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Abstract
A nonlinear mathematical model of differential equations with piecewise constant
arguments is proposed. This model is analyzed by using the theory of both
differential and difference equations to show the spread of HIV in a homogeneous
population. Because of the solution of this differential equations being established in
a certain subinterval, solutions will be analyzed as a system of difference equations.
After that, results will be considered for differential equations as well. The population
of the model is divided into three subclasses, which are the HIV negative class, the HIV
positive class that do not know they are infected and the HIV positive class that know
they are infected. As an application of the model we took the spread of HIV in India
into consideration.
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1 Introduction
Sexually transmitted diseases such as HIV are overwhelmingly observed in some popu-
lations. Countries are dealing with the growing impact of the epidemics on the youngest
and most productive population groups; increasing numbers in children and adolescents;
worsening situation among the poor and marginalized populations; a continuous aggra-
vation of the existent health problems (such as tuberculosis); and above all, the diversion
of resources from other health, welfare, and educational priorities. It is very important
to understand how the transmission process of the infectious diseases works in order to
avoid ulterior spread of these epidemics []. So mathematical models for transmission dy-
namics in HIV play an important role in better understanding of epidemiological patterns
for disease control as they provide short and long term prediction for HIV and AIDS in-
cidence [].
The first mathematical model used for the explicit study of a sexually transmitted dis-

ease was a one sex model that was constructed by Cooke and Yorke in  [, ].
A two sex model developed specifically for gonorrhea was formulated by Lajmanovich
and Yorke in  []. One STD (sexually transmitted disease) that many people are wor-
ried about getting is HIV. Mathematical modeling of the HIV epidemic has been stud-
ied by various authors recently [–]. In , Velasco-Hernandez and Hsieh analyzed
the HIV epidemic in a male population []. In , Bachar and Dorfmatr considered
the mathematical model where the population was divided into three sub populations
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[]. Expanding [], Naresh has studied the effect of contact tracing on reducing the
spread of HIV/AIDS in a homogeneous population with constant immigration of suscep-
tibles.
Changes in population involved in a HIV transmission model can take place by dis-

crete steps and continuous processes. In discrete models, difference equations reflect the
change over the whole time step, whereas in continuous models, differential equations
are developed to explore the changes in one variable with a decreasingly small change
in another variable []. Because HIV population dynamics involves both continuous and
discrete time arguments, for this type of problems, a different point of view came up and
Buseenberg and Cooke used piecewise constant arguments to construct the mathemati-
cal modeling of biological structures in . By taking into account the work of Naresh
[] we have constructed a new mathematical model. We added new terms and took into
consideration both discrete time and continuous time. This model is analyzed by using
the theory of both differential and difference equations to show the spread of HIV/AIDS
in a homogeneous population. Because of the solution of these differential equations es-
tablished in a certain subinterval, the solutions will be analyzed as a difference equations
system. Furthermore, these results will be considered for differential equations, as well.
So our mathematical model that is named a differential equation systems with piecewise
constant arguments is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = S(t)r(p – αS(t) – βI([|t|]) – βI([|t|])),
dI
dt = I(t)r( – αI(t) + β( – ε)S([|t|]) – γ I([|t|]) – θ I([|t|])

+ β( – ε)S([|t|])I([|t|])),
dI
dt = I(t)r( – αI(t) + βεS([|t|]) + γ I([|t|]) + θ I([|t|])

+ βεS([|t|])I([|t|])).

(.)

