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Abstract
In this paper, we consider the properties of the Green’s function for the nonlinear
fractional differential equation boundary value problem Dq

0+u(t) = f (t,u(t)),
t ∈ J := [0, 1], u(0) = u′(1) = 0, where 1 < q ≤ 2 is a real number, and Dq

0+ is the standard
Riemann-Liouville differentiation. As an application of the Green’s function, we give
some multiple positive solutions for singular boundary value problems, and we also
give the uniqueness of solution for a singular problem by means of the
Leray-Schauder nonlinear alternative, a fixed-point theorem on cones, and a mixed
monotone method.
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1 Introduction
This paper is mainly concerned with the existence andmultiplicity of positive solutions of
the nonlinear fractional differential equation boundary value problem (BVP for short)

Dq
+u(t) = f

(
t,u(t)

)
,  < t < , (.)

u() = u′() = , (.)

where  < q ≤  is a real number andDq
+ is the standard Riemann-Liouville differentiation,

and f is a given function satisfying some assumptions that will be specified later, with
limu→ f (·,u) = +∞ (i.e., f is singular at u = ).
In the last few years, fractional differential equations (in short FDEs) have been stud-

ied extensively. The motivation for those works stems from both the development of the
theory of fractional calculus itself and the applications of such constructions in various
sciences such as physics, mechanics, chemistry, engineering, and so on. For an extensive
collection of such results, we refer the readers to themonographs by Kilbas et al. [],Miller
and Ross [], Oldham and Spanier [], Podlubny [] and Samko et al. [].
Some basic theory for the initial value problems of FDE involving Riemann-Liouville

differential operator has been discussed by Lakshmikantham [–], Babakhani and
Daftardar-Gejji [–] and Bai [], and so on. Also, there are some papers which deal
with the existence and multiplicity of solutions (or positive solution) for nonlinear FDE
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of BVPs by using techniques of nonlinear analysis (fixed-point theorems, Leray-Shauder
theory, topological degree theory, etc.); see [–] and the references therein.
Bai and Lü [] studied the following two-point boundary value problem of FDEs:

Dq
+u(t) + f

(
t,u(t)

)
= , u() = u() = ,  < t < ,  < q ≤ ,

where Dq
+ is the standard Riemann-Liouville fractional derivative. They obtained the ex-

istence of positive solutions by means of the Guo-Krasnosel’skii fixed-point theorem and
the Leggett-Williams fixed-point theorem.
Zhang [] considered the existence and multiplicity of positive solutions for the non-

linear fractional boundary value problem

cDq
+u(t) = f

(
t,u(t)

)
,  < t < , u() + u′() = , u() + u′() = , (.)

where  < q ≤  is a real number, f : [, ] × [, +∞) → [, +∞) and cDq
+ is the stan-

dard Caputo’s fractional derivative. The author obtained the existence and multiplicity
results of positive solutions by means of the Guo-Krasnosel’skii fixed-point theorem and
the Leggett-Williams fixed-point theorem.
Qiu and Bai [] considered the existence of positive solutions for the nonlinear frac-

tional boundary value problem

cDq
+u(t) + f

(
t,u(t)

)
= ,  < t < , u() = u′() = u′′() = , (.)

where  < q ≤  is a real number, f : (, ]×[, +∞)→ [, +∞) with limt→+ f (t, ·) =∞ (i.e.,
f is singular at t = ), and cDq

+ is the standard Caputo’s fractional derivative. The authors
proved the existence of one positive solution by using the Guo-Krasnosel’skii fixed-point
theorem and the nonlinear alternative of Leray-Schauder type in a cone and assuming
certain hypotheses on the function f .
Mena et al. [] proved the existence and uniqueness of a positive and nondecreas-

ing solution for the problem (.) by using a fixed-point theorem in partially ordered
sets.
From the above works, we can see a fact, although the fractional boundary value prob-

