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Abstract
This paper proposes a first-order random coefficient integer-valued autoregressive
model under random environment by introducing a Markov chain with a finite state
space. We derive conditions for stationarity, geometric ergodicity, and β-mixing
property with exponential decay for the random coefficient integer-valued
autoregressive model under random environment.
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1 Introduction
In the fields of economics, finance, biology, and engineering, many time series data exhibit
nonlinearity, which cannot be explained by the traditional linear time seriesmodels. In this
context, many nonlinear time series models (see, among others, [–]) which have been
more effective in capturing certain features of time series data were proposed. However,
time series models for a sequence of dependent discrete random variables are rare. Al-
Osh and Alzaid [] introduced first-order integer-valued autoregressive (INAR()) model
for modeling and generation of sequences of dependent counting processes. Nastić and
Ristić [] derived the distributions of the innovation processes of some mixed integer-
valued autoregressive models of orders  and  with geometric marginal distributions and
discussed several properties of the model. Zheng et al. [] introduced first-order random
coefficient integer-valued autoregressive (RCINAR()) model which is defined as

Xt = φt ◦Xt– + εt , t ≥ , (.)

where {φt} is an i.i.d. sequence on [, ); {εt} is an i.i.d. non-negative integer-valued se-
quence; φt ◦Xt– =

∑Xt–
i= Bi, where {Bi} is an i.i.d. Bernoulli random sequence with P(Bi =

 | φt) = φt , and {Bi} is independent of Xt–. This model assumes random coefficient and
some basic probabilistic and statistical properties of it discussed by []. Chen and Wang
[] proposed a conditional least absolute deviation method to estimate the parameters of
the model and investigated the asymptotic distribution of the new estimator. Roitershtein
and Zhong [] studied the asymptotic behavior of this model in the case where the addi-
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tive term in the underlying random linear recursion belongs to the domain of attraction
of a stable law.
There is a growing literature on the application of model (.). However, the model ne-

glects the influence which is produced by environment (see, among others, [, ]). For
instance, let Xt be the number of queuer in the tth hour, φt ◦Xt– be the number of queuer
left over from the previous hour and εt be number of the new queuer in the current hour.
Here, Xt satisfies model (.). In fact, the number of new queues may be influenced by a
sudden change (e.g., blizzard) of the various environments and this could make a tremen-
dous difference at different hours.
In this paper, we extendmodel (.) to a random environmentmodel, where the εt varies

with a new i.i.d. random variable which takes values in a finite set. We will investigate the
basic probabilistic and statistic properties of the new model and provide mild sufficient
conditions for geometric ergodicity in the present paper.
The remainder of the paper is organized as follows. Section  introduces the first-order

random coefficient integer-valued autoregressive model under a random environment.
Section  develops some useful lemmas and summarizes the main results. All the proofs
are collected in Section .

2 The first-order random coefficient integer-valued autoregressive model
under random environment

In this section, we first give some notations which will be used throughout the paper. We
suppose that (�,F ,P) is a probability space. E = {, , . . . , r} (r is a positive integer) denotes
a finite set, and H denotes the σ -algebra generated by all subsets of E. {Zt , t ≥ } is an
irreducible and aperiodic Markov chain defined on (�,F ,P), and it takes values in E.
Let εt(Zt) =

∑r
i= εt(i)I{i}(Zt), where {εt()}, {εt()}, . . . , {εt(r)} are i.i.d. non-negative

integer-valued random variables and I{i}(Zt) denotes the indicator function of the single
element set {i}.
This paper considers the following nonlinear time series model:

Xt = φt ◦Xt– + εt(Zt), t ≥ , (.)

where: () {φt} is an i.i.d. sequence of random variables with probability distribution func-
tion Pφ on [, ); () for each i ∈ E, {εt(i)} has probability mass function fi(·); () φt ◦Xt– =∑Xt–

i= Bi, where {Bi} is an i.i.d. Bernoulli random sequence with P(Bi =  | φt) = φt and in-
dependent ofXt–; ()X, {φt} and {εt(i)} (∀i ∈ E), are independent.We call this newmodel
a first-order random coefficient integer-valued autoregressive model under random envi-
ronment (RERCINAR()).
Obviously, model (.) is a generalization of model (.). The difference between model

