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1 Introduction and main results
Consider the second order systems{

ü(t) = ∇F(t, u(t)) a.e. t ∈ [0,T],
u(0) − u(T) = u̇(0) − u̇(T) = 0,

(1:1)

where T > 0 and F : [0, T] × ℝN ® ℝ satisfies the following assumption:

(A) F (t, x) is measurable in t for every x Î ℝN and continuously differentiable in x

for a.e. t Î [0, T], and there exist a Î C(ℝ+, ℝ+), b Î L1(0, T ; ℝ+) such that

|F(t, x)| ≤ a(|x|)b(t), |∇F(t, x)| ≤ a(|x|)b(t)

for all x Î ℝN and a.e. t Î [0, T].

The existence of periodic solutions for problem (1.1) has been studied extensively, a

lot of existence and multiplicity results have been obtained, we refer the readers to

[1-13] and the reference therein. In particular, under the assumptions that the nonli-

nearity ∇F (t, x) is bounded, that is, there exists p(t) Î L1(0, T ; ℝ+) such that

|∇F(t, x)| ≤ p(t) (1:2)

for all x Î ℝN and a.e. t Î [0, T], and that

T∫
0

F(t, x)dt → ±∞ as |x| → +∞, (1:3)

Mawhin and Willem in [3] have proved that problem (1.1) admitted a periodic solu-

tion. After that, when the nonlinearity ∇F (t, x) is sublinear, that is, there exists f(t), g

(t) Î L1(0, T ; ℝ+) and a Î [0, 1) such that
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|∇F(t, x)| ≤ f (t)|x|α + g(t) (1:4)

for all x Î ℝN and a.e. t Î [0, T], Tang in [7] have generalized the above results

under the hypotheses

1
|x|2α

T∫
0

F(t, x)dt → ±∞ as |x| → +∞. (1:5)

Subsequently, Meng and Tang in [13] further improved condition (1.5) with a Î (0,

1) by using the following assumptions

lim inf
|x|→+∞

1
|x|2α

T∫
0

F(t, x)dt >
T
24

⎛
⎝ T∫

0

f (t)dt

⎞
⎠

2

, (1:6)

lim sup
|x|→+∞

1
|x|2α

T∫
0

F(t, x)dt < −T
8

⎛
⎝ T∫

0

f (t)dt

⎞
⎠

2

. (1:7)

Recently, authors in [14] investigated the existence of periodic solutions for the sec-

ond order nonautonomous Hamiltonian systems with p-Laplacian, here p > 1, it is

assumed that the nonlinearity ∇F (t, x) may grow slightly slower than |x|p-1, a typical

example with p = 2 is

∇F(t, x) =
t|x|

ln(100 + |x|2) , (1:8)

solutions are found as saddle points to the corresponding action functional. Further-

more, authors in [12] have extended the ideas of [14], replacing in assumptions (1.4)

and (1.5) the term |x| with a more general function h(|x|), which generalized the

results of [3,7,10,11]. Concretely speaking, it is assumed that there exist f(t), g(t) Î L1

(0, T; ℝ+) and a nonnegative function h Î C([0, +∞), [0, +∞)) such that

|∇F(t, x)| ≤ f (t)h(|x|) + g(t)

for all x Î ℝN and a.e. t Î [0, T], and that

1
h2(|x|)

T∫
0

F(t, x)dt → ±∞ as —x| → + ∞,

where h be a control function with the properties:

(a) h(s) ≤ h(t)
(b) h(s + t) ≤ C∗(h(s) + h(t))
(c) 0 ≤ h(t) ≤ K1tα + K2

(d) h(t) → +∞

∀s ≤ t, s, t ∈ [0, +∞),
∀s, t ∈ [0, +∞),
∀t ∈ [0, +∞),
as t → +∞,

if a = 0, h(t) only need to satisfy conditions (a)-(c), here C*, K1 and K2 are positive

constants. Moreover, a Î [0, 1) is posed. Under these assumptions, periodic solutions

of problem (1.1) are obtained. In addition, if the nonlinearity ∇F (t, x) grows more

faster at infinity with the rate like |x|
ln (100+|x|2), f(t) satisfies some certain restrictions and
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a is required in a more wider range, say, a Î [0,1], periodic solutions have also been

established in [12] by minimax methods.