In the equations above, t is the time and [|t|] is the exact value of t for t ≥ . The model
monitors three populations; susceptibles S(t), HIV positives that do not know they are
infected I(t), HIV positives that know they are infected I(t). The susceptibles are com-
posed of individuals that have not contracted the infection but may get infected through
contacts (sexual, blood transfusion etc.) with infectives. r is the population growth rate of
the susceptible population. The deaths (of natural causes) are given at a rate α. p is the
rate of susceptible population per year. The susceptibles are lost from their class following
contacts with the infectives I and I at a rate β and β, respectively. I are populations
that are HIV positive but do not know it, because disease symptoms have not yet appeared
in this class. This population is generated by the HIV infection of susceptibles. r is the
population growth rate of the population I. The deaths (of natural causes) are given at
a rate α. The population of this class decreases and becomes aware after screening at a
rate θ . γ is the rate of individuals in class I that detect the infection by tracing contacts
with class I. Following the contacts of class S and I, class S becomes aware of the in-
fection and this class is detected further which has the rate of ε. And also, following the
contacts of class S and I, class S becomes aware of the infection and is detected further
with the rate of ε. r is the population growth rate of the population I. The deaths (of
natural causes) are given at a rate α.
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2 Local and global asymptotic stability analysis
In this section, the local and global behavior of the nonlinear system (.) under spe-
cific conditions is investigated. To show the consistence of the population classes with
the model constructed in Section , the data of [] is used. Examples show the spread of
the population over the time.

2.1 Equilibrium point of the model (1.1)
For t ∈ [n,n+] every equation in system (.) is a Bernoulli differential equation as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dS
dt – r(p – βI(n) – βI(n))S(t) = –αrS(t)

 ,
dI
dt – r( + β( – ε)S(n) – γ I(n) – θ I(n) + β( – ε)S(n)I(n))I(t)

= –αrI(t),
dI
dt – r( + βεS(n) + γ I(n) + θ I(n) + βεS(n)I(n))I(t) = –αrI(t).

(.)

Solving (.) for t ∈ [n,n + ) and letting t go to n +  where n = , , , , . . . , we obtain a
system of difference equations as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
S(n + ) = S(n)U

(U–αS(n))e–rU +αS(n)
,

I(n + ) = I(n)U
(U–αI(n))e–rU+αI(n)

,

I(n + ) = I(n)U
(U–αI(n))e–rU+αI(n)

,

(.)

where

U = p – βI(n) – βI(n),

U =  + β( – ε)S(n) – γ I(n) – θ I(n) + β( – ε)S(n)I(n),

U =  + βεS(n) + γ I(n) + θ I(n) + βεS(n)I(n).

It is obvious that (.) must hold:
⎧⎪⎪⎨
⎪⎪⎩
p – βI(n) – βI(n) �= ,

 + β( – ε)S(n) – γ I(n) – θ I(n) + β( – ε)S(n)I(n) �= ,

 + βεS(n) + γ I(n) + θ I(n) + βεS(n)I(n) �= .

(.)

System (.) is a system of difference equations. Hence, to explain the global behavior of
system (.) wemust consider the solution of (.), that is, the difference equations system
(.). Firstly, we need to obtain the equilibrium points of this system (.), which are also
the critical points of system (.). We have

⎧⎪⎪⎨
⎪⎪⎩

βI(n) + βI(n) + αS(n) = p,

I(n)(α + θ ) + γ I(n) – β( – ε)S(n) – β( – ε)S(n)I(n) = ,

αI(n) – βεS(n) – (γ + θ )I(n) – βεS(n)I(n) = .

(.)

From (.) we can write

I(n)(α + θ ) + γ I(n) – β( – ε)S(n) – β( – ε)S(n)I(n)

= αI(n) – βεS(n) – (γ + θ )I(n) – βεS(n)I(n). (.)

http://www.advancesindifferenceequations.com/content/2014/1/95
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Simplifying this, we get

(α + θ + γ )I + (γ – α)I +
(
βε – ( – ε)β

)
S

+
(
βεI – β( – ε)I

)
S = . (.)

Substituting in (.) the expression

I(n) =
p – αS – βI

β
(.)

we obtain

((
β(α + θ + γ ) – β(γ – α)

)
I(n) + p(γ – α)

)
+

(
β(βε – β + βε) – α(γ – α) + ββεI

)
S(n)

– β( – ε)
(
p – αS(n) – βI

)
S(n) = . (.)