(.) and model (.) lies in the fact that the former reflects the factors of the interference
in a system as well as the system itself being influenced by a sudden environment change.
So the new model (.) can better imitate many substantial problems in the real world.
The idea is similar to that of Tong and Lim [], where a class of threshold autoregressive

models were introduced to capture the notion of a limit cycle, which plays a key role in
the modeling of cyclical data.
The iterative sequence in (.) develops a Markov chain on a general state space, while

the iterative sequence of the nonlinear time series model (.) does not possess such a
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better nature. So until now, to the best of our knowledge, there is very little research on the
limit behavior of the iterative sequence of model (.). In this paper, we try to add proper
supplementary variables to the non-Markov process, thereby obtaining aMarkov process,
so we can use the theory of Markov processes to an analysis of the non-Markov process.
Furthermore, the nature of the original non-Markov process can be obtained from the
nature of the Markov process.
In the following, let Z = {, , , . . .}, and B denote the σ -algebra generated by all subsets

of Z. By Lemma  in the next section, we know that the sequence {(Xt ,Zt)} is a Markov
chain on Z× E with the following transition probability:

P
{
(Xt ,Zt) = (y, j) | (Xt–,Zt–) = (x, i)

}

= pij
min(x,y)∑
k=

Ck
x fj(y – k)

∫ 


φk
 ( – φ)x–k dPφ , (.)

where pij = P(Zt+ = j | Zt = i) is the transition function ofMarkov chain {Zt , t ≥ }. In fact,

P
{
(Xt ,Zt) = (y, j) | (Xt–,Zt–) = (x, i)

}

= pijP
{
φt ◦ x + εt(j) = y

}
= pij

∫ 


P
{
φt ◦ x + εt(j) = y | φt

}
dPφ

= pij
∫ 



min(x,y)∑
k=

P
{
φt ◦ x = k, εt(j) = y – k | φt

}
dPφ

= pij
∫ 



min(x,y)∑
k=

P
{
εt(j) = y – k

}
P{φt ◦ x = k | φt}dPφ

= pij
∫ 



min(x,y)∑
k=

fj(y – k)Ck
xφ

k
t ( – φt)x–k}dPφ

= pij
min(x,y)∑
k=

Ck
x fj(y – k)

∫ 


φk
 ( – φ)x–k dPφ ,

where the first equation follows from the proof procedure of Lemma .
We introduce the following notation:

P(t){(x, i), (y, j)} = P
{
(Xs+t ,Zs+t) = (y, j) | (Xs,Zs) = (x, i)

}
, ∀x, y ∈ Z, i, j ∈ E.

Therefore by the property of conditional probability, we have

P(t){(x, i), (y, j)} =∑
k∈E

∑
z∈Z

P
{
(x, i), (z,k)

}
P(t–){(z,k), (y, j)}.

By the inductive approach, ∀t ≥  it follows that

P(t){(x, i), (y, j)}

=
∑

k,k,...,kt–∈E
pikpkk · · ·pkt–j

∑
z,z,...,zt–∈Z

min(x,z)∑
m=

min(z,z)∑
m=

· · ·
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min(zt–,y)∑
mt=

Cm
x fk (z –m)

∫ 


φ
m
 ( – φ)x–m dPφ ·Cm

z fk (z –m)

×
∫ 


φ
m
 ( – φ)z–m dPφ · · ·Cmt

zt– fj(y –mt)
∫ 


φ
mt
 ( – φ)zt––mt dPφ . (.)

Generally, (.) is called a one step transition probability or a transition probability of
theMarkov chain {(Xt ,Zt)}, and (.) is called a t-step transition probability of theMarkov
chain {(Xt ,Zt)}.

3 Main results
Now we give some basic assumptions which guarantee that the following lemmas can be
used properly throughout the paper.
(A) {Zt}, {εt()}, . . . , {εt(r)} are mutually independent satisfying ∀i ∈ E, t ≥ , Zt+ and

εt+(i) are all independent of {Xs, s ≤ t};
(A) E(εt(i)) is a constant, independent of t, ∀i ∈ E, E(φt), E(εt (i)) are all assumed finite.
(A) The probability mass function fi(·) of εt(i) is positive everywhere, that is, ∀i ∈ E,

fi(·) > .