An interesting question naturally arises: Is it possible to handle both the case such as

(1.8) and some cases like (1.4), (1.5), in which only f(t) Î L1(0, T ; ℝ+) and a Î [0, 1)?

In this paper, we will focus on this problem.

We now state our main results.

Theorem 1.1. Suppose that F satisfies assumption (A) and the following conditions:

(S1) There exist constants C ≥ 0, C* >0 and a positive function h Î C(ℝ+, ℝ+) with

the properties:

(i) h(s) ≤ h(t) + C
(ii) h(s + t) ≤ C∗(h(s) + h(t))
(iii) th(t) − 2H(t) → −∞
(iv)

H(t)
t2

→ 0

∀s ≤ t, s, t ∈ R+,
∀s, t ∈ R+,
as t → + ∞,
as t → + ∞,

where H(t) :=
∫ t

0
h(s) ds. Moreover, there exist f Î L1(0, T; ℝ+) and g Î L1(0, T; ℝ+)

such that

|∇F(t, x)| ≤ f (t)h(|x|) + g(t)

for all x Î ℝN and a.e. t Î [0, T];

(S2) There exists a positive function h Î C(ℝ+, ℝ+) which satisfies the conditions (i)-

(iv) and

lim inf
|x|→+∞

1
H(|x|)

T∫
0
F(t, x)dt > 0.

Then, problem (1.1) has at least one solution which minimizes the functional � given

by

ϕ(u) :=
1
2

T∫
0

| u̇(t)|2dt +
T∫
0
[F(t, u(t)) − F(t, 0)] dt

on the Hilbert space H1
Tdefined by

H1
T :=

{
u : [0,T] → RN| u is absolutely continuous , u(0) = u(T), u̇ ∈ L2(0,T;RN)

}

with the norm

||u|| :=

⎛
⎝ T∫

0

| u(t)|2dt +
T∫

0

| u̇(t)|2dt
⎞
⎠

1/2

.

Theorem 1.2. Suppose that (S1) and assumption (A) hold. Assume that

(S3) lim sup
|x|→+∞

1
H(|x|)

T∫
0

F(t, x)dt < 0.

Then, problem (1.1) has at least one solution in H1
T.

Theorem 1.3. Suppose that (S1), (S3) and assumption (A) hold. Assume that there

exist δ >0, ε >0 and an integer k >0 such that
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−1
2
(k + 1)2ω2|x|2 ≤ F(t, x) − F(t, 0) (1:9)

for all x Î ℝN and a.e. t Î [0, T], and

F(t, x) − F(t, 0) ≤ −1
2
k2ω2(1 + ε)|x|2 (1:10)

for all |x| ≤ δ and a.e. t Î [0, T], where ω = 2π
T . Then, problem (1.1) has at least two

distinct solutions in H1
T.

Theorem 1.4. Suppose that (S1), (S2) and assumption (A) hold. Assume that there

exist δ >0, ε >0 and an integer k ≥ 0 such that

−1
2
(k + 1)2ω2|x|2 ≤ F(t, x) − F(t, 0) ≤ −1

2
k2ω2|x|2 (1:11)

for all |x| ≤ δ and a.e. t Î [0, T]. Then, problem (1.1) has at least three distinct solu-

tions in H1
T.

Remark 1.1.

(i) Let a Î [0, 1), in Theorems 1.1-1.4, ∇F(t, x) does not need to be controlled by |

x|2a at infinity; in particular, we can not only deal with the case in which ∇F(t, x)
grows slightly faster than |x|2a at infinity, such as the example (1.8), but also we

can treat the cases like (1.4), (1.5).

(ii) Compared with [12], we remove the restriction on the function f(t) as well as

the restriction on the range of a Î [0, 1] when we are concerned with the cases

like (1.8).