lems have been investigated by some authors, singular boundary value problems are sel-
dom considered, in particular, f is singular at u = . Motivated by all the works above, in
this paper we discuss the boundary value problem (.)-(.). Using the Leray-Schauder
nonlinear alternative theorem and the Guo-Krasnosel’skii fixed-point theorem, we give
some new existence criteria for the singular boundary value problem (.)-(.). Finally,
we obtain new uniqueness criteria for the singular boundary value problem (.)-(.) by
a mixed monotone method.
The plan of this paper is as follows. In Section , we shall give some definitions and lem-

mas to prove our main results. In Section , we establish the existence of multiple positive
solutions for the singular boundary value problem (.)-(.) by the Leray-Schauder non-
linear alternative theorem and the Guo-Krasnosel’skii fixed-point theorem. In Section ,
by using a mixed monotone method, we obtain some new uniqueness criteria for the sin-
gular boundary value problem (.)-(.).
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2 Preliminaries and lemmas
For the convenience of the reader, we present here the necessary definitions from frac-
tional calculus theory. These definitions can be found in the recent literature such as [,
] and [].

Definition . [, ] The fractional-order integral of the function h ∈ L([a,b],R+) of or-
der α ∈R+ is defined by

Iαa h(t) =
∫ t

a

(t – s)α–

�(α)
h(s)ds,

where � is the gamma function. When a = , we write Iαh(t) = [h ∗ ϕα](t), where ϕα(t) =
tα–
�(α) for t > , and ϕα(t) =  for t ≤ , and ϕα → δ(t) as α → , where δ is the delta function.

Definition . [, ] For a function h given on the interval [a,b], the αth Riemann-
Liouville fractional-order derivative of h is defined by

(
Dα

a+h
)
(t) =


�(n – α)

(
d
dt

)n ∫ t

a
(t – s)n–α–h(s)ds,

where n = [α] +  and [α] denotes the integer part of α.

From the definition of the Riemann-Liouville derivative, we can obtain the statement.

Lemma . [] Let α > . If we assume u ∈ C(, )∩ L(, ), then differential equation

Dα
+u(t) = ,

has

u(t) = Ctα– +Ctα– + · · · +CNtα–N , Ci ∈R, i = , , . . . ,N ,

as unique solutions, where N is the smallest integer greater than or equal to α.

Lemma . [] Assume that h ∈ C(, ) ∩ L(, ) with a derivative of order q >  that
belongs to C(, )∩ L(, ). Then

Iq+D
q
+h(t) = h(t) +Ctα– +Ctα– + · · · +CNtα–N

for some Ci ∈R, i = , , . . . ,N , where N is the smallest integer greater than or equal to q.

In the following, we present the Green’s function of the FDE boundary value problem.

Lemma . Let h(t) ∈ C[, ] and  < q ≤ , then the unique solution of

Dq
+u(t) + h(t) = ,  < t < , (.)

u() = u′() =  (.)

http://www.advancesindifferenceequations.com/content/2014/1/97
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is given by

u(t) =
∫ 


G(t, s)h(s)ds, (.)

where G(t, s) is the Green’s function given by

G(t, s) =

⎧⎨
⎩

(–s)q–tq––(t–s)q–
�(q) , if  ≤ s ≤ t ≤ ,

(–s)q–tq–
�(q) , if  ≤ t ≤ s ≤ .

(.)

Proof By Lemma ., we can reduce the equation of problem (.) to an equivalent integral
equation:

u(t) = –Iq+h(t) + ctq– + ctq– = –


�(q)

∫ t


(t – s)q–h(s)ds + ctq– + ctq– (.)

for some constants c, c ∈R.
So

u′(t) = (q – )ctq– –
q – 
�(q)

∫ t


(t – s)q–h(s)ds.

Applying the boundary condition (.), we have

c =


�(q)

∫ 


( – s)q–h(s)ds, c = .

Therefore, the unique solution of problem (.)-(.) is

u(t) = –


�(q)

∫ t


(t – s)q–h(s)ds + ctq– + ctq–

= –


�(q)

∫ t


(t – s)q–h(s)ds +


�(q)

∫ 


( – s)q–tq–h(s)ds

=
∫ t



[
( – s)q–tq– – (t – s)q–

�(q)

]
h(s)ds +

∫ 

t

( – s)q–tq–

�(q)
h(s)ds

=
∫ 


G(t, s)h(s)ds,

which completes the proof. �

The following properties of the Green’s function form the basis of our main work in this
paper.