To find the positive equilibrium point of (.), we have some assumptions in view of the
demographic data in [].

(i) β = β,
(ii) β <

√
α(α–γ )
–ε

,
(iii) ε = ε,
(iv) ε �= ( – ε),
(v) ( – ε)(α + θ – γ + α) > (α – γ ),
(vi) α > γ ,
(vii) ε = ε < .,
(viii) θ > γ .

Thus, the equilibrium points of system (.) are X = (S, I, I). Here

S =
β( – ε)
α( – ε)

+
p
α

–
(

p(α – γ )
α( – ε)(α + θ – γ + α)

+
α – γ

β( – ε)

)
, (.)

I =
p(α – γ )

β(α + θ – γ + α)
, (.)

I =
α(α – γ ) – ( – ε)β


β
 ( – ε)

+
p(α – γ )ε

β( – ε)(α + θ – γ + α)
(.)

and

p >
(α + θ – γ + α)(α(α – γ ) – β

 ( – ε))
β(( – ε)(α + θ – γ + α) – (α – γ ))

. (.)

The Jacobian matrix for the equilibrium points is (.). This gives the linearizing equa-
tions of system (.),

J(X) =

⎛
⎜⎝
a a a
a a a
a a a

⎞
⎟⎠ , (.)
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where

a = e–rU , a =
β(e–rU – )

α
, a =

β(e–rU – )
α

,

a =
(β( – ε) + β( – ε)I)( – e–rU )

α
,

a =
(θ + α)e–rU – θ

α
, a =

(–γ + β( – ε)S)( – e–rU )
α

,

a =
(βε + β( – ε)I)( – e–rU )

α
,

a =
(γ + θ + βεS)( – e–rU )

α
, a = e–rU .

The characteristic equation is

λ – (a + a + a)λ – (aa + aa + aa – aa – aa – aa)λ

– (aaa + aaa + aaa

– aaa – aaa – aaa) = . (.)

2.2 Local and global stability of the positive equilibrium
In this part, the local and global stability of system (.) will be analyzed. For the proof of
Theorem ., Theorem ., and Theorem ., it is assumed that conditions (i)-(viii) hold.

Theorem . Let X = (S, I, I) the positive equilibrium point of system (.) and assume
that

(α + θ – γ + α)(α(α – γ ) – β
 ( – ε))

β(( – ε)(α + θ – γ + α) – (α – γ ))

< p <
(α + θ – γ + α)(α( – ε)(α – γ ) + αε(α + γ ) – εβ

 ( – ε))
βε(( – ε)(α + θ – γ + α) – (α – γ ))

.

Furthermore, suppose that

β <

√
ααθ

( – ε)(αI – αI)
. (.)

If

U >

r
ln(K ), (.)


r

ln

(
(–γ + βεS) + α

(–γ + βεS) + θ

)
<U <


r

ln

(
θ + α

θ

)
, (.)

U >

r

ln

(
γ + θ + βεS + α

γ + θ + βεS

)
, (.)

http://www.advancesindifferenceequations.com/content/2014/1/95
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where

K = αβ

 (ε + ( – ε)I) + ααθ

ααα + βα(ε + ( – ε)I) + β
α(( – ε) + ( – ε)I) – α(γ + θ + βεS)(–γ + β( – ε)S)

,

then the positive equilibrium point of system (.) is locally asymptotically stable.

Proof To prove Theorem ., we have used the Schur-Cohn criteria (see []) to obtain
conditions for the local asymptotic stability of the positive equilibrium points of system
(.). We have

(i) p =  – (a + a + a) – (aa + aa + aa – aa – aa – aa)

– (aaa + aaa + aaa – aaa – aaa – aaa)

> ,

(ii) (–)p(–) =  + (a + a + a)

– (aa + aa + aa – aa – aa – aa)

+ (aaa + aaa + aaa

– aaa – aaa – aaa)

> ,

(iii)  –
(
–(aaa + aaa + aaa – aaa – aaa – aaa)

)
>

∣∣–(aa + aa + aa – aa – aa – aa)

–
(
–(aaa + aaa + aaa – aaa

– aaa – aaa)
)(
–(a + a + a)

)∣∣.
Considering (i) and (ii) together, we get

 – (aa + aa + aa – aa – aa – aa) > . (.)

