem 2.4. Suppose that all the assumptions of Theorem 2.3 are satisfied, with the

exception of (2.2), and with (2.5) replaced by

lim
y→+∞

θ(y)
y

= 0. (2:17)

Then, the assertion of Theorem 2.3 follows.

Proof. The proof is quite similar to that of the previous Theorem. Indeed, notice that

assumptions (2.2) and (2.5) of Theorem 2.3 have been used only in the choice of the

constant C (see (2.11)) and in the proof of Step 1. Hence, we now present only the

proof of this part, the rest being the same.
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Notice that by assumption (2.17), we have

lim
ξ→+∞

∫ mξ

M�(H)

τ
1−1

q

θ(τ )
dτ

ξ
1− 1

q

= +∞

hence, there exists a constant C > �−1(Mm�(H)) ≥ H such that

∫ m�(C)

M�(H)

τ
1− 1

q

θ(τ )
dτ > (2ML�(C))

1− 1
q ||λ||q. (2:18)

With this choice of the constant C, the proof proceeds as in Theorem 2.3. The only

modification concerns formula (2.16), which becomes, taking (2.15) into account:

∫ m�(C)

M�(H)

τ
1−1

q

θ(τ )
dτ ≤ ||λ||q

(
M

∫ τ2

τ1

|�(u′
n(t))| dt

)1−1
q ≤ ||λ||q(2ML�(C))

1− 1
q

in contradiction with (2.18). From here on, the proof proceeds in the same way. □
In the particular case of p-Laplacian operators, one can use the positive homogeneity

for weakening assumption (2.17) of Theorem 2.4 and widening the class of the admis-

sible Nagumo functions, as we show in the following result.

Theorem 2.5. Let F : ℝ ® ℝ, F(y) = |y|p-2y, and assume that there exists a pair of

lower and upper solutions a, b Î C1(ℝ) to equation (2.1), satisfying a(t) ≤ b(t), for
every t Î ℝ, with a increasing in (-∞, -L), b increasing in (L, +∞), for some constant L

>0.

Moreover, assume that there exist a positive constant H, a continuous function

θ : ℝ+ ® ℝ+ and a function l Î Lq([-L, L]), with 1 ≤ q ≤ +∞, such that

|f (t, x, y)| ≤ λ(t)θ(a(x)|y|p−1) for a.e. |t| ≤ L, every x ∈ I, |y| ≥ H (2:19)

∫ +∞ τ
1

p−1 (1− 1
q )

θ(τ )
dτ = +∞. (2:20)

Finally, suppose that for every C >0 there exist a function hC Î L1(ℝ) and a function

KC ∈ W1,1
loc ([0, +∞)), null in [0, L] and strictly increasing in [L, +∞), such that:

∫ +∞
e
− 1
M(p−1)KC(t) dt < +∞, (2:21)

and put

NC(t) := C
(
M

m

) 1
p−1

e
− 1
M(p−1)KC(|t|)

we have⎧⎨
⎩
f (t, x, y) ≤ −K ′

C(t)|y|p−1

for a.e. t ≥ L, every x ∈ I, |y| ≤ NC(t),
f (−t, x, y) ≥ K ′

C(t)|y|p−1
(2:22)
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|f (t, x, y)| ≤ ηC(t) if x ∈ I, |y| ≤ NC(t) + |α′(t)| + |β ′(t)|, for a.e. t ∈ R. (2:23)

Then, there exists a function x Î C1(ℝ), with (a ○ x)(F ○ x’) Î W1,1(ℝ), such that⎧⎨
⎩
(a(x(t))�(x′(t)))′ = f (t, x(t), x′(t)) for a.e. t ∈ R
α(t) ≤ x(t) ≤ β(t) for every t ∈ R
x(−∞) = α(−∞), x(+∞) = β(+∞).

Proof. The proof is quite similar to that of Theorem 2.3. Indeed, notice that the pre-

sent statement has the same assumptions of Theorem 2.3, written for F(y) = |y|p-2y,

with the exception of conditions (2.2) and (2.5), which were used only in the proof of

Step 1. Hence, as in the proof of the previous Theorem 2.4, we now provide only the

proof of Step 1, the rest being the same.