Lemma . Let k(t) = tq–
�(q) , g(s) =

s(–s)q–
�(q) . The function G(t, s) defined by (.) satisfies the

following conditions:
(i) �(q)k(t)g(s)≤G(t, s)≤ k(t)( – s)q– for t, s ∈ (, );
(ii) tq–g(s)≤G(t, s) ≤ tq–g(s) for t, s ∈ (, );
(iii) G(t, s) > for t, s ∈ (, ).

http://www.advancesindifferenceequations.com/content/2014/1/97
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Proof (i) In the following, we consider �(q)G(t, s).
When s ≤ t, we have

�(q)G(t, s) = ( – s)q–tq– – (t – s)q–

= t(t – ts)q– – (t – s)q–

≥ t(t – ts)q– – (t – ts)q–

= ts(t – ts)q–

= tq–s( – s)q–. (.)

On the other hand, we have

�(q)G(t, s) = ( – s)q–tq– – (t – s)q–

= t(t – ts)q– – (t – s)q–(t – s)

≤ t(t – ts)q– – (t – ts)q–(t – s)

= s(t – ts)q–

=
s
t
tq–( – s)q–

≤ tq–( – s)q–. (.)

When s ≥ t, we get

�(q)G(t, s) = ( – s)q–tq– ≥ s( – s)q–tq–. (.)

On the other hand, we have

�(q)G(t, s) = ( – s)q–tq–. (.)

From (.)-(.), we have (i).
(ii) When s ≤ t, we get

�(q)G(t, s)≥ tq–s( – s)q–.

Thus,

�(q)G(t, s)t–q =
[
( – s)q–tq– – (t – s)q–

]
t–q ≥ tq–s( – s)q–t–q = ts( – s)q–.

On the other hand, we have

�(q)G(t, s)≤ tq–s( – s)q–.

So

�(q)G(t, s)t–q ≤ [
tq–s( – s)q–

]
t–q = s( – s)q–.
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When s ≥ t, we get

�(q)G(t, s)≥ tq–s( – s)q–.

Thus,

�(q)G(t, s)t–q ≥ ts( – s)q–.

On the other hand, we have

�(q)G(t, s)tq– = ( – s)q–tq–t–q = t( – s)q– ≤ s( – s)q–.

Therefore we have (ii). Clearly G(t, s) >  holds trivially. The proof is finished. �

Lemma . The function G∗(t, s) := t–qG(t, s) has the following properties:

tg(s)≤G∗(t, s)≤ g(s),

where

G∗(t, s) =

⎧⎨
⎩

[(–s)q–tq––(t–s)q–]t–q
�(q) , if ≤ s ≤ t ≤ ,

t(–s)q–
�(q) , if ≤ t ≤ s ≤ .

Let y(t) = t–qu(t), by u(t) =
∫ 
 G(t, s)h(s)ds, we get

y(t) =
∫ 


t–qG(t, s)h(s)ds =

∫ 


G∗(t, s)h(s)ds.

The following three theorems are fundamental in the proofs of our main results.

Lemma . [] Let X be a Banach space, and let P ⊂ X be a cone in X. Assume �, �

are open subsets of X with θ ∈ � ⊂ � ⊂ �, and letA : P → P be a completely continuous
operator such that either

(i) ‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂�, ‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂�, or
(ii) ‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂�, ‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂�.
Then A has a fixed point in P ∩ (�\�).

Let P be a normal cone of a Banach space E, and e ∈ P with ‖e‖ ≤ , e �= θ . Define

Qe = {x ∈ P|x �= θ , there exist constantsm,M >  such thatme≤ x ≤Me}. (.)

