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1 Introduction
As pointed out by Berryman [], the dynamic relationship between predators and their
prey has long been and will continue to be one of the dominant themes in both ecology
and mathematical ecology due to its universal existence and importance. Leslie [, ] in-
troduced the following famous Leslie predator-prey system:

ẋ(t) =
(
r – bx(t)

)
x(t) – p

(
x(t)

)
y(t),

ẏ(t) =
(
r – a

y(t)
x(t)

)
y(t),

(.)

where x(t), y(t) stand for the population (the density) of the prey and the predator at
time t, respectively. The parameters r and r are the intrinsic growth rates of the prey and
the predator, respectively. b measures the strength of competition among individuals of
species x. The value r

b
is the carrying capacity of the prey in the absence of predation. The

predator consumes the prey according to the functional response p(x) and carries capac-
ity x

a
. The parameter a is ameasure of the food quantity that the prey provides converted

to predator birth. The term y/x is the Leslie-Gower term which measures the loss in the
predator population due to rarity (per capita y/x) of its favorite food. Leslie model is a
predator-prey model where the carrying capacity of the predator is proportional to the
number of prey, stressing the fact that there are upper limits to the rates of increase in
both prey x and predator y, which are not recognized in the Lotka-Volterra model. These
upper limits can be approached under favorable conditions: for the predators, when the
number of prey per predator is large; for the prey, when the number of predators (and
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perhaps the number of prey also) is small []. For more details of the model, one can see
[–] and the references cited therein. Holling [] suggested three different kinds of func-
tional response for different kinds of species to model the phenomena of predation, which
made the standard Lotka-Volterra systemmore realistic. When p(x) = ax

x+k
, the functional

response p(x) is called Holling-type II.
Recently, Aziz-Alaoui and Daher Okiye [] pointed out that in the case of severe

scarcity, y can switch over to other populations but its growth will be limited by the fact
that its most favorite food x is not available in abundance. To solve such a problem, they
suggested to add a positive constant d to the denominator and proposed the following
predator-prey model with modified Leslie-Gower and Holling-type II schemes:

ẋ(t) =
(
r – bx(t) –

ay(t)
x(t) + k

)
x(t),

ẏ(t) =
(
r –

ay(t)
x(t) + k

)
y(t),

(.)

where r, b, r, a have the same meaning as in models (.). a is the maximum value
of the per capita reduction rate of x due to y, k (respectively, k) measures the extent
to which the environment provides protection to prey x (respectively, to the predator y).
The authors studied the boundedness and global stability of positive equilibrium of sys-
tem (.). Since then, system (.) and its non-autonomous versions have been studied
by incorporating delay and impulses, harvesting and so on (see, for example, [–]). In
[], we studied the structure, linearized stability and the global asymptotic stability of
equilibria of (.). Nindjin et al. [] incorporated time delay to system (.) and studied
the global stability and persistence of the delayed system by using the Lyapunov func-
tional. Yafia et al. [] and [] further studied the occurrence of Hopf bifurcation at equi-
librium by using the time delay as a parameter of bifurcation. Nindjin and Aziz-Alaoui
[] studied uniform persistence and global stability of three Leslie-Gower-type species
food chain system. Gakkhar and Singh [] studied the dynamic behaviors of a modified
Leslie-Gower predator-prey system with seasonally varying parameters. Guo and Song
[], Song and Li [] further considered the influence of impulsive effect. Zhu andWang
[] obtained sufficient conditions for the existence and global attractivity of positive pe-
riodic solutions of system (.) with periodic coefficients. Liu andWang [] considered a
stochastic predator-prey systemwithmodified Leslie-Gower andHolling-type II schemes
with Lévy jumps. The results showed that the Lévy jumps can change the properties of the
population systems significantly. Kar and Ghorai [] obtained local stability, global sta-
bility, influence of harvesting and bifurcation of a delayed predator-prey system in the
presence of harvesting. Two stage-structured predator-prey models with modified Leslie-
Gower and Holling-type II schemes were studied in [–]. Gupta and Chandra []
discussed the permanence, stability and bifurcation (saddle-node bifurcation, transcrit-
ical, Hopf-Andronov and Bogdanov-Takens) of a modified Leslie-Gower prey-predator
model with Michaelis-Menten type prey harvesting. Ji et al. [, ] showed there was a
stationary distribution of a predator-preymodel withmodified Leslie-Gower andHolling-
type II schemes with stochastic perturbation and it has ergodic property. Lian and Xu []
discussed the Hopf bifurcation of a predator-prey system with Holling type IV functional
response and time delay.
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Aswe all know, the functional response can be classified into two types: prey-dependent
and predator-dependent. Prey-dependent depends on prey density only, while predator-
dependent means that the functional response is a function of both the preys and the
predators densities. Recently, the prey-dependent functional responses have been chal-
lenged by several ecologists. There is a growing explicit biological and physiological evi-
dence [–] that inmany situations, especially when the predator has to search for food
(and therefore has to shave or compete for food), a more suitable general predator-prey
theory should be predator-dependent. This is supported by numerous fields and labo-
ratory experiments and observations [, ]. Starting from this argument and the tra-
ditional prey-dependent-only model, Arditi and Ginzburg [] first proposed the ratio-
dependent predator-prey model. Many authors have observed that the ratio-dependent
models can exhibit much richer, more complicated andmore reasonable or acceptable dy-
namics, but it has somewhat singular behavior at low densities which has been the source
of controversy []. For the ratio-dependent predator-prey models, one can refer to [–
].
Beddington-DeAngelis functional response αx