Remark  The independence of {εt()}, . . . , {εt(r)} and (A) ensure the stationarity of
{εt(i)}, i ∈ E, and the assumption (A) is needed to guarantee the irreducibility and aperi-
odicity of {(Xt ,Zt)}.

A Markov chain {Yt} is said to be irreducible if each state can communicate with every
other one, i.e., for every x and y, there exists t > , such that P(Yt = y | Y = x) > . An
irreducible chain on a countable space is said to be aperiodic if for some state x the proba-
bility of remaining in x is strictly positive: P(x,x) > . This prevents the chain from having
a cyclic behavior. But before we give the qualifications of {(Xt ,Zt)} to become irreducible
and aperiodic, we need the following lemma.

Lemma  Suppose (A) and (A) hold, then the sequence {(Xt ,Zt)} is a time-homogeneous
Markov chain defined on (�,F ,P) with state space (Z× E,B ×H).

Next, we state the results about the irreducibility and aperiodicity of the sequence
{(Xt ,Zt)}. Although we narrate them for the proofs of our main results, they are of in-
dependent interest. Note that {Zt} is irreducible, that is, for arbitrary measure λ defined
on (E,H), {Zt} is λ-irreducible. Let ϕ be a measure satisfies ϕ{i} > , ∀i ∈ E. So, we can de-
rive the measure μ×ϕ defined on (Z×E,B×H), where μ is a Lebesgue measure defined
on (Z,B), such that μ(A) >  implies μ × ϕ(A× B) > , A ∈ B, B ∈H.

Lemma  Under assumptions (A)-(A), the Markov chain {(Xt ,Zt)} is μ × ϕ irreducible
and aperiodic.

The following lemma is the key to the proof of Lemma .

Lemma  (Tong []) A ϕ-irreducible Markov chain {Yt} with state space (χ ,A) is aperi-
odic if and only if there exists A ∈A satisfying ϕ(A) > , and for every regular subset B of A,
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ϕ(B) > , there exists a positive integer t such that ∀y ∈ χ ,

P(t)(y,B) > , P(t+)(y,B) > .

A Markov chain {Yt} with state space (χ ,A) is said to be ergodic if there exists a prob-
ability distribution π , such that ∀y ∈ χ , limt→∞ ‖P(t)(y, ·) – π (·)‖τ = . Moreover, if there
exists a constant  < β < , such that ∀y ∈ χ , limt→∞ β–t‖P(t)(y, ·) – π (·)‖τ = , then {Yt} is
geometrically ergodic, where P(t)(y, ·) is the transition probability of {Yt} and ‖ ·‖τ denotes
the total variation norm. Knowing the sufficient conditions for geometrical ergodicity of a
time series is very useful for analyzing it. This is so, first, because it clarifies the parameter
space for estimation purposes when the model is parametric, and second, because it vali-
dates useful limit theorems such as the asymptotic normality of various estimators (Meyn
and Tweedie []).
Our main results are as follows: Theorem  gives the sufficient conditions for geometric

ergodicity for the Markov chain {(Xt ,Zt)}, while Theorem  develops the idea that {Xt}
possesses the nature which is analogous to the geometric ergodicity of the Markov chain,
though {Xt} is not a Markov chain.

Theorem  Suppose (A)-(A) hold, and there exist constants  < α <  and c ≥ , such
that

E(φ ◦ x | Z = i)≤ αx + c, ∀x ∈ Z, i ∈ E,

then theMarkov chain {(Xt ,Zt)} is geometrically ergodic.Moreover, if {(Xt ,Zt)} is initialized
from its invariant measure, then it is stationary and β-mixing with exponential decay.

Theorem  Suppose (A)-(A) hold and {(Xt ,Zt)} is geometrically ergodic. Then there ex-
ist a unique probability distribution π∗ and a positive number β < , such that for any
initial value x ∈ Z, X = x and ∀y ∈ Z,

lim
t→∞β–t∥∥P(Xt = y | X = x) – π∗(y)

∥∥
τ
= ,

where ‖ · ‖τ is the total variation norm.