Definition . [] Assume A :Qe ×Qe → Qe. A is said to be mixed monotone if A(x, y)
is nondecreasing in x and nonincreasing in y, i.e., if x ≤ x (x,x ∈Qe) implies A(x, y) ≤
A(x, y) for any y ∈ Qe, and y ≤ y (y, y ∈ Qe) implies A(x, y) ≥ A(x, y) for any x ∈ Qe.
x∗ ∈Qe is said to be a fixed point of A if A(x∗,x∗) = x∗.
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Lemma . [] Suppose that A : Qe × Qe → Qe is a mixed monotone operator and ∃ a
constant β ( ≤ β < ) such that

A
(
tx,


t
y
)

≥ tβA(x, y), ∀x, y ∈Qe,  < t < .

Then A has a unique fixed point x∗ ∈Qe.

Lemma . [] Assume � is a relative subset of a convex set K in a normed space X . Let
A :� → K be a compact map with  ∈ �. Then either
(A) A has a fixed point in �, or
(A) there is a x ∈ ∂� and a λ <  such that x = λA(x).

3 Positive solutions of a singular problem
In this section, we establish some new existence results for the singular fractional differ-
ential equation (.)-(.).We always assume that f : [, ]× (,∞)→ [,∞) is continuous
in this section. Given a ∈ L(, ), we write a a �  if a ≥  for t ∈ [, ] and it is positive in
a set of positive measure.

Theorem . Suppose that the following hypotheses hold:
(H) for each constant L > , there exists a continuous function φL �  such that

f (t,x)≥ φL(t); for all t ∈ [, ] and x ∈ (,L], one has  <
∫ 
 g(s)φL(s)ds < ∞;

(H) there exist continuous, nonnegative functions b(x) and d(x) such that

 ≤ f (t,x) = b(x) + d(x) for all (t,x) ∈ [, ]× (,∞),

and b(x) >  is nonincreasing and d(x)
b(x) is nondecreasing in x ∈ (,∞);

(H) there exists a constant K >  such that b(lm)≤ Kb(l)b(m) for all l,m≥ ;
(H)

∫ 
 b(s

q–)ds < ∞;
(H) there exists a constant r >  such that

(
b(r) + d(r)

)
K

∫ 


g(s)tq–b(s)ds < r.

Then problem (.)-(.) has at least one positive solution x with  < ‖x‖ < r.

Proof Since (H) holds, we can choose n ∈ {, , . . .} such that

(
b(r) + d(r)

)
K

∫ 


g(s)tq–b(s)ds +


n

< r.

Let N = {n,n + , . . .}. Fix n ∈N and consider the family of integral equations

u(t) := λ

∫ 


G(t, s)fn

(
s,u(s)

)
ds +


n
, (.)

where λ ∈ [, ] and

fn(t,u) =

⎧⎨
⎩f (t,u), if u≥ 

n ,

f (t, n ), if u≤ 
n .

http://www.advancesindifferenceequations.com/content/2014/1/97
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We claim that any solution u of (.) for any λ ∈ [, ] must satisfy ‖u‖ �= r. Otherwise,
assume that u is a solution of (.) for some λ ∈ [, ] such that ‖u‖ = r. Then u(t) ≥ 

n for
t ∈ [, ]. Note that

‖u‖ ≤ 
n
+ λ

∫ 


g(s)tq–fn

(
s,u(s)

)
ds. (.)

Hence, for all t ∈ [, ], we have

u(t) ≥ 
n
+ λ

∫ 


g(s)tq–fn

(
s,u(s)

)
ds

≥ 
n
+ tq–

(
‖u‖ – 

n

)

≥ tq–‖u‖ = tq–r.

Thus we have from condition (H), for all t ∈ [, ],

u(t) = λ

∫ 


G(t, s)fn

(
s,u(s)

)
ds +


n

= λ

∫ 


G(t, s)f

(
s,u(s)

)
ds +


n

≤
∫ 


g(s)tq–f

(
s,u(s)

)
ds +


n

≤
∫ 


g(s)tq–b

(
u(s)

)(
 +

d(u(s))
b(u(s))

)
ds +


n

≤
(
 +

d(r)
b(r)

)∫ 


g(s)tq–Kb(r)b(s)ds +


n

≤ (
b(r) + d(r)

)
K

∫ 


g(s)tq–b(s)ds +


n

. (.)