By simplifying (.), we obtain

aa + aa + aa <  + aa + aa + aa. (.)

Computations for (.) lead to the inequality

(α(γ + θ + βεS)
(
–γ + β( – ε)S

)
– αβ



(
( – ε) + ( – ε)I

)
– αβ



(
ε + ( – ε)I

))
+

(
αβ



(
( – ε) + ( – ε)

)
I

+ αβ


(
ε + ( – ε)I

))
e–rU +

(
–α(γ + θ + βεS)

(
–γ + β( – ε)S

)
+ αβ



(
( – ε) + ( – ε)I

)
e–rU +

(
–α(γ + θ + βεS)

(
–γ + β( – ε)S

)
+ αβ



(
ε + ( – ε)I

))
e–rU

+ α(γ + θ + βεS)
(
–γ + β( – ε)S

))
e–rUe–rU

http://www.advancesindifferenceequations.com/content/2014/1/95
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+
(
–αβ



(
( – ε) + ( – ε)I

))
e–rUe–rU

+
(
–αβ



(
ε + ( – ε)I

))
e–rUe–rU

< ααα – ααθe–rU – ααθe–rU + αα(θ + α)e–rUe–rU

+ αα(θ + α)e–rUe–rU + αααe–rUe–rU , (.)

where we will have

ααα + αβ


(
ε + ( – ε)I

)
> . (.)

Since ε < , we will also have

αα(θ + α) + αβ


(
( – ε) + ( – ε)I

)
> . (.)

Furthermore, the inequality

(γ + θ + βεS)
(
–γ + β( – ε)S

)
< (θ + α)α (.)

holds for

S <
α – γ

βε
<

α + γ

β( – ε)
, (.)

where α > α. By considering both (.) and (.), we get

p <
(α + θ – γ + α)(α( – ε)(α – γ ) + αε(α + γ ) – εβ

 ( – ε))
βε(( – ε)(α + θ – γ + α) – (α – γ ))

. (.)

Taking in view (.) and (.), we obtain

(α + θ – γ + α)(α(α – γ ) – β
 ( – ε))

β(( – ε)(α + θ – γ + α) – (α – γ ))

< p <
(α + θ – γ + α)(α( – ε)(α – γ ) + αε(α + γ ) – εβ

 ( – ε))
βε(( – ε)(α + θ – γ + α) – (α – γ ))

,

since θ > γ . Additionally, from (.), we will have

–α(γ + θ + βεS)
(
–γ + β( – ε)S

)
< –αβ



(
( – ε) + ( – ε)I

)
(.)

and

–α(γ + θ + βεS)
(
–γ + β( – ε)S

)
< αβ

(
ε + ( – ε)I

)
– ααθ . (.)

Taking in view (.) and (.), we get

αβ


(
( – ε) + ( – ε)I

)
> αβ



(
ε + ( – ε)I

)
+ θαα. (.)

http://www.advancesindifferenceequations.com/content/2014/1/95
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From (.), we get

β

(
α( – ε) – αε

)
+ β

 ( – ε)(αI – αI) – θαα, (.)

where α > α and

β >

√
θαα

( – ε)(αI – αI)
. (.)

Finally, from (.) we consider

(α(γ + θ + βεS)
(
–γ + β( – ε)S

)
– αβ



(
( – ε) + ( – ε)I

)
– αβ



(
ε + ( – ε)I

))
+

(
αβ



(
( – ε) + ( – ε)I

)
+ αβ



(
ε + ( – ε)I

))
e–rU

< ααα – ααθe–rU , (.)

where we obtain

U >

r
ln(K ), (.)

where

K = αβ

 (ε + ( – ε)I) + ααθ

ααα + βα(ε + ( – ε)I) + β
α(( – ε) + ( – ε)I) – α(γ + θ + βεS)(–γ + β( – ε)S)

.