(iii) Here, we point out that introducing the control function h(t) has also been

used in [12,14], however, these control functions are different from ours because of

the distinct characters of h(t).

Remark 1.2. From (i) of (S1), we see that, nonincreasing control functions h(t) can

be permitted. With respect to the detailed example on this assertion, one can see

Example 4.3 of Section 4.

Remark 1.3. There are functions F(t, x) satisfying our theorems and not satisfying

the results in [1-14]. For example, consider function

F(t, x) = f (t)
|x|2

ln (100 + |x|2) ,

where f(t) Î L1(0, T; ℝ+) and f(t) >0 for a.e. t Î [0, T]. It is apparent that

|∇F(t, x)| ≤ 4f (t)
|x|

ln (100 + |x|2) (1:12)

for all x Î ℝN and t Î [0, T]. (1.12) shows that (1.4) does not hold for any a Î [0,

1), moreover, note f(t) only belongs to L1(0, T; ℝ+) and no further requirements on the

upper bound of
∫ T
0 f (t)dt are posed, then the approach of [12] cannot be repeated.

This example cannot be solved by earlier results, such as [1-13].

On the other hand, take h(t) = t
ln (100+t2), H(t) =

∫ t
0

s
ln (100+s2) ds, C = 0, C* = 1, then

by simple computation, one has
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(i) h(s) ≤ h(t) ∀s ≤ t, s, t ∈ R+,

(ii) h(s + t) =
s + t

ln (100 + (s + t)2)
≤ h(s) + h(t) ∀s, t ∈ R+,

(iii) th(t) − 2H(t) =
t2

ln(100 + t2)
− 2

t∫
0

1
ln(100 + s2)

d
(
1
2
s2
)

= −
t∫
0

2s3

(100 + s2)ln2(100 + s2)
ds

→ −∞ as t → + ∞,

(iv)
H(t)
t2

=

t∫
0

s
ln(100+s2)ds

t2
→ 0 as t → +∞,

and

1
H(|x|)

T∫
0
F(t, x)dt = 2

T∫
0
f (t)dt > 0 as |x| → +∞.

Hence, (S1) and (S2) are hold, by Theorem 1.1, problem (1.1) has at least one solu-

tion which minimizes the functional � in H1
T.

What’s more, Theorem 1.1 can also deal with some cases which satisfy the condi-

tions (1.4) and (1.5). For instance, consider function

F(t, x) = (0.6T − t)|x| 32 + (q(t), x),

where q(t) Î L1(0, T; ℝN). It is not difficult to see that

|∇F(t, x)| ≤ 3
2

|0.6T − t||x|
1
2 + |q(t)|

for all x Î ℝN and a.e. t Î [0, T]. Choose h(t) = t
1
2, H(t) = 2

3 t
3
2, C = 0, C* = 1,

f (t) = 3
2 |0.6T − t| and g(t) = |q(t)|, then (S1) and (S2) hold, by Theorem 1.1, problem

(1.1) has at least one solution which minimizes the functional � in H1
T. However, we

can find that the results of [14] cannot cover this case. More examples are drawn in

Section 4.

Our paper is organized as follows. In Section 2, we collect some notations and give a

result regrading properties of control function h(t). In Section 3, we are devote to the

proofs of main theorems. Finally, we will give some examples to illustrate our results

in Section 4.

2 Preliminaries

For u ∈ H1
T, let ū :=

1
T

∫ T

0
u(t)dt and ũ(t) := u(t) − ū, then one has

||ũ||2∞ ≤ T

12

T∫
0

| u̇(t)|2dt (Sobolev’s inequality),

and

T∫
0

| ũ(t)|2dt ≤ T2

4π2

T∫
0

| u̇(t)|2dt (Wirtinger’s inequality),

where ||ũ||∞ := max
0≤t≤T

|ũ(t)|.
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It follows from assumption (A) that the corresponding function � on H1
T given by

ϕ(u) :=
1
2

T∫
0

| u̇(t)|2dt +
T∫
0
[F(t, u(t)) − F(t, 0)] dt

is continuously differentiable and weakly lower semi-continuous on H1
T (see[2]).

