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Abstract

This article is concerned with global strong solutions of the micro-polar,
compressible flow with density-dependent viscosity coefficients in one-dimensional
bounded intervals. The important point in this article is that the initial density may
vanish in an open subset.

1 Introduction
Theory of micro-polar, compressible flow was first introduced by Eringen [1], describing

the compressible fluids with randomly oriented particles suspended in the medium

when the deformation of fluid particles is ignored. The governing equations in Eulerian

coordinate take the form as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρt + (ρu)x = 0,

(ρu)t + (ρu2)x + px = (μux)x,

(ρw)t + (ρuw)x + 2νw = (λwx)x,

(ρe)t + (ρeu)x + pux = μ(ux)2 + λ(wx)2 + 2μw2 + (κθx)x,

(1)

where r = r (t, x) denotes the density of the fluid, u = u(t, x) is the velocity, w = w(t, x)

is the micro-rotational velocity, θ = θ (t, x) is the temperature, e = e(t, x) is the internal

energy, p = p(r, θ) is the pressure. μ = μ (r, θ), ν = ν (r,θ), and l = l (r, θ) are the viscos-
ities of the fluid, and � is the heat conductivity.

There are several articles that have considered the above micro-polar, compressible

flow, with the viscosity being constant satisfying some physical meaning. Here, we only

refer the reader to [2-4], wherein the global existence was established for (1), with the

condition that the initial density needs to be bounded a way from zero.

In view of their being physically important, the viscosities are not constants. In this

article, we consider a simpler model (2) below. For the physical consideration, in the

case of isothermal flow, [5] introduce the viscosities depending on the density r for

isentropic flow. For the micro-polar, compressible flow, the model meets the following

conditions:
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⎧⎪⎨
⎪⎩

ρt + (ρu)x = 0,

(ρu)t + (ρu2)x + (p(ρ))x = (μ(ρ)ux)x,

(ρw)t + (ρuw)x + ν(ρ)w = (λ(ρ)wx)x,

(2)

with the initial and boundary conditions:{
ρ(0, x) = ρ0(x), u(0, x) = u0(x), w(0, x) = w0(x) on 0 ≤ x ≤ 1,

u(t, 0) = u(t, 1) = w(t, 0) = w(t, 1) = 0.
(3)

The pressure p is determined by p(r) = arg, where a is some positive constant and

g >1, and we normalize a = 1 in the rest of this article. The viscosities tend to depend

on the density r, i.e. μ (r), ν (r), and l (r), satisfying{
μ(ρ), ν(ρ), λ(ρ) ∈ C1[0,∞) and μ(ρ) ≥ μ1 > 0,

λ(ρ) ≥ λ1 > 0 for all ρ ≥ 0,
(4)

where μ1 and l1 are positive constants.

Our main concern here is to show the existence of global strong solution for the initial

boundary value problem (2)-(3). It is worth emphasizing that the initial density may van-

ish in an open subset, and the viscosity coefficients μ, ν, and l depend on density r.
Some of the relevant studies in this direction can be summarized as follows. When

the viscosity μ, ν, and l are constants, the global strong solution is established by

Chen in [6] where the vacuum is also allowed. We also refer the reader for a detailed

description of three-dimensional micro-polar, compressible flow under the effect of

magnetic field, in respect of which global weak solution was established by Amirat and

Hamdache in [7].

Without the randomly oriented particles suspended in the fluid, i.e., when w = 0, the

compressible Navier-Stokes equation with density-dependent viscosity, Wen and Yao

[8] proved the global strong solution in one dimension, which generalized Hoff’s study

[9] (dealing with the case of constant viscosity coefficient); for the free boundary, the

existence of global weak solutions, we refer the readers to Guo and Zhu [10], and

Jiang, Xin and Zhang [11] and references therein.

The aim of this article is to consider the micro-polar, compressible flow with den-

sity-dependent viscosities, in the spirit of [8].

Now, we state our main result:

Theorem 1.1. Assume that the viscosity μ (r), ν (r), and l (r) satisfy (4), with the

initial data r0 Î H1 (0, 1), (u0,w0) ∈ H1
0(0, 1). Then, there exists a global strong solu-

tions (r, u, w) to the initial boundary value problem (2)-(3) such that for all T Î (0, + ∞),⎧⎪⎨
⎪⎩

ρ ∈ L∞(0,T;H1(0, 1)), (u,w) ∈ L∞(0,T;H1
0(0, 1)),

ρt ∈ L∞(0,T; L2(0, 1)),
(
(ρu)t, (ρw)t

) ∈ L2(0,T; L2(0, 1)),

(uxx,wxx) ∈ L2(0,T; L2(0, 1)).