At the beginning of the proof, without loss of generality we assume H > ν
2L and we

choose C >
(M
m

) 1
p−1H ≥ H, in such a way that

∫ mCp−1

MHp−1

τ
1

p−1 (1−1
q )

θ(τ )
dτ > ||λ||q

(
νM

1
p−1

)1−1
q
. (2:24)

The proof of Step 1 begins as previously, determining an interval J = (τ1, τ2) ⊂ (-L, L)

such that |u′
n(τ0)| =

1
2L

|un(L) − un(−L)| ≤ sup β − infα
2L

=
ν

2L
< H < C. in J, and

|u′
n(τ2)| = C, |u′

n(τ2)| = C or vice versa. Then, as in the proof of Theorem 2.3, assump-

tion (2.19) implies that for a.e. t Î J we have

|(a(un(t))�(u′
n(t)))′| = |(a(Tun(t))�(u′

n(t)))′| = |f (t,Tun(t),Qun(t))| =

= |f (t, un(t), u′
n(t))| ≤ λ(t)θ(a(un(t))|u′

n(t)|p−1).

Therefore, put

α1 := a(x(τ1))|x′(τ1)|p−1, α2 := a(x(τ2))|x′(τ2)|p−1,

we get

∫ mCp−1

MHp−1

τ
1

p−1 (1−1
q )

θ(τ )
dτ ≤

∣∣∣∣∣∣
∫ α2

α1

τ
1

p−1 (1− 1
q )

θ(τ )
dτ

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
∫ τ2

τ1

(a(un(t))|u′
n(t)|p−1)

1
p−1 (1− 1

q )

θ(a(un(t))|u′
n(t)|p−1)

|(a(un(t))|u′
n(t)|p−1)′| dt

∣∣∣∣∣∣∣∣
≤

∫ τ2

τ1

λ(t)(a(un(t))
1

p−1 |u′
n(t)|)1− 1

q dt

≤ ||λ||qM
1

p−1 (1−1
q )

(∫ τ2

τ1

|u′
n(t)| dt

)1− 1
q ≤ ||λ||q(νM

1
p−1 )

1− 1
q

in contradiction with (2.24). Thus, we get |u′
n(t)| < C for every t Î [-L, L] and Step 1

is proved. □
As we mentioned in Section 1, the assumptions of the previous existence Theorems

are not improvable in the sense that if conditions (2.3) and (2.8) are satisfied with the

reversed inequalities and the summability condition (2.6) [respectively (2.21) for the

Cupini et al. Boundary Value Problems 2011, 2011:26
http://www.boundaryvalueproblems.com/content/2011/1/26

Page 8 of 17



case of p-Laplacian] does not hold, then problem (P) does not admit solutions, as the

following results state.

Theorem 2.6. Suppose that

lim sup
y→0+

�(y)
yμ

< +∞ (2:25)

for some positive constant μ. Moreover, assume that there exist two constants L ≥ 0, r
>0 and a positive strictly increasing function K ∈ W1,1

loc ([L, +∞))satisfying∫ +∞
e
− 1

μm̃ K(t)
dt = +∞ (2:26)

where m̃ := min
x∈[ν− ,ν+]

a(x), such that one of the following pair of conditions holds:

f (t, x, y) ≥ −K ′(t)�(|y|) for a.e. t ≥ L, every x ∈ [ν−, ν+], |y| < ρ (2:27)

or

f (t, x, y) ≤ K ′(−t)�(|y|) for a.e. t ≤ −L, every x ∈ [ν−, ν+], |y| < ρ. (2:28)

Moreover, assume that

tf (t, x, y) ≤ 0 for a.e. |t| ≥ L, every x ∈ R, |y| < ρ. (2:29)

Then, problem (P) can only admit solutions which are constant in [L, +∞) (when

(2.27) holds) or constant in (-∞, -L] (when (2.28) holds). Therefore, if both (2.27) and

(2.28) hold and L = 0, then problem (P) does not admit solutions. More precisely, no

function x Î C1(ℝ), with (a○x)(F○x’) almost everywhere differentiable, exists satisfying

the boundary conditions and the differential equation in (P).

Proof. Suppose that (2.27) holds (the proof is the same if (2.28) holds).

Let x Î C1(ℝ), with (a ○ x)(F○x’) almost everywhere differentiable (not necessarily

belonging to W1,1(ℝ)), be a solution of problem (P). First of all, let us prove that

lim
t→+∞ �(x′(t)) = 0.

Indeed, since x(+∞) = ν+ Î ℝ, we have lim sup
t→+∞

x′(t) ≥ 0 and lim inf
t→+∞ x′(t) ≤ 0.