Therefore,

r =
∥∥u(t)∥∥ ≤ (

b(r) + d(r)
)
K

∫ 


g(s)tq–b(s)ds +


n

.

This is a contradiction and the claim is proved.
Now the Leray-Schauder nonlinear alternative guarantees that the integral equation

u(t) =
∫ 


G(t, s)fn

(
s,u(s)

)
ds +


n

(.)

has a solution, denoted by un, in Br = {x ∈ C(J) : ‖u‖ ≤ r}.
Next we claim that un(t) has a uniform sharper lower bound, i.e., there exists a function

ρ ∈ C([, ]) that is unrelated to n such that ρ(t) >  for a.e. t ∈ [, ] and for any n ∈ N,

un(t) ≥ ρ(t), t ∈ [, ]. (.)
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By (H), there exists a continuous function φr �  such that f (t,x)≥ φr(t) for all t ∈ [, ]
and ‖x‖ ≤ r. In view of un(t) ≤ r, so we have

un(t) =
∫ 


G(t, s)fn

(
s,un(s)

)
ds +


n

=
∫ 


G(t, s)f

(
s,un(s)

)
ds +


n

≥
∫ 


G(t, s)φr(s)ds

≥ tq–
∫ 


g(s)φr(s)ds.

We choose ρ(t) = tq–
∫ 
 g(s)φr(s)ds. Then (.) holds.

In order to pass from the solutions un of the truncation equation (.) to that of the
original equation (.)-(.), we need the following fact:

{un}n∈N is an equicontinuous family on [, ]. (.)

In fact, for any t, t ∈ [, ], we have

∣∣un(t) – un(t)
∣∣ = ∣∣∣∣

∫ 



[
G(t, s) –G(t, s)

]
f
(
s,un(s)

)
ds

∣∣∣∣
≤

∫ 



∣∣G(t, s) –G(t, s)
∣∣f (s,un(s))ds

≤
(
 +

d(r)
b(r)

)∫ 



∣∣G(t, s) –G(t, s)
∣∣b(s∫ 


g(τ )φr(τ )dτ

)
ds

≤
(
 +

d(r)
b(r)

)∫ 



∣∣G(t, s) –G(t, s)
∣∣Kb(s)b

(∫ 


g(τ )φr(τ )dτ

)
ds

≤
(
 +

d(r)
b(r)

)
Kb

(∫ 


g(τ )φr(τ )dτ

)∫ 



∣∣G(t, s) –G(t, s)
∣∣b(sq–)ds.

By continuity of G(t, ·) and the mean value theorem for integrals, there exists a ξ ∈ (, )
such that

∣∣un(t) – un(t)
∣∣ ≤

(
 +

d(r)
b(r)

)
Kb

(∫ 


g(τ )φr(τ )dτ

)∫ 



∣∣G(t, ξ ) –G(t, ξ )
∣∣b(s)ds.

By the continuity of G(·, s) and (H), then (.) holds. By the Arzela-Ascoli theorem,
there exist a subsequence N of N and u ∈ C([, ]) such that {un}n∈N is uniformly
convergent to u and u satisfies ρ(t) ≤ u(t) ≤ r for any t ∈ [, ]. In view of un(t) =∫ 
 G(t, s)fn(s,un(s))ds, by the Lebesgue dominated convergence theorem, we have u(t) =∫ 
 G(t, s)f (s,u(s))ds. Therefore, (.)-(.) have one positive solution u with  < ‖u‖ < r.
This completes the proof. �

Theorem . Suppose that (H), (H), (H), and (H) are satisfied. Furthermore assume
that:

http://www.advancesindifferenceequations.com/content/2014/1/97
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(H) There exists a positive number R > r such that


�(q)

(
 –


q

)q–

b(R)
∫ 


s( – s)q–

{
 +

d(sR)
b(sR)

}
ds≥ R;

then problem (.)-(.) has a solution ũ with r < ‖̃u‖ ≤ R.

Proof To show the existence of ũ, we will use Lemma .. Define

K =
{
u ∈ C[, ] : u(t) ≥ t‖u‖,∀t ∈ [, ]

}
. (.)