4 Proofs

Proof of Lemma  ∀x, y,xs ∈ Z, and ∀i, j, is ∈ E, where s is a integer number satisfying  ≤
s < t, we have

P
{
(Xt+,Zt+) = (y, j) | (Xt ,Zt) = (x, i), (Xs,Zs) = (xs, is),  ≤ s < t

}

= P
{
φt+ ◦Xt + εt+(Zt+) = y,Zt+ = j | (Xt ,Zt) = (x, i), (Xs,Zs) = (xs, is), ≤ s < t

}

= P
{
φt+ ◦ x + εt+(j) = y,Zt+ = j | (Xt ,Zt) = (x, i), (Xs,Zs) = (xs, is),  ≤ s < t

}

= P
{
φt+ ◦ x + εt+(j) = y | Xt = x,Zt = i

}
P{Zt+ = j | Xt = x,Zt = i}

= P
{
φt+ ◦ x + εt+(j) = y | Xt = x,Zt = i

}
P{Zt+ = j | Zt = i}

= pij · P
{
φt+ ◦ x + εt+(j) = y

}
,

http://www.advancesindifferenceequations.com/content/2014/1/99
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where the last equation follows from the definition of the RERCINAR() model, the as-
sumption (A), and the notation pij = P{Zt+ = j | Zt = i}.
On the other hand,

P
{
(Xt+,Zt+) = (y, j) | (Xt ,Zt) = (x, i)

}

= P
{
φt+ ◦ x + εt+(j) = y,Zt+ = j | (Xt ,Zt) = (x, i)

}

= P
{
φt+ ◦ x + εt+(j) = y | Xt = x,Zt = i

}
P{Zt+ = j | Xt = x,Zt = i}

= P
{
φt+ ◦ x + εt+(j) = y | Xt = x,Zt = i

}
P{Zt+ = j | Zt = i}

= pij · P
{
φt+ ◦ x + εt+(j) = y

}
.

Therefore ∀x, y,xs ∈ Z, and ∀i, j, is ∈ E, we have

P
{
(Xt+,Zt+) = (y, j) | (Xt ,Zt) = (x, i), (Xs,Zs) = (xs, is),  ≤ s < t

}

= P
{
(Xt+,Zt+) = (y, j) | (Xt ,Zt) = (x, i)

}
.

Hence the sequence {(Xt ,Zt)} is a Markov chain, and its time-homogeneity follows from
the stationarity of εt+(j), j ∈ E. �

Proof of Lemma  Suppose A× B ∈ B ×H and μ × ϕ(A× B) > . From the irreducibility
of {Zt}, we know that ∀i, j ∈ E, ∃s > , such that

p(t)ij = P(Zt+s = j | Zs = i) > , ∀t ≥ s,

that is, ∃k,k, . . . ,kt– ∈ E, such that

pikpkk · · ·pkt–j > .

Then from (.), ∀(x, i) ∈ Z× E, we have

P(t){(x, i), (y, j)}

=
∑

k,k,...,kt–∈E
pikpkk · · ·pkt–j

∑
z,z,...,zt–∈Z

min(x,z)∑
m=

min(z,z)∑
m=

· · ·

min(zt–,y)∑
mt=

Cm
x fk (z –m)

∫ 


φ
m
 ( – φ)x–m dPφ ·Cm

z fk (z –m)

×
∫ 


φ
m
 ( – φ)z–m dPφ · · ·Cmt

zt– fj(y –mt)
∫ 


φ
mt
 ( – φ)zt––mt dPφ > ,

therefore the Markov chain {(Xt ,Zt)} is μ × ϕ irreducible. The aperiodicity of {(Xt ,Zt)}
follows from Lemma . �

The proofs of our main results make use of the following well-known lemma.
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Lemma  (Tweedie []) Suppose that {Yt} is a ϕ-irreducible and aperiodic Markov chain
with state space (χ ,A). If there exist a non-negative measurable function g(·), a finite set
B ∈A, and three constants c > , c > , and  < ρ < , such that

E
{
g(Yt) | Yt– = y

} ≤ ρg(y) – c, ∀y /∈ B,

E
{
g(Yt) | Yt– = y

} ≤ c, ∀y ∈ B,

then {Yt} is geometrically ergodic. If {Yt} is initialized from its invariant measure π , then
it is strictly stationary and β-mixing with exponential decay.