Taking into account that F is an increasing homeomorphism with F(0) = 0, if

lim inf
t→+∞ x′(t) < 0, then there exists an interval [t1, t2] ⊂ [L, +∞) such that -r <F (x’(t))

<0 in [t1, t2], �(x′(t2)) > m
M�(x′(t1)). But by virtue of assumption (2.29)

we deduce that a(x(t))F(x’(t)) is decreasing in [t1, t2] and then

�(x′(t2)) ≤ 1
M

a(x(t2))�(x′(t2)) ≤ 1
M

a(x(t1))�(x′(t1)) ≤ m

M
�(x′(t1)),

a contradiction. Hence, necessarily lim inf
t→+∞ x′(t) = 0. We can prove in a similar way

that lim sup
t→+∞

x′(t) = 0. So, lim
t→+∞ x′(t) = 0 and we can define t* := inf{t ≥ L : |x’(τ)| < r

in [t, +∞)}.

We claim that x’(t) ≥ 0 for every t ≥ t*. Indeed, if x′(t̂) < 0 for some t̂ ≥ t∗, since a(x

(t))F(x’(t)) is decreasing in [t*, +∞) by (2.29), we get

a(x(t))�(x′(t)) ≤ a(x(t̂))�(x′(t̂)) ≤ m�(x′(t̂)) < 0, for every t ≥ t̂. (2:30)
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Since a is positive, then F(x’(t)) <0 for every t ≥ t̂. Hence, from (2.30) we get

M�(x′(t)) ≤ m�(x′(t̂)), and so

x′(t) ≤ �−1
(m
M

�(x′(t̂))
)

< 0 for every t ≥ t̂

in contradiction with the boundedness of x. Thus, the claim is proved.

Let us define t̃ := inf{t ≥ t∗ : x(τ ) ≥ ν− in [t, +∞)} ≥ t∗. We now prove that x’(t) = 0

for every t ≥ t̃.

Let us assume by contradiction that x′(t̄) > 0 for some t̄ ≥ t̃. Put

T := sup{t ≥ t̄ : x′(τ ) > 0 in [t̄, t]}; we claim that T = +∞. Indeed, if T <+∞, since 0 <

x’(t) < r in [t̄,T], by (2.27) we have

(a(x(t))�(x′(t)))′ = f (t, x(t), x′(t)) ≥ −K ′(t)�(x′(t)) for a.e. t ∈ [t̄,T]. (2:31)

So, assuming without loss of generality r ≤ 1, we get

(a(x(t))�(x′(t)))′ ≥ −K ′(t)�(x′(t)) ≥ −K ′(t)
m̄

a(x(t))�(x′(t))

where m̄ := min
ξ∈[x(t̄),x(T)]

a(ξ). Then, integrating in [t, T] with t < T we obtain (taking

into account that x’(T) = 0)

a(x(t))�(x′(t)) ≤
∫ T

t

K ′(τ )
m̄

a(x(τ ))�(x′(τ ))dτ for every t ∈ (t̄,T]

so by the Gronwall’s inequality we deduce a(x(t))F(x’(t)) ≤ 0, i.e. x’(t) ≤ 0 in the same

interval, in contradiction with the definition of T. Hence T = +∞.

Therefore, since 0 < x’(t) < r and ν - ≤ x(t) ≤ ν+ in [t̄, +∞), we get

(a(x(t))�(x′(t)))′ = f (t, x(t), x′(t)) ≥ −K ′(t)�(x′(t)) ≥ −K ′
C(t)
m̃

a(x(t))�(x′(t))

for a.e.t ≥ t̄, where m̃ := min
x∈[ν− ,ν+]

a(x). The above inequalities imply that for a.e. t ≥ t̄

log
a(x(t))�(x′(t))
a(x(t̄))�(x′(t̄))

=
∫ t

t̄

(a(x(s))�(x′(s)))′

a(x(s))�(x′(s))
ds ≥ 1

m̃
(K(t̄) − K(t))

and then

�(x′(t)) ≥ 1

M̃
a(x(t̄))�(x′(t̄))e

1
m̃ (K(t̄)−K(t))

where M̃ := max
x∈[ν− ,ν+]

a(x). By virtue of (2.25) and (2.26), since x′(t̄) > 0, we get

x(+∞) − x(t̄) =
∫ +∞
t̄ x′(t)dt = +∞, in contradiction with the boundedness of x.