Clearly K is a cone of C[, ]. Let

� =
{
u ∈ C[, ] : ‖u‖ < r

}
, � =

{
u ∈ C[, ] : ‖u‖ < R

}
.

Next, let A : K ∩ (�\�)→ C[, ] be defined by

(Ay)(t) :=
∫ 


G∗(t, s)f

(
s, sq–y(s)

)
ds. (.)

First we show that Amaps K ∩ (�\�). If y ∈ K ∩ (�\�), then for t ∈ [, ] we have

(Ay)(t) ≤ 
�(q)

∫ 


s( – s)q–f

(
s, sq–y(s)

)
ds

and

(Ay)(t) ≥ t
�(q)

∫ 


s( – s)q–f

(
s, sq–y(s)

)
ds,

this implies that (Ay)(t) ≥ t‖Ay‖, i.e. Ay ∈ K .
Next, we show that A is equicontinuous. The proof will be given in several steps.
Step : We will show that A is continuous.
In fact, let xn,x ∈ K ∩ (�\�), n = , , , . . . with limn→∞ ‖xn – x‖ = . It is obvious that

r < ‖xn‖ ≤ R, r < ‖x‖ ≤ R, xn(t)≥ tr, x(t)≥ tr. We have

xn(t) ∈ [tr,R], n ∈ {, , . . .}, t ∈ [, ],

x(t) ∈ [tr,R], t ∈ [, ].

Notice also that

γn(s) =
∥∥f (s,xn(s)) – f

(
s,x(s)

)∥∥ → , as n → ∞, for ∀s ∈ [, ]

and

γn(s) ≤ b(tr)
{
 +

d(R)
b(R)

}
≤ Kb(t)b(r)

{
 +

d(R)
b(R)

}
.
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Now these together with the Lebesgue dominated convergence theorem guarantee that

∥∥(Axn)(t) – (Ax)(t)
∥∥ ≤ (q – )

∫ 


q(s)γn(s)ds→ , as n→ ∞.

Hence A : K ∩ (�\�) → K is continuous.
Step : We will prove that the operator A : K ∩ (�\�) → K is compact.
Indeed, for x ∈ K ∩ (�\�),

‖Ax‖ ≤ (q – )
{
 +

d(R)
b(R)

}∫ 


q(s)b(sr)ds

≤ (q – )
{
 +

d(R)
b(R)

}
Kb(r)

∫ 


q(s)b(s)ds,

and for t, t′ ∈ [, ], we have

∥∥Ax(t) –Ax
(
t′
)∥∥ ≤

{
 +

d(R)
b(R)

}∫ 



∣∣G(t, s) –G
(
t′, s

)∣∣b(sr)ds
≤

{
 +

d(R)
b(R)

}
Kb(r)

∫ 



∣∣G(t, s) –G
(
t′, s

)∣∣b(s)ds.
By continuity of G(t, ·) and the mean value theorem for integrals, there exists a η ∈ (, )
such that

∥∥Ax(t) –Ax
(
t′
)∥∥ ≤

{
 +

d(R)
b(R)

}
Kb(r)

∣∣G(t,η) –G
(
t′,η

)∣∣ ∫ 


b(s)ds.

By continuity of G(·, s), using condition (H), and the Arzela-Ascoli theorem guarantees
that A : K ∩ (�\�) → K is compact.
Now we prove that

‖Ax‖ ≤ ‖x‖, ∀x ∈ K ∩ ∂�. (.)

In fact, for any x ∈ K ∩ ∂�, we have for t ∈ [, ],

Ax(t) =
∫ 


G(t, s)f

(
s,x(s)

)
ds

≤
∫ 


G(t, s)b

(
x(s)

){
 +

d(x(s))
b(x(s))

}
ds

≤
{
 +

d(r)
b(r)

}∫ 


g(s)tq–b(sr)ds

≤
{
 +

d(r)
b(r)

}
Kb(r)

∫ 


g(s)tq–b(s)ds

=
{
b(r) + d(r)

}
K

∫ 


g(s)tq–b(s)ds

< r

= ‖x‖.

http://www.advancesindifferenceequations.com/content/2014/1/97


Zhou et al. Advances in Difference Equations 2014, 2014:97 Page 12 of 16
http://www.advancesindifferenceequations.com/content/2014/1/97

Therefore, ‖Ax‖ ≤ ‖x‖, i.e., (.) holds. On the other hand, we prove that

‖Ax‖ ≥ ‖x‖, ∀x ∈ K ∩ ∂�. (.)