Considering the condition (iii), we investigate

 – c > |–c – cc|, (.)

where

c = aaa + aaa + aaa – aaa – aaa – aa + a,

c = aa + aa + aa – aa – aa – aa,

c = a + a + a;

(.) can be written as

c(c – c) – c < c(c + c) + c < . (.)

In this case, we must only show the condition for the inequality

c(c + c) + c <  + , (.)

where c < . For

c <  (.)

http://www.advancesindifferenceequations.com/content/2014/1/95
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we must show

aa + aa + aa <  + aa + aa + aa. (.)

So we must only investigate the conditions for the inequality

aaa + aaa + aaa < aaa + aaa + aaa (.)

and

–aaa – aaa – aaa

< –aaa – aaa – aaa + a + a + a. (.)

By adding (.) and (.) side by side we get

a + a + a > , (.)

which holds for

U <

r

ln
θ + α

θ
. (.)

Furthermore, if the following conditions hold, then the inequality (.) is available.
If

aa < aa, (.)

then we obtain

U >

r

ln

(
(–γ + βεS) + α + θ

(–γ + βεS) + θ

)
, (.)

where –γ + βεS > .
If

aa < aa (.)

we have

U >

r

ln

(
γ + θ + βεS + α

γ + θ + βεS

)
. (.)

Considering (.), (.), and (.), we obtain


r

ln

(
(–γ + βεS) + α

(–γ + βεS) + θ

)
<U <


r

ln
θ + α

θ
, (.)

and we get

U >

r

ln

(
γ + θ + βεS + α

γ + θ + βεS

)
. (.)

http://www.advancesindifferenceequations.com/content/2014/1/95
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For the inequality

aa < aa (.)

let us use (.) and (.). Also, we can write

θ

θ + α
< exp(–rU) <

(–γ + βεS) + θ

(–γ + βεS) + α + θ
(.)

and

exp(–rU) <
γ + βεS + θ

γ + βεS + α + θ
. (.)

Using (.) and (.) in the following, we obtain

aa =
(
(θ + α) exp(–rU) – θ

α

)
exp(–rU)

<
( (θ + α) (–γ+βεS)+θ

(–γ+βεS)+α+θ
– θ

α

)(
γ + βεS + θ

γ + βεS + θ + α

)

=
(γ + βεS + θ )(–γ + βεS)

((–γ + βεS) + α + θ )(γ + βεS + θ + α)

=
( (γ + θ + βεS)( – θ+(–γ+βεS)

(–γ+βεS)+α+θ
)

α

)( (–γ + βεS)( – γ+θ+βεS
γ+θ+βεS+α

)
α

)

<
(γ + θ + βεS)( – exp(–rU))

α

(
(–γ + β( – ε)S)( – exp(–rU))

α

)
= aa.

This completes the proof. �

Theorem . Let {S(n), I(n), I(n)}∞n=, be a positive solution of system (.). The following
statements are true.

(i) If

⎧⎪⎪⎨
⎪⎪⎩
p – βI(n) – βI(n) – αS(n) > ,

 – I(n)(α + θ ) – γ I(n)β( – ε)S(n)β( – ε)S(n)I(n) > ,

 – αI(n) + βε + (γ + θ )I(n) + βεS(n)I(n) > ,

(.)

then the solution of system (.) increases monotonically.
(ii) If

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p > p – βI(n) – βI(n) > αS(n),

 >  + β( – ε)S(n) – θ I(n) – γ I(n) + β( – ε)S(n)I(n)

> αI(n),

 >  + βεS(n) + (γ + θ )I(n) + βεS(n)I(n) > αI(n),

(.)

http://www.advancesindifferenceequations.com/content/2014/1/95
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then

 < S(n) <
p
α

,  < I(n) <

α

and  < I(n) <

α

. (.)