Proof of Theorem  By Lemma , Lemma , and the conditions given in Theorem , we
know that {(Xt ,Zt)} is a μ × ϕ irreducible and aperiodic Markov chain. So by Lemma 
it suffices to show that there exist a non-negative measurable function g(·), a finite set B,
and three constants c > , c > , and  < ρ < , such that

E
{
g(Xt ,Zt) | (Xt–,Zt–) = (x, i)

} ≤ ρg(x, i) – c, ∀(x, i) /∈ B, (.)

E
{
g(Xt ,Zt) | (Xt–,Zt–) = (x, i)

} ≤ c, ∀(x, i) ∈ B. (.)

Let

g(x, i) =
√
x + i = ‖�m‖,

where ‖ · ‖ denotes the Euclidean norm, and �m = (x, i), x ∈ Z, i ∈ E. Then we have

E
{
g(X,Z) | (X,Z) = (x, i)

}

= E
{
g
(
φ ◦X + ε(Z),Z

) | (X,Z) = (x, i)
}
= E

{
g
(
φ ◦ x + ε(Z),Z

) | Z = i
}

≤ E
{∥∥φ ◦ x + ε(Z)

∥∥
 | Z = i

}
+ E

{‖Z‖ | Z = i
}

≤ E
{‖φ ◦ x‖ | Z = i

}
+ E

{∥∥ε(Z)
∥∥
 | Z = i

}
+ E

{‖Z‖ | Z = i
}

= E{φ ◦ x | Z = i} + c

≤ αx + c + c,

where c =maxi∈E(E{‖ε(Z)‖ | Z = i} + E{‖Z‖ | Z = i}).
Suppose M⊂ Z is a finite set, and K ∈ M. Let

B =
{
(x, i) : x ≤ K , i ∈ E

}
,

c = (ρ – α)K – c – c,

c = αK + c + c,

where K > (c + c)/(ρ – α) and α is a real number satisfying α < ρ < . Then we have

E
{
g(X,Z) | (X,Z) = (x, i)

}

≤ ρx – ρx + αx + c + c

http://www.advancesindifferenceequations.com/content/2014/1/99
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≤ ρx –
[
(ρ – α)x – c – c

]

≤ ρg(x, i) –
[
(ρ – α)K – c – c

]
,

therefore (.) and (.) hold. This completes the proof. �

Proof Since {(Xt ,Zt)} is geometrically ergodic, there exist a probability measure π on (Z×
E,B ×H), and a constant β :  < β <  such that ∀(x, i) ∈ Z× E,

lim
t→∞β–t∥∥P(t)((x, i), ·) – π (·)∥∥

τ
= . (.)

Suppose π∗ is a set function on (Z,B) satisfying

π∗(A) = π (A× E), ∀A ∈ B,

obviously, π∗ is a probability measure on (Z,B). Suppose that {Xt} is iterative sequence
generated by (.) with initial value X = x, then ∀y ∈ Z, we have

P(Xt = y | X = x)

=
∑
j∈E

P(Xt = y,Zt = j | X = x)

=
∑
j∈E

∑
i∈E

P(Xt = y,Zt = j | X = x,Z = i)P(Z = i | X = x), (.)

and ∀A ∈ B,

π∗(A) = π (A× E) =
∑
j∈E

∑
i∈E

π
(
A× {j})P(Z = i | X = x). (.)

Since E is a finite set, then (.), (.), and (.) imply that

lim
t→∞β–t∥∥P(Xt = y | X = x) – π∗(y)

∥∥
τ
= . (.)

Then π∗ is an invariant probability measure of {Xt}, and the uniqueness of π∗ can be
deduced from the uniqueness of π . This completes the proof. �
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