(5)

This article is organized as follows. In Section 2, we derive some uniform estimates

for the proof of the main Theorem 1.1, which do not depend on the lower bound of

the density. We shall complete the proof of Theorem 1.1 in Section 3.

Notations Throughout this article, we denote C, a generic positive constant, depend-

ing only on r0, u0, w0, and the time T, but independent of lower bounds of the initial
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density; we will also use the following simplified notations for the standard Sobolev

spaces:

Lp = Lp(0, 1), H1 = H1(0, 1), H1
0 = H1

0(0, 1) for some 1 ≤ p ≤ ∞.

2 Uniform estimates
The following lemma provides standard (energy) estimates which can be obtained by

multiplying (2)2 by u and (2)3 by w, and then integrating over (0, T) × (0, 1), with the

help of (2)1.

Lemma 2.1. Under the conditions of Theorem 1.1, we have

sup
0≤t≤T

(|√ρu|2L2 + |p(ρ)|L1 ) +
T∫

0

1∫
0

μ(ρ)u2x dx dt ≤ C; (6)

sup
0≤t≤T

|√ρw|2L2 +
T∫

0

1∫
0

ν(ρ)w2 + λ(ρ)w2
x dx dt ≤ C. (7)

The following lemma 2.2 is proved in [8], we omit it here, which plays crucial role

for the proof of Theorem 1.1.

Lemma 2.2. Under the conditions of Theorem 1.1, we have

sup
0≤t≤T

|ρ(t)|L∞ ≤ C. (8)

Now we will prove the second crucial estimates.

Lemma 2.3. Under the conditions of Theorem 1.1, we have

sup
0≤t≤T

|u|H1 +

T∫
0

|√ρut|2L2 dt ≤ C, (9)

sup
0≤t≤T

|w|H1 +

T∫
0

|√ρwt|2L2 dt ≤ C. (10)

Proof. Equation (9) can be obtained via [8], and so we focus on the proof of (10).

From (2)3, we have

ρwt + ρuwx + ν(ρ)w = (λ(ρ)wx)x.

Multiplying the above equality by wt, integrating the resultant equality with respect

to x over [0, 1], with the help of Young’s inequality and (2)1, one gets

1∫
0

ρw2
t dx +

d
dt

1∫
0

ν(ρ)w2 + λ(ρ)w2
x dx

≤
1∫

0

ρu2w2
x dx −

1∫
0

(ν(ρ))xuw
2 dx −

1∫
0

(λ(ρ))xuw
2
x dx

−
1∫

0

ν ′(ρ)ρuxw2 dx −
1∫

0

λ′(ρ)ρuxw2
x dx ≤

5∑
i=1

Ii.

(11)
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Using Sobolev inequalities, (8) and (9), we have

I1 =

1∫
0

ρu2w2
x dx ≤ |ρ|L∞|u|2L∞|wx|2L2 ≤ |ρ|L∞|ux|2L2 |wx|2L2 ≤ C|wx|2L2 ;

I2 = −
1∫

0

(ν(ρ))xuw
2 dx =

1∫
0

ν(ρ)uxw2 dx + 2

1∫
0

ν(ρ)uwwx dx

≤ C|w|2L∞|ux|L2 + C|u|L∞|w|L∞|wx|L2 ≤ C|wx|2L2 ;

I3 = −
1∫

0

(λ(ρ))xuw
2
x dx = −

1∫
0

((λ(ρ))x/(λ(ρ))
2)u(λ(ρ)wx)2 dx

=

1∫
0

(
1/λ(ρ)

)
xu(λ(ρ)wx)2 dx = −

1∫
0

λ(ρ)ux(wx)2 dx − 2

1∫
0

uwx(λ(ρ)wx)x dx

≤ |λ(ρ)wx|L∞|ux|L2 |wx|L2 + 2

1∫
0

uwx(ρwt + ρuwx + ν(ρ)w)dx

≤ C|ρwt + ρuwx + ν(ρ)w|L2 |ux|L2 |wx|L2 + δ|√ρwt|2L2
+ C|ρ|L∞|u|2L∞|wx|2L2 + C|ν(ρ)|L∞|u|L∞|w|L∞|wx|L2