Proof The proof will be left to the readers. �

Theorem . Let system (.) be written as follows:

F
(
S(t), I(t), I(t)

)
=

⎧⎪⎨
⎪⎩
S(t + ) = f (S(t), I(t), I(t)),
I(t + ) = g(S(t), I(t), I(t)),
I(t + ) = h(S(t), I(t), I(t)),

(.)

where the first order partial derivatives of the functions f , g , and h with regard to S(t), I(t),
I(t) are continuous in I ⊂ R+ and f , g,h : V ⊂ R+ → I ⊂ R+. If

p – βI – βI <
α

βr
(.)

and

 + β( – ε)S(n) – γ I(n) – θ I(n) + β( – ε)S(n)I(n) <
α

rθ
, (.)

then (.) has no -cycle in I , where α > β, α > θ .

Proof Let the initial values be as follows:

⎧⎪⎪⎨
⎪⎪⎩
x() = (S(), I(), I()),x() = (S(), I(), I()) ∈ V ,

y() = (S(), I(), I()), y() = (S(), I(), I()) ∈ V ,

z() = (S(), I(), I()), z() = (S(), I(), I()) ∈ V ,

(.)

⎧⎪⎪⎨
⎪⎪⎩
f (f (S(), I(), I())) = f (x()) = x(),

g(g(S(), I(), I())) = g(y()) = y(),

h(h(S(), I(), I())) = h(z()) = x().

(.)

In this case, we must have

∫ x()

x()

(
 +

∂f
∂S

)
dS �= ,

∫ x()

x()

(
 +

∂f
∂I

)
dI �= ,

∫ x()

x()

(
 +

∂f
∂I

)
dI �= ,

(.)

to find that S(t + ) = f (S(t), I(t), I(t)) has no -cycle in I . In view of Theorem ., the
following results can be obtained.
() f (S(t), I(t), I(t)) has no cycle in I , since for α > β we obtain

 +
∂f (x)
∂S

> ,  +
∂f (x)
∂I

> ,  +
∂f (x)
∂I

> , (.)

http://www.advancesindifferenceequations.com/content/2014/1/95
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where

p – βI – βI <
α

βr
<

α

βr
. (.)

() Similarly, I(t + ) = g(S(t), I(t), I(t)) has no cycle in I , since for α > θ , we get

 +
∂g(x)
∂S

> ,  +
∂g(x)
∂I

> ,  +
∂g(x)
∂I

> , (.)

where

 + β( – ε)S(n) – γ I(n) – θ I(n) + β( – ε)S(n)I(n) <
α

rθ
. (.)

() Finally, I(t + ) = h(S(t), I(t), I(t)) has no cycle in I , since (.) and (.) hold,
and we have

 +
∂h(x)
∂S

> ,  +
∂h(x)
∂I

> ,  +
∂h(x)
∂I

> . (.)

This completes the proof. �

Some additional assumptions of (.) are needed to verify global asymptotic stability
for the positive equilibrium point x = (S, I, I).
Let f , g , h be continuous functions and
i. f : A× B×C → A,
ii. g : A× B×C → B,
iii. h : A× B×C → C.

Corollary . Let us have a positive equilibrium point of system (.). If Theorems .-.
hold, then the positive equilibrium point of system (.) is globally asymptotically stable.

Example
We considered the health system in India in view of the information of []. The unit of
parameters is in units of per year:

p = ,, γ = ., ε = ε = .,

θ = ., α = ., r ∈ [., .],

α = ., r = r, α = ., r = .r.