Therefore, x’(t) ≡ 0 in [t̃, +∞) and by the definition of t̃ this implies t̃ = t∗. So, x’(t) ≡
0 in [t*, +∞) and by the definition of t* this implies t* = L. □
Remark 2.7. In view of what observed in Remark 6 [13], if the sign condition in

(2.29) is satisfied with the reverse inequality, i.e., if

tf (t, x, y) ≥ 0 for a.e. |t| ≥ L, every x ∈ R, |y| < ρ, (2:32)

then it is possible to prove that lim
x→±∞ x′(t) = 0 and x’(t) ≤ 0 for |t| ≥ L. So, since ν - <

ν+, when L = 0 problem (P) does not admit solutions.
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3. Criteria for right-hand side of the type f(t, x, y) = b(t, x)c(x, y)
In this section we present some operative criteria useful when the right-hand side has

the following product structure

f (t, x, y) = b(t, x)c(x, y).

As we will show, there is a strict link between the local behaviors of c(x, ·) at y = 0

and of b(·, x) at infinity which plays a key role for the existence or non-existence of

solutions.

In what follows we assume that b is a Carathéodory function and c is a continuous

function satisfying

c(x, y) > 0 for every y �= 0 and x ∈ [ν−, ν+]; c(ν−, 0) = c(ν+, 0) = 0.

Notice that in this framework, the constant functions a(t) :≡ ν- and b(t) :≡ ν+ are a

pair of well-ordered, monotone, lower and upper solutions. Consequently, according to

the notations given after Definition 2.1, in this case we have

I = [ν−, ν+], ν = ν+ − ν−, d = 0

and again

m := min
x∈I

a(x) > 0, M := max
x∈I

a(x),

According to the results of the previous section, the first three results provide suffi-

cient conditions for the existence of solutions for our special f split in the product of b

and c. Then we will deal with sufficient conditions for the non-existence of solutions.

Theorem 3.1. Let there exists a function λ ∈ Lqloc(R), 1 ≤ q ≤ +∞, such that

|b(t, x)| ≤ λ(t) for a.e. t ∈ R, every x ∈ [ν−, ν+]. (3:1)

Suppose that there exist positive constants h1, h2, k1, k2, r, H, L, ε, with ε ≤ 1, and a

constant σ ∈ [−1,−1 + h1k1
M ε), such that for every x Î [ν-, ν+] we have

t · b(t, x) ≤ 0 for a.e. |t| > L, (3:2)

h1|t|−1 ≤ |b(t, x)| ≤ h2|t|σ , for a.e. |t| > L, (3:3)

k1�(|y|) ≤ c(x, y) ≤ k2�(|y|)ε, whenever |y| < ρ, (3:4)

c(x, y) ≤ k2|�(y)|2− 1
q whenever |y| ≥ H. (3:5)

Finally, let conditions (2.2) and (2.3) hold with 0 < μ <
h1k1
M

.

Then, problem (P) admits solutions.

Proof. Put θ(r) := k2
( r
m

)2−1
q for r > 0, from (3.1) and (3.5) it is immediate to verify

the validity of conditions (2.4) and (2.5). Let us now fix a constant C > 0 and put

Ĉ := max
{
ρ,�−1

(
M
m

�(C)
)}

.
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Since c(x, y) > 0 for y ≠ 0, denoted by m̂C := min{c(x, y) : x ∈ [ν−, ν+],ρ ≤ |y| ≤ Ĉ},
we have m̂C > 0. Finally, put

ψC := min{ m̂C

�(Ĉ)
, k1}.

Consider the following functions:

γ (t) := min{ min
x∈[ν− ,ν+]

|b(−t, x)|, min
x∈[ν− ,ν+]

|b(t, x)|}, t ≥ 0;

HC(t) :=
{
0 for 0 ≤ t ≤ L;
ψC

∫ t
L γ (τ ) dτ for t ≥ L;

MC(t) := �−1
(
M
m

�(C) e−
1
MHC(|t|)

)
, t ∈ R.

Observe that by assumption (3.3) we have g(t) > 0 for a.e. t ≥ L and

lim
t→+∞HC(t) = +∞, hence lim

|t|→+∞
MC(t) = 0. So, there exists a constant L∗

C > L such that

MC(t) ≤ r whenever |t| ≥ L∗
C. Let us define

KC(t) :=

{
HC(t) for 0 ≤ t ≤ L∗

C;
HC(L∗

C) + k1
∫ t
L∗
C
γ (τ ) dτ for t > L∗

C

and let NC be the function defined in (2.7).