Moreover, one has

(ϕ′(u), v) =
T∫
0
(u̇(t), v̇(t))dt +

T∫
0
(∇F(t, u(t)), v(t))dt

for all u, v ∈ H1
T. It is well known that the solutions of problem (1.1) correspond to

the critical point of �.

In order to prove our main theorems, we prepare the following auxiliary result,

which will be used frequently later on.

Lemma 2.1. Suppose that there exists a positive function h which satisfies the condi-

tions (i), (iii), (iv) of (S1), then we have the following estimates:

(1) 0 < h(t) ≤ εt + C0

(2) h2(t)
H(t) → 0

(3) H(t) → +∞

for any ε > 0,C0 > 0, t ∈ R+,
as t → +∞,
as t → + ∞.

Proof. It follows from (iv) of (S1) that, for any ε >0, there exists M1 >0 such that

H(t) ≤ εt2 ∀t ≥ M1. (2:1)

By (iii) of (S1), there exists M2 >0 such that

th(t) − 2H(t) ≤ 0 ∀t ≥ M2, (2:2)

which implies that

h(t) ≤ 2H(t)
t

≤ εt ∀t ≥ M, (2:3)

where M := max{M1, M2}. Hence, we obtain

h(t) ≤ εt + h(M) + C (2:4)

for all t >0 by (i) of (S1). Obviously, h(t) satisfies (1) due to the definition of h(t) and

(2.4).

Next, we come to check condition (2). Recalling the property (iv) of (S1) and (2.2),

we get

0 <
h2(t)
H(t)

=
h2(t)
H2(t)

· H(t) ≤
(
2
t

)2

· H(t) = 4 · H(t)
t2

→ 0 as t → + ∞.

Therefore, condition (2) holds.

Finally, we show that (3) is also true. By (iii) of (S1), one arrives at, for every b >0,

there exists M3 >0 such that

th(t) − 2H(t) ≤ −2β ∀t ≥ M3. (2:5)

Let θ ≥ 1, using (2.5) and integrating the relation

d
dθ

[
H(θ t)

θ2

]
=

θ t · h(θ t) − 2H(θ t)
θ3

≤ −2β

θ3
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over an interval [1, S] ⊂ [1, +∞), we obtain

H(St)
S2

− H(t) ≤ β

[
1
S2

− 1
]
.

Thus, since lim
S→+∞

H(St)
S2 = 0 by (iv) of (S1), one has

H(t) ≥ β

for all t ≥ M3. That is,

H(t) → +∞ as t → +∞,

which completes the proof. □

3 Proof of main results
For the sake of convenience, we will denote various positive constants as Ci, i = 1, 2,

3,.... Now, we are ready to proof our main results.

Proof of Theorem 1.1. For u ∈ H1
T, it follows from (S1), Lemma 2.1 and Sobolev’s