Considering the condition β <
√

α(α–γ )
–ε

, we obtain β = ., β = .. Initial values
are selected as S() = ,, I() = ,, I() = , in Figure .
The health system in India has been considered in view of the information of []. Fig-

ures - show the variation of classes for different values of the parameters. In Figures -,
blue graph denotes susceptible class (S(t)), red graph denotes HIV positives that do not
know they are infected (I(t)), green graph denotes HIV positives that know they are in-
fected. The β value taken in Figure  is β = .. In Figure , we have only changed the

http://www.advancesindifferenceequations.com/content/2014/1/95
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Figure 1 The graph of populations (t, populations).

Figure 2 The graph of populations (t, populations), β2 = 0.3, β1 = 0.144.

variable β = .. And also in Figure , we have changed β = ., β = .. In this case,
one can say that β is an important parameter for the spread of the populations over the
time t. Considering Figure , it is seen that after  years an important increase of the I
class and decrease of the S class will happen for the selected values in system (.). When
Figures  and  are compared, one can see that in the same years the I class increases
more in Figure  and that the S class decreases more in Figure . In Figure , for β = .
and β = . after  years an important increase of class I and decrease of class S will
happen. In that case it is said that as the value of β (per capita contact rate for susceptibles
with unaware infectives (I)) increases, the I class decreases in earlier years.
In Figures - the variation of populations for different values of θ and k is shown. It is

seen that as infected persons, i.e. the unaware HIV infectives become aware about their
infection, detect by a rate θ , we may trace out the other infectives which have had the
sexual contacts in the past by contact tracing by a rate γ , which results in the decrease of

http://www.advancesindifferenceequations.com/content/2014/1/95
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Figure 3 The graph of populations (t, populations), β2 = 0.3, β1 = 0.9.

Figure 4 The graph of populations (t, populations), γ = 0.

the number of unaware infectives. It is seen that as the rate of θ and k become zero (see
Figure ) i.e. the infectives who do not know that they are infected will continue main-
taining sexual relationships in the community which will ultimately increase the infective
populations.
In Figure  due to immigration, the susceptible population increases continuously, there-

fore, infection becomes more endemic and always persists in the population (see also Fig-
ure ). In Figure  the distribution of population with time is shown in different classes
without immigration. It is seen that in the absence of immigration into the community,
the susceptible population decreases continuously as the population is closed, which re-
sults in an increase in the infective population first and then it decreases as all infectives
will develop AIDS will die out by disease-induced deaths. Thus the total population will
be eradicating after some time.

http://www.advancesindifferenceequations.com/content/2014/1/95
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Figure 5 The graph of populations (t, populations), θ = 0.

Figure 6 The graph of populations (t, populations), γ = 0, θ = 0.

Thus, on changing the behavior and increasing the awareness about the HIV infection
in the population the infection can be slowed down and may be kept under control.

Discussion
In this paper, a mathematical model with piecewise constant arguments is proposed to
investigate the impact of the parameters (e.g. contact tracing, screening) on the spread
of HIV in a population with variable size structure. The model is analyzed using Schur-
Cohn criteria on difference equations and numerical simulation. The equilibrium point
is found to be locally asymptotically stable and globally asymptotically stable under cer-
tain conditions. It is observed that if the aware HIV infectives, detected by screening and
contact tracing, do not take part in spreading the disease, HIV infection reduces signifi-
cantly. It is also found that the disease becomesmore endemic due to immigration and the
endemicity of the disease decreases when the infectives become aware of their infection

http://www.advancesindifferenceequations.com/content/2014/1/95
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Figure 7 The graph of populations (t, populations), p1 = 4,000.

Figure 8 The graph of populations (t, populations), p1 = 0.

after screening and contact tracing and do not take part in sexual interaction, whereas it
increases in the absence of contact tracing. In the absence of screening and contact trac-
ing, the infected people continue to spread the disease without taking any precaution due
to unawareness of their infection.
Finally from the analysis, it may be speculated that the most effective way to reduce the

infection rate and prevalence level is to educate the people about the HIV and make them
aware of the consequences of practicing non-safe sex or any other kind of risky behavior.
If the population presents a positive attitude toward preventive procedures, the disease
may tend to vanish, even for relatively small random screening rates.
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