By the positivity of the function g, KC is strictly increasing for t ≥ L. Moreover, by

condition (3.1), we have KC ∈ W1,1
loc ([0, +∞)). Further, since ψC ≤ k1 we have HC(t) ≤

KC(t) for every t ≥ 0 and then NC(t) ≤ MC(t) for every t Î ℝ.

Observe that by (3.2) and the definition of ψC, we obtain

f (t, x, y) = b(t, x)c(x, y) ≤ ψCb(t, x)�(|y|) ≤ −K ′
C(t)�(|y|)

and

f (−t, x, y) = b(−t, x)c(x, y) ≥ ψCb(−t, x)�(|y|) ≥ K ′
C(t)�(|y|)

for a.e. t ∈ (L, L∗
C), every x Î [ν-,ν+] and every |y| ≤ NC(t) ≤ Ĉ. Similarly, by (3.4) we

have

f (t, x, y) = b(t, x)c(x, y) ≤ k1b(t, x)�(|y|) ≤ −K ′
C(t)�(|y|)

and

f (−t, x, y) = b(−t, x)c(x, y) ≥ k1b(−t, x)�(|y|) ≥ K ′
C(t)�(|y|)

for a.e. t ≥ L∗
C, every x Î [ν-,ν+] and every |y| ≤ NC(t) ≤ MC(t) ≤ r. Then, condition

(2.8) of Theorem 2.3 holds.

Now, from (3.3) it follows that h1k1t−1 ≤ K ′
C(t) for a.e. t ≥ L∗

C. As a consequence,

KC(t) ≥ KC(L∗
C) + h1k1 log

t
L∗
C

for every t > L∗
C. (3:6)

Then, by the upper bound on the exponent μ we get∫ +∞
e
− 1

μMKC(t) dt ≤ Const.
∫ +∞

t
− h1k1

μM dt < +∞,
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and condition (2.6) follows.

Finally, let us define

ηC(t) :=

{
max

x∈[ν− ,ν+]
|b(t, x)| · max

(x,y)∈[ν−,ν+]×[−Ĉ,Ĉ]
c(x, y) if |t| ≤ L∗

C

h2k2|t|σ �(NC(t))
ε if |t| > L∗

C.

By (3.3) and (3.4), for every y Î ℝ such that |y| ≤ NC(t) for a.e. t Î ℝ and every x Î
[ν-,ν+], it results

|f (t, x, y)| = |b(t, x)|c(x, y) ≤ ηC(t),

that is condition (2.9), so it remains to prove that hC Î L1(ℝ). To this purpose,

notice that by (3.1) and the continuity of c we have ηC ∈ L1([−L∗
C, L

∗
C]). Moreover,

when |t| > L∗
C, by (3.6) we have

0 < ηC(t) ≤ h2k2|t|σ
(
M

m
�(C)

)ε

e−
ε
MKC(|t|) ≤ Const.|t|σ− h1k1

M ε.

Since σ < h1k1
M ε − 1, we get hC Î L1(ℝ). Therefore, Theorem 2.3 applies and guaran-

tees the assertion of the present result. □
For differential operators having superlinear growth at infinity, the following result

can be applied, whose proof is a consequence of Theorem 2.4.

Theorem 3.2. Let all the assumptions of Theorem 3.1 be satisfied with the exception

of (2.2) and with (3.5) replaced by

lim
|y|→+∞

max
x∈[ν− ,ν+]

c(x, y)

|�(y)| = 0. (3:7)

Then, if (2.3) holds true with a positive μ < h1k1
M , problem (P) admits solutions.

Proof. Set

θ(s) := max
x∈[ν− ,ν+]

(
max

{
c
(
x,�−1

(
s

a(x)

))
, c

(
x,�−1

(
− s
a(x)

))})
.

Observe that θ is a continuous function on [0, +∞), such that

θ(a(x)|�(y)|) ≥ c(x, y) for every x ∈ [ν−, ν+], y ∈ R,

hence (2.4) holds. Moreover, by (3.7), for every ε > 0 there exists a real cε such that

c(x, y) ≤ ε|�(y)| for every x ∈ [ν−, ν+], |y| ≥ cε .