In fact, for any x ∈ K ∩ ∂�, we have for t ∈ [, ],

Ax
(
 –


q

)
=

∫ 


G

(
 –


q
, s

)
f
(
s,x(s)

)
ds

≥ 
�(q)

(
 –


q

)q– ∫ 


s( – s)q–b

(
x(s)

){
 +

d(x(s))
b(x(s))

}
ds

≥ 
�(q)

(
 –


q

)q–

b(R)
∫ 


s( – s)q–

{
 +

d(sR)
b(sR)

}
ds

≥ R

= ‖x‖.

This implies (.) holds.
It follows fromLemma ., (.), and (.) thatA has a fixed pointK ∩ (�\�). Clearly,

this fixed point is a positive solution of (.)-(.) satisfying r < ‖̃u‖ ≤ R. This completes
the proof. �

Theorem . Suppose that (H)-(H) are satisfied. Then problem (.)-(.) has two solu-
tions u and ũ with  < ‖u‖ < r < ‖̃u‖ ≤ R.

4 Uniqueness of solution for a singular problem
Throughout this section we assume that
(H) f (t,x) = q(t)[g(x) + h(x)], t ∈ (, ), where

g : [, +∞) → [, +∞) is continuous and nondecreasing;

h : (, +∞) → (, +∞) is continuous and nonincreasing.

By property (i) of theGreen’s function in Lemma.,we assume there exist a,m,n ∈ C[, ]
with a(t),m(t),n(t) >  for t ∈ (, ) such that

a(t)m(s)≤G(t, s)�(q)≤ a(t)n(s), t, s ∈ [, ], (.)

where a(t) = tq–,m(s) = s( – s)q–, n(s) = ( – s)q–. Clearly ‖a‖ = supt∈J a(t) < .
Suppose that x is a solution of (.)-(.), then

x(t) :=
∫ 


G(t, s)f

(
s,x(s)

)
ds, t ∈ [, ].

By (.), we have

a(t)
∫ 




�(q)

m(s)f
(
s,x(s)

)
ds≤ x(t)≤ a(t)

∫ 




�(q)

n(s)f
(
s,x(s)

)
ds.
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So if x(t) is a solution of problem (.)-(.), then x ∈Qe which was defined in (.), where
e(t) = tq– = a(t).
Let P = {x ∈ C[, ] : x(t)≥ ,∀t ∈ [, ]}. Clearly P is a normal cone of the Banach space

C[, ].

Theorem . Suppose that (H) is satisfied, and there exists β ∈ (, ) such that

g(tx)≥ tβg(x) (.)

and

h
(
t–x

) ≥ tβh(x) (.)

for any t ∈ (, ) and x > , and q ∈ C((, ), (,∞)) satisfies

∫ 




�(q)

n(s)a–β (s)q(s)ds < +∞; (.)

then problem (.)-(.) has a unique positive solution x∗.

Proof Since (.) holds, let t–x = y; one has

h(y) ≥ tβh(ty).

Then

h(ty)≤ t–βh(y), ∀t ∈ (, ), y > . (.)

Let y = . The above inequality is

h(t)≤ t–βh(), ∀t ∈ (, ). (.)

From (.), (.), and (.), one has

h
(
t–x

) ≥ tβh(x), h
(

t

)
≥ tβh(), h(tx)≤ t–βh(x),

h(t)≤ t–βh(), t ∈ (, ),x > . (.)

Similarly, from (.), one has

g(tx)≥ tβg(x), g(t) ≥ tβg(), t ∈ (, ),x > . (.)

Let t = 
x , x > , so one has

g(x)≤ xβg(), t ≥ . (.)