inequality that∣∣∣∣∣∣
T∫

0

[F(t, u(t)) − F(t, ū)]dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
T∫

0

1∫
0

(∇F(t, ū + sũ(t)), ũ(t))dsdt

∣∣∣∣∣∣
≤

T∫
0

1∫
0

f (t)h(|ū + sũ(t)|)|ũ(t)|dsdt +
T∫

0

1∫
0

g(t)|ũ(t)|dsdt

≤
T∫

0

1∫
0

f (t)
[
h(|ū| + |ũ(t)|) + C

] |ũ(t)|dsdt + ||ũ||∞
T∫

0

g(t)dt

≤
T∫

0

1∫
0

f (t)
[
C∗ (h(|ū|) + h(|ũ(t)|)) + C

] |ũ(t)|dsdt + ||ũ||∞
T∫

0

g(t)dt

≤ C∗[h(|ū|) + h(|ũ(t)|)]||ũ||∞
T∫

0

f (t)dt + C||ũ||∞
T∫

0

f (t)dt + ||ũ||∞
T∫

0

g(t)dt

≤ C∗

⎡
⎢⎣ 3
C∗T

||ũ||2∞ +
C∗T
3

h2(|ū|)
⎛
⎝ T∫

0

f (t)dt

⎞
⎠

2
⎤
⎥⎦ + ||ũ||∞

T∫
0

g(t)dt

+C∗[h(||ũ||∞) + C]||ũ||∞
T∫

0

f (t)dt + C||ũ||∞
T∫

0

f (t)dt

≤ 1
4

T∫
0

|u̇(t)|2dt + C1h2(|ū|) + C∗ [ε||ũ||∞ + C0 + C
] ||ũ||∞

T∫
0

f (t)dt

+C||ũ||∞
T∫

0

f (t)dt + ||ũ||∞
T∫

0

g(t)dt

≤
(
1
4
+ εC2

) T∫
0

|u̇(t)|2dt + C1h2(|ū|) + C3

⎛
⎝ T∫

0

|u̇(t)|2dt
⎞
⎠

1/2

,

(3:1)
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which implies that

ϕ(u) =
1
2

T∫
0

|u̇(t)|2dt +
T∫

0

[F(t, u(t)) − F(t, ū)]dt+

T∫
0

F(t, ū)dt−
T∫

0

F(t, 0)dt

≥
(
1
4

− εC2

) T∫
0

|u̇(t)|2dt − C3

⎛
⎝ T∫

0

|u̇(t)|2dt
⎞
⎠

1/2

−
T∫

0

F(t, 0)dt

+H(|ū|)
⎡
⎣ 1
H(|ū|)

T∫
0

F(t, ū)dt − C1
h2(|ū|)
H(|ū|)

⎤
⎦ .

(3:2)

Taking into account Lemma 2.1 and (S2), one has

H(|ū|)
⎡
⎣ 1
H(|ū|)

T∫
0

F(t, ū)dt − C1
h2(|ū|)
H(|ū|)

⎤
⎦→ +∞ as —ū| → + ∞. (3:3)

As ||u|| ® +∞ if and only if
(

|ū|2 +
∫ T

0
|u̇(t)|2dt

)1/2

→ +∞, for ε small enough,

(3.2) and (3.3) deduce that

ϕ(u) → +∞ as ||u|| → +∞.

Hence, by the least action principle, problem (1.1) has at least one solution which

minimizes the function � in H1
T. □

Proof of Theorem 1.2. First, we prove that � satisfies the (PS) condition. Suppose

that {un} ⊂ H1
T is a (PS) sequence of �, that is, �’(un) ® 0 as n ® +∞ and {�(un)} is

bounded. In a way similar to the proof of Theorem 1.1, we have∣∣∣∣∣∣
T∫

0

(∇F(t, un(t)), ũn(t))dt

∣∣∣∣∣∣
≤
(
1
4
+ εC2

) T∫
0

|u̇n(t)|2dt + C1h2(|ūn|) + C3

⎛
⎝ T∫

0

|u̇n(t)|2dt
⎞
⎠

1/2

for all n. Hence, we get

||ũn|| ≥ (ϕ′(un), ũn) =

T∫
0

|u̇n(t)|2dt +
T∫

0

(∇F(t, un(t)), ũn(t))dt

≥
(
3
4

− εC2

) T∫
0

|u̇n(t)|2dt − C1h2(|ūn|) − C3

⎛
⎝ T∫

0

|u̇n(t)|2dt
⎞
⎠

1/2 (3:4)

for large n. On the other hand, it follows from Wirtinger’s inequality that

||ũn|| ≤
(

T2

4π2
+ 1
)1/2

⎛
⎝ T∫

0

|u̇n(t)|2dt
⎞
⎠

1/2

(3:5)
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for all n. Combining (3.4) with (3.5), we obtain