Hence, for every s ≥ M max{F(cε), -F(-cε)} we have θ(s) ≤ ε
ms, that is

lim
s→+∞

θ(s)
s

= 0.

Hence, the proof proceeds as that of Theorem 3.1, applying Theorem 2.4 instead of

Theorem 2.3. □
Finally, in the case of p-Laplacian operators, the following result holds, as a conse-

quence of Theorem 2.5, by the same proof of Theorem 3.1.

Theorem 3.3. Consider F(y) = |y|p-2y, p > 1, and let all the assumptions of Theorem

3.1 be satisfied with the exception of (2.2) and condition (3.5) replaced by
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c(x, y) ≤ k2|y|p−
1
q , for every |y| ≥ H. (3:8)

Then, if p < 1 + h1k1
M , problem (P) admits solutions.

Proof. Define θ(r) := k2
( r
m

)1+ 1
p−1 (1−1

q ). Easy computations allow to verify that

assumptions (2.19) and (2.20) are satisfied. The conclusion follows as in the proof of

Theorem 3.1, now applying Theorem 2.5. In fact, observe that in this case (2.3) is satis-

fied for μ = p - 1 and, defined KC and hC as in the proof of Theorem 3.1, conditions

(2.22) and (2.23) hold true. Notice that they are the rewriting of conditions (2.8) and

(2.9), respectively, in the case of p-Laplacian operators. □
In the previous results the requirement μ < h1k1

M is not merely technical, but it is

essential, as it will be clarified by the following non-existence result.

Theorem 3.4. Suppose that (3.2) holds for a.e. t Î ℝ and let there exist a real con-

stant Λ > 0 and a positive function l Î L1(0, Λ) such that

|b(t, x)| ≤ �(|t|) for a.e. |t| ≤ �, x ∈ [ν−, ν+]. (3:9)

Moreover, assume that there exist positive constants h, k, r such that

|b(t, x)| ≤ h|t|−1, for every x ∈ R, a.e. |t| > � (3:10)

c(x, y) ≤ k�(|y|), for every x ∈ R, 0 < y < ρ. (3:11)

If (2.25) holds with a positive μ ≥ hk
m , then problem (P) does not have solutions.

Proof. Put K(t) := k
∫ t

0
�(τ )dτ for t Î [0, Λ] and K(t) :=

∫ �

0 �(τ )dτ + hk(log t − log L)

for t ≥ Λ. Note that assumptions (2.27) and (2.28) are satisfied for L = 0. Moreover,∫ +∞
e
− 1

μmK(t)
dt ≥ Const.

∫ +∞
t
− 1

μmhk
dt = +∞

by the lower bound on the exponent μ. So, the assertion follows from Theorem 2.6.

□
The following results are immediate consequences of Theorems 3.1, 3.2, and 3.4.

Corollary 3.5. Let f(t, x, y) = h(t)g(x)c(y), with h ∈ Lqloc(R), for 1 ≤ q ≤ +∞, c continu-

ous in ℝ and g continuous and positive in [ν-,ν+].

Assume that t · h(t) ≤ 0 for every t Î ℝ and c(y) > 0 for every y ≠ 0. Moreover, sup-

pose that

lim
|t|→+∞

|t h(t)| =: h1 ∈ (0, +∞), lim
|y|→0

c(y)
�(|y|) =: k1 ∈ (0, +∞).

Let (2.2) holds and

lim sup
|y|→+∞

c(y)

|�(y)|2− 1
q

< +∞. (3:12)

Then, if (2.3) holds with an exponent μ such that h1k1 · min
x∈[ν− ,ν+]

g(x) > Mμ, problem

(P) admits solutions; instead if (2.25) holds with an exponent μ satisfying

h1k1 · max
x∈[ν− ,ν+]

g(x) < mμ, (P) does not admit solutions.
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Corollary 3.6. Let all the assumptions of Corollary 3.5 be satisfied, apart (2.2) and

with (3.12) replaced by the following condition

lim
|y|→+∞

c(y)
|�(y)| = 0. (3:13)

Then, the same conclusions of Corollary 3.5 hold.

Finally, for the p-Laplacian operator we can state the following criterium, conse-

quence of Theorems 3.3 and 3.4.

Corollary 3.7. Let f(t, x, y) = h(t)g(x)c(y), with h ∈ Lqloc(R), for 1 ≤ q ≤ +∞, b continu-

ous in ℝ, g continuous and positive in [ν-, ν+]. Let F(y) = |y|p-2 y, for p > 1.