Let e(t) = a(t), and we define

Qe =
{
x ∈ P

∣∣∣ 
M

a(t)≤ x(t)≤Ma(t), t ∈ [, ]
}
, (.)
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whereM >  is chosen such that

M > max

{{∫ 


λ


�(q)

n(s)q(s)a–β(s)
[
g() + h()

]
ds

} 
–β

,

{∫ 


λ


�(q)

m(s)q(s)aβ(s)
[
g() + h()

]
ds

}– 
–β

}
. (.)

For any x, y ∈Qe we define

Aλ(x, y)(t) = λ

∫ 


G(t, s)q(s)

[
g

(
x(s)

)
+ h

(
y(s)

)]
ds, ∀t ∈ [, ]. (.)

First we show that Aλ :Qe ×Qe →Qe. Let x, y ∈Qe and from (.) we have

g
(
x(t)

) ≤ g
(
Ma(t)

) ≤ g(M) ≤Mβg(), t ∈ (, ),

and from (.) we have

h
(
y(t)

) ≤ h
(


M

a(t)
)

≤ a–β (t)h
(


M

)
≤Mβa–β (t)h(), t ∈ (, ).

So we have

Aλ(x, y)(t) ≤ λ

∫ 




�(q)

a(t)n(s)q(s)
[
g

(
x(s)

)
+ h

(
y(s)

)]
ds

≤ λa(t)Mβ

∫ 




�(q)

n(s)q(s)
[
g() + a–β (s)h()

]
ds

≤ λa(t)Mβ

∫ 




�(q)

n(s)q(s)
[
g() + a–βh()

]
ds

≤ λa(t)Mβ

∫ 




�(q)

n(s)q(s)a–β(s)
[
g() + h()

]
ds

≤ Ma(t), ∀t ∈ [, ].

On the other hand, for any x, y ∈Qe, from (.) and (.), we have

g
(
x(t)

) ≥ g
(


M

a(t)
)

≥ aβ (t)g
(


M

)
≥ aβ (t)


Mβ

g(), t ∈ (, )

and

h
(
y(t)

) ≥ h
(
Ma(t)

) ≥ h(M) = h
(



M

)
≥ 

Mβ
h(), t ∈ (, ),

so we have

Aλ(x, y)(t) ≥ λ

∫ 




�(q)

a(t)m(s)q(s)
[
g

(
x(s)

)
+ h

(
y(s)

)]
ds

≥ λa(t)M–β

∫ 




�(q)

m(s)q(s)
[
aβ (s)g() + h()

]
ds
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≥ λa(t)M–β

∫ 




�(q)

m(s)q(s)aβ(s)
[
g() + h()

]
ds

≥ 
M

a(t), ∀t ∈ [, ].

Thus Aλ is well defined and Aλ(Qe ×Qe) ⊆Qe.
Next, for any l ∈ (, ) and x, y ∈Qe we have

Aλ

(
lx, l–y

)
(t) = λ

∫ 


G(t, s)q(s)

[
g

(
lx(s)

)
+ h

(
l–y(s)

)]
ds

≥ λ

∫ 


G(t, s)q(s)

[
lβg

(
x(s)

)
+ lβh

(
y(s)

)]
ds

= lβA(x, y)(t), ∀t ∈ [, ].

Thus the conditions of Lemma . hold. Therefore there exists a unique x∗ ∈Qe such that
Aλ(x∗,x∗) = x∗. This completes the proof. �

Example  Consider the boundary value problem

Dq
+u(t) = u–a(t) + νub(t),  < t < , (.)

u() = u′() = , (.)

where  < a,b < , ν ≥ .
We let

β =max{a,b} < , q(t) = , g(x) = νxb, h(x) = x–a.

Thus, we have

g(tx) = tbg(x)≥ tβg(x), h
(
t–x

)
= tah(x)≥ tβh(x).

For any t ∈ (, ) and x > , and

∫ 




�(q)

n(s)a–β (s)q(s)ds < +∞.

Since β < , and  < q ≤ , thus all conditions in Theorem . are satisfied. Applying The-
orem ., we can find that (.)-(.) has a unique positive solution x∗(t).
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