a+bx+cy was first proposed by Beddington
and DeAngelis [, ]. Predator-prey model with Beddington-DeAngelis functional re-
sponse has rich dynamical features, which can describe the species and the ecological sys-
tems more reasonably. Beddington-DeAngelis functional response is similar to the well-
known Holling type II functional response but has an extra term cy in the denomina-
tor modeling mutual interference among predators and has some of the same qualitative
features as the ratio-dependent form but avoids some of the singular behaviors of ratio-
dependent models at low densities.
On the other hand, in , Skalski and Gilliam [] have presented statistical evidence

from nineteen predator-prey systems that three predator-dependent functional responses
(Beddington-DeAngelis, Crowley-Martin, andHassell-Varley) can provide better descrip-
tion of predator feeding over a range of predator-prey abundances. In some cases, the
Beddington-DeAngelis type preformed even better. Theoretical studies have shown that
the dynamics of models with predator-dependent functional responses can differ consid-
erably from thosewith prey-dependent functional responses. Althoughmuchprogress has
been seen in the study of predator-preymodels with modified Leslie-Gower (see [–]),
to the best of the authors’ knowledge, seldom did scholars consider the modified Leslie-
Gower model with Beddington-DeAngelis functional response. Stimulated by above rea-
sons, in this paper wewill incorporate the Beddington-DeAngelis functional response into
model (.) and consider the following model which is the generalization of model (.):

ẋ(t) =
(
r – px(t) –

αy(t)
a + bx(t) + cy(t)

)
x(t),

ẏ(t) =
(
r –

βy(t)
x(t) + k

)
y(t),

(.)

with initial conditions x() >  and y() > . The parameters r, p, α, a, b, c, r, β and k are
positive constants and have the same meaning as in model (.).
It is easy to see that both the first quadrant R

+ and the positive first quadrant IntR
+ are

invariant for system (.). As a result, solutions (x(t), y(t)) to (.) with (x(), y()) ∈ IntR
+

are all positive solutions.
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The rest of this paper is organized as follows. In Section , we discuss the structure of
nonnegative equilibria to (.) and their local stability, which motivates us to study per-
manence and global stability of (.) respectively in Section  and Section .
For more works on this direction, one could refer to [–] and the references cited

therein.

2 Nonnegative equilibria and their local stability
The Jacobian matrix of system (.) is

J =

(
r – px – αy(a+cy)

(a+bx+cy) – αx(a+bx)
(a+bx+cy)

βy
(x+k) r – βy

x+k

)
.

An equilibrium E of (.) is (linearly) stable if the