≤ |ρ|1/2L∞ |√ρwt|L2 |ux|L2 |wx|L2 + |ρ|L∞|u|L∞|wx|2L2 + |ν(ρ)|L∞|wx|2L2
+ δ|√ρwt|2L2 + C|wx|2L2

≤ C|wx|2L2 + 2δ|√ρwt|2L2 ;

I4 = −
1∫

0

ν ′(ρ)ρuxw2 dx ≤ |ν ′(ρ)|L∞|ρ|L∞|w|2L∞|ux|L2 ≤ C|wx|2L2 ;

I5 = −
1∫

0

λ′(ρ)ρuxw2
x dx ≤ −

1∫
0

(λ′(ρ)ρ/λ(ρ))λ(ρ)wxuxwx dx

≤ C|λ(ρ)wx|L∞|ux|L2 |wx|L2 ≤ C|(λ(ρ)wx)x|L2 |ux|L2 |wx|L2
≤ δ|√ρwt|2L2 + C|wx|2L2 .

Substituting the above estimates into (11), choosing δ = 1/6, and then integrating

with respect to t over (0, t), we get

t∫
0

|√ρwt|2L2ds + |
√

ν(ρ)w|L2 + |
√

λ(ρ)wx|L2

≤ |
√

ν(ρ0)w0|L2 + |
√

λ(ρ0)w0x|L2 + C

t∫
0

|wx|2L2 ds

≤ C + C

t∫
0

|
√

λ(ρ)wx|2L2 ds,

which completes the proof of (10), according to Gronwall’s inequality.
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Lemma 2.4. Under the conditions of Theorem 1.1, we have

T∫
0

|ux|2L∞ dt ≤ C and

T∫
0

|wx|2L∞ dt ≤ C. (12)

Proof. The first inequality has been proved in [8]; now, we consider the second

inequality. By virtue of (8), then

|wx|L∞ ≤ C|λ(ρ)wx|L∞ ≤ C|(λ(ρ)wx)x|L2
≤ C|ρwt + ρuwx + ν(ρ)w|L2
≤ C|ρ|L∞|√ρwt|L2 + C|ρ|L∞|u|L∞|wx|L2 + C|w|L2
≤ C + C|√ρwt|L2 .

The above inequalities together with (10) provide the proof of the second inequality.

Lemma 2.5. Under the conditions of Theorem 1.1, we have

sup
0≤t≤T

|ρx|2L2 +
T∫

0

|uxx|2L2 dt ≤ C, (13)

T∫
0

|wxx|2L2 dt ≤ C. (14)

Proof. For the proof of (13), see [8]. From (2), (4), and (8), we have

|wxx|2L2 ≤ C|λ(ρ)wxx|2L2
≤ C|λ(ρ)wxx + λ′(ρ)ρxwx|2L2 + C|λ′(ρ)ρxwx|2L2
≤ C|(λ(ρ)wx)x|2L2 + C|wx|2L∞|ρx|2L2
≤ C|ρwt + ρuwx + ν(ρ)|2L2 + C|wx|2L∞|ρx|L2
≤ C|√ρwt|2L2 + C|u|L∞|wx|2L2 + C|w|2L2 + C|wx|2L∞|ρx|L2 ,

which together with (6), (7), (10), (12), and (13) furnishes the proof of (14).

3 Proof of Theorem 1.1
In this section, we prove the global existence of strong solutions to the problems (2)-

(3) by applying the a priori estimates established in the previous section. One of the

main issues is the non-vanishing characteristic of the density in the approximate solu-

tions. To this end, we modify the initial data, and choose the smooth approximate

function (�ε
0, u

ε
0,w

ε
0) such that

�ε
0 ∈ C2[0, 1], 0 < ε ≤ �ε

0 ≤ 1 + |�0|L∞ in (0, 1), �ε
0 → �0 in H1

and

(uε
0,w

ε
0) → (u0,w0) in H1.

Now, we consider the initial-boundary value problems (2)-(3) with the initial data

(r0, u0, w0) replaced by (�ε
0, u

ε
0,w

ε
0). By virtue of Lemmas 2.1-2.5, we could conclude

that
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sup
0≤t≤T

(|ρε|H1 + |ρε
t |L2 + |(uε ,wε)|H1 ) +

T∫
0

|((ρεuε)t, (ρεuε)t)|2L2 + |(uε
xx,w

ε
xx)|L2 dt ≤ C.

We emphasize that C does not depend on the parameter ε, i.e., the lower bound of

the initial density. Then by the standard argument of compactness, we conclude from

(2)-(3) that there exists a global strong solution, details of which are omitted here.
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