Assume that t · h(t) ≤ 0 for every t Î ℝ and c(y) > 0 for every y ≠ 0. Moreover, sup-

pose that there exist

lim
|t|→+∞

|t h(t)| =: h1, lim
|y|→0

c(y)
|y|p−1

=: k1, lim sup
|y|→+∞

c(y)

|y|p−
1
q

< +∞,

for a positive constant h1.

Then, if h1k1 · min
x∈[ν− ,ν+]

g(x) > M(p − 1), problem (P) admits solutions; instead if

h1k1 · max
x∈[ν− ,ν+]

g(x) < m(p − 1), (P) does not have solutions.

We conclude with some examples in which the previous corollaries apply.

Example 3.8. Let f (t, x, y) := −h t√
1+t4

g(x)|y|μ(1 + |y|2)
μ−2
2 where h is a positive

constant and g is a generic continuous function, positive in [ν-,ν+]. Suppose that F(y) =

y|y|μ-2| arctan y| with μ ≥ 1 for every y Î ℝ and a(x) ≡ 1 for every x Î ℝ.

If h(t) := −h t√
1+t4 and c(y) := |y|μ(1 + |y|2)

μ−2
2 , it is immediate to check that all the

assumptions of Corollary 3.5 are satisfied for q := +∞, h1 := h, k1 := 1. Then, if

min
x∈[ν− ,ν+]

g(x) >
μ

h
problem (P) has solutions, instead if max

x∈[ν− ,ν+]
g(x) <

μ

h
then problem

(P) does not have solutions.

Example 3.9. Let f (t, x, y) := −h t√
1+t4

g(x)|y|β, where h is a positive constant and g is

a generic continuous function, positive in [ν-,ν+]. Let F(y) := y|y|b-1 e|y| and a(x) ≡ 1.

Then condition (3.13) is satisfied for every b > 0 and all the assumptions of Corollary

3.6 hold with h1 := h and k1 := 1. Then, if min
x∈[ν− ,ν+]

g(x) >
μ

h
problem (P) has solutions,

instead if max
x∈[ν− ,ν+]

g(x) <
μ

h
then problem (P) does not have solutions.

Example 3.10. Let f (t, x, y) := −h arctan t
t g(x)|y|p−1

√
1 + y2, where h is a positive con-

stant and g is a generic continuous function, positive in [ν-,ν+]. Let F(y) := y|y|p-2 and

a(x) ≡ 1. Then all the assumptions of Corollary 3.7 are satisfied, for q := +∞, h1 :=
hπ
2
,

h2 := 1. Then, if min
x∈[ν− ,ν+]

g(x) >
2(p − 1)

πh
problem (P) has solutions, instead if

max
x∈[ν− ,ν+]

g(x) <
2(p − 1)

πh
then problem (P) does not have solutions.

Remark 3.11. Note that in [11] the existence of heteroclinic solutions was proved

when in assumption (2.8) one has F(|y|)g, instead of F(|y|), for some g > 1. Of course,
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for small |y| we have F(|y|)g < F(|y|) for each g > 1, hence the present condition (2.8)

implies the validity of the analogous condition with g > 1, assumed in [11] (see condi-

tion (8)). But, on the other hand, taking g > 1 one can lose the summability of the

function KC required in assumption (7) of [11]. In fact, in the following example the

present Theorems 2.3 and 2.4 are applicable, whereas the results established in [11] do

not work.

Consider the problem, already discussed in Example 4 [7]:{
(�(x′(t)))′ = m(t)�(|x′(t)|), a.e. on R

x(−∞) = 0, x(+∞) = 1,

where a(x) ≡ 1 and m : ℝ ® ℝ is the function defined by

m(t) =
{−α

t , |t| > 1
−αt, |t| ≤ 1,

for some a > 0. As it easy to check, the best function KC satisfying condition (8) in

[11] is KC(t) := [alog t]+, but condition (7) of [11] does not hold, whatever g > 1 may

be. Hence, the existence results proved in [11] are not applicable. Instead, notice that

condition (2.6) herein considered holds whenever a >μ (see (2.3)) and Theorem 2.3 (or

Theorem 2.4) applies, provided that the operator F also satisfies the other required

assumptions. Similar considerations can be done for the p-Laplacian operator too,

using Theorem 2.5.
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