C4h(|ūn|) ≥
⎛
⎝ T∫

0

|u̇n(t)|2dt
⎞
⎠

1/2

− C5 (3:6)

for all large n. By (3.1), (3.6), Lemma 2.1 and (S3), one has

ϕ(un) =
1
2

T∫
0

|u̇n(t)|2dt +
T∫

0

[F(t, un(t)) − F(t, ūn)] dt

+

T∫
0

F(t, ūn)dt −
T∫

0

F(t, 0)dt

≤
(
3
4
+ εC2

) T∫
0

|u̇n(t)|2dt + C1h2(|ūn|) + C3

⎛
⎝ T∫

0

|u̇(t)|2dt
⎞
⎠

1/2

+

T∫
0

F(t, ūn)dt −
T∫

0

F(t, 0)dt

≤ C6[C4h(|ūn|) + C5]2 + C1h2(|ūn|) + C3[C4h(|ūn|) + C5]

+

T∫
0

F(t, ūn)dt −
T∫

0

F(t, 0)dt

≤ C7h
2(|ūn|) + C8h(|ūn|) + C9 +

T∫
0

F(t, ūn)dt −
T∫

0

F(t, 0)dt

≤ H(|ūn|)
⎡
⎣C7

h2(|ūn|)
H(|ūn|) + C8

h(|ūn|)
H(|ūn|) +

1
H(|ūn|)

T∫
0

F(t, ūn)dt

⎤
⎦

+ C9 −
T∫

0

F(t, 0)dt → −∞ as |ūn| → +∞.

This contradicts the boundedness of {�(un)}. So, {ūn} is bounded. Notice (3.6) and (1)

of Lemma 2.1, hence {un} is bounded. Arguing then as in Proposition 4.1 in [3], we

conclude that the (PS) condition is satisfied.

In order to apply the saddle point theorem in [2,3], we only need to verify the fol-

lowing conditions:

(�1) �(u) ® +∞ as ||u|| ® +∞in H̃1
T, where H̃1

T :=
{
u ∈ H1

T| ū = 0
}
,

(�2) �(u) ® -∞ as |u(t)| ® +∞.

In fact, for all u ∈ H̃1
T, by (S1), Sobolev’s inequality and Lemma 2.1, we have
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∣∣∣∣∣∣
T∫

0

[F(t, u(t)) − F(t, 0)] dt

∣∣∣∣∣∣ =
∣∣∣∣∣∣

T∫
0

1∫
0

(∇F(t, ū + su(t)), u(t)) dsdt

∣∣∣∣∣∣
≤

T∫
0

f (t)h(|su(t)|)|u(t)|dt +
T∫

0

g(t)|u(t)|dt

≤
T∫

0

f (t)[h(|u(t)|) + C]|u(t)|dt + ||u||∞
T∫

0

g(t)dt

≤ ε||u||2∞
T∫

0

f (t)dt + (C0 + C)||u||∞
T∫

0

f (t)dt + ||u||∞
T∫

0

g(t)dt

≤ εC10

T∫
0

|u̇(t)|2dt + C11

⎛
⎝ T∫

0

|u̇(t)|2dt
⎞
⎠

1/2

,

which implies that

ϕ(u) =
1
2

T∫
0

|u̇(t)|2dt +
T∫

0

[F(t, u(t)) − F(t, 0)] dt

≥
(
1
2

− εC10

) T∫
0

|u̇(t)|2dt − C11

⎛
⎝ T∫

0

|u̇(t)|2dt
⎞
⎠

1/2

.

(3:7)

By Wirtinger’s inequality, one has

||u|| → +∞ ⇔
⎛
⎝ T∫

0

|u̇(t)|2dt
⎞
⎠

1/2

→ +∞ on H̃1
T .

Hence, for ε small enough, (�1) follows from (3.7).

On the other hand, by (S3) and Lemma 2.1, we get

T∫
0

F(t, u(t))dt → −∞ as |u(t)| → +∞ in RN,

which implies that

ϕ(u) =

T∫
0

F(t, u(t))dt −
T∫

0

F(t, 0)dt → −∞ as |u(t)| → +∞ in RN.

Thus, (�2) is verified. The proof of Theorem 1.2 is completed. □
Proof of Theorem 1.3. Let E = H1

T,

Hk :=

⎧⎨
⎩

k∑
j=1

(aj cos jωt + bj sinωt)|aj, bj ∈ RN, j = 1, 2, . . . , k

⎫⎬
⎭

and ψ = -�. Then, ψ Î C1(E, ℝ) satisfies the (PS) condition by the proof of Theorem

1.2. In view of Theorem 5.29 and Example 5.26 in [2], we only need to prove that
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(ψ1) lim inf ||u||−2ψ(u) > 0
(ψ2) ψ(u) ≤ 0
(ψ3) ψ(u) → −∞

as u → 0 in Hk,
for all u in H⊥

k , and
as ||u|| → ∞ in H⊥

k−1.

We see that

F(t, x) − F(t, 0) =

1∫
0

(∇F(t, sx), x)ds

for all x Î ℝN and a.e. t Î [0, T]. By (S1) and Lemma 2.1, one has

F(t, x) − F(t, 0) ≤
1∫

0

(f (t)h(|sx|) + g(t), x)ds

≤ f (t)[h(|x|) + C]|x| + g(t)|x|
≤ f (t)[ε|x| + C0 + C]|x| + g(t)|x|
= εf (t)|x|2 + [f (t)(C0 + C) + g(t)]|x| ≤ Q(t)|x|3

for all |x| ≥ δ, a.e. t Î [0, T] and some Q(t) Î L1(0, T; ℝ+) given by

Q(t) := εf (t)δ−1 + [f (t)(C0 + C) + g(t)]δ−2.

Now, it follows from (1.10) that

F(t, x) − F(t, 0) ≤ −1
2
k2ω2(1 + ε)|x|2 + Q(t)|x|3

for all x Î ℝN and a.e. t Î [0, T]. Hence, we obtain

ψ(u) = −1
2

T∫
0

| u̇(t)|2dt −
T∫

0

[F(t, u(t)) − F(t, 0)] dt

≥ −1
2

T∫
0

| u̇(t)|2dt + 1
2
k2ω2(1 + ε)

T∫
0

| u(t)|2dt −
T∫

0

Q(t)|u(t)|3dt

≥ 1
2

ε

T∫
0

| u̇(t)|2dt + 1
2
k2ω2(1 + ε)|ū|2T − ||u||3∞

T∫
0

Q(t)dt

≥ C12||u||2 − C13||u||3

for all u Î Hk. Then, (ψ1) follows from the above inequality.

For u ∈ H⊥
k , by (1.9), one has

ψ(u) ≤ −1
2

T∫
0

| u̇(t)|2dt + 1
2
(k + 1)2ω2

T∫
0

| u(t)|2dt ≤ 0.

So, (ψ2) is obtained. At last, (ψ3) follows from (�1) which are appeared in the proof

of Theorem 1.2. Then the proof of Theorem 1.3 is completed. □
Proof of Theorem 1.4. From the proof of Theorem 1.1, we know that � is coercive

which implies that � satisfies the (PS) condition. With the similar manner to [4,7], we

can get the multiplicity results, here we omit the details. □
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4 Examples
In this section, we give some examples to illustrate our results.

Example 4.1. Consider the function

F(t, x) =
(
1
3
T − t

) |x|2
ln (100 + |x|2) + (d(t), x),

where d(t) Î L1(0, T; ℝN). Let h(t) = t
ln (100+t2), then H(t) =

∫ t
0

s
ln (100+s2) ds, by a direct

computation, (S1) and (S3) hold. Then, by Theorem 1.2, we conclude that problem

(1.1) has one solution in H1
T. However, as the reason of Remark 1.3, the results in

[1-13] cannot be applied.

Example 4.2. Consider the function

F(t, x) =

{( 2
3T − t

) |x|2
ln (100+|x|2) + A(t)|x| + B(t), |x| > 1,

− 1
4ω2|x|2 + (12ω2 + 3

2T − 9
4 t
) |x|4 − ( 14ω2 + 5

6T − 5
4 t
) |x|6, |x| ≤ 1,

where A(t), B(t) are suitable functions which insure assumption (A) hold. Also, put

H(t) =
∫ t
0

s
ln (100+s2) ds, H(t) =

∫ t
0

s
ln (100+s2) ds, we see that (S1), (S2) and (1.11) hold. By

virtue of Theorem 1.4, problem (1.1) has at least three distinct solutions in H1
T.

Example 4.3. Consider the function

F(t, x) =
(
2
3
T − t

)
ln(100 + |x|2).

We observe that

|∇F(t, x)| ≤
∣∣∣∣23T − t

∣∣∣∣ 2|x|
100 + |x|2 ≤ 2

∣∣∣∣23T − t

∣∣∣∣ ,
which means ∇F(t, x) is bounded, moreover, one has

T∫
0
F(t, x)dt → +∞ as |x| → +∞.

Then, by the results in [3,7,12], problem (1.1) has one solution which minimizes the

functional � in H1
T.

In fact, our Theorem 1.1 can also handle this case. In this situation, let h(t) = t
100+t2 ,

H(t) =
∫ t

0

s
100+s2 ds, and choose C = 2, C* = 1 f (t) = 2

∣∣ 2
3T − t

∣∣, g(t) ≡ 0, we infer

(i) h(s) ≤ h(t) + C ∀s ≤ t, s, t ∈ R+,

(ii) h(s + t) =
s + t

100 + (s + t)2
≤ h(s) + h(t) ∀s, t ∈ R+,

(iii) th(t) − 2H(t) =
t2

100 + t2
− 2

[
1
2
ln(100 + t2) − 1

2
ln 100

]
as t → +∞,

→ −∞

(iv)
H(t)
t2

=

t∫
0

s
100 + s2

ds

t2
→ 0 as t → +∞.
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and

1
H(|x|)

T∫
0
F(t, x)dx > 0 as —x| → + ∞.

So, by Theorem 1.1, problem (1.1) has one solution which minimizes the functional

� in H1
T.

Remark 4.1. Unlike the control functions in [12], where h(t) is nondecreasing, here

control function h(t) = t
100+t2 is bounded but not increasing.

Example 4.4. Consider the function

F(t, x) =
(
1
3
T − t

)
|x|

4
3 + (k(t), x),

where k(t) Î L1(0, T; ℝN). It is easy to check that

|∇F(t, x)| ≤ 4
3

∣∣∣∣13T − t

∣∣∣∣ |x| 13 + |k(t)|.

The above inequality leads to (1.4) hold with

f (t) =
4
3

∣∣∣∣13T − t

∣∣∣∣ , g(t) = |k(t)|.

Take α = 1
3, then

1
|x|2α

T∫
0

F(t, x)dt → −∞ as |x| → +∞.

So, by the theorems in [3,7,12,13], problem (1.1) has at least one solution in H1
T.

Indeed, our Theorem 1.2 can also deal with this case. Let h(t) = t
1
3, H(t) = 3

4 t
4
3, and

choose C = 0, C* = 1, f (t) = 4
3

∣∣4
3T − t

∣∣, g(t) = |k(t)|, we know

(i) h(s) ≤ h(t) ∀s ≤ t, s, t ∈ R+,

(ii) h(s + t) = (s + t)
1
3 ≤ 8(h(s) + h(t)) ∀s, t ∈ R+,

(iii) th(t) − 2H(t) = −1
2
t
4
3 → −∞ as t → + ∞,

(iv)
H(t)
t2

=
3

4t
2
3

→ 0 as t → + ∞.

Furthermore, one has

1
H(|x|)

T∫
0

F(t, x)dx < 0 as |x| → + ∞.

Hence, (S1) and (S3) are true, by Theorem 1.2, problem (1.1) has at least one solution

in H1
T. However, we can find that the results in [14] cannot deal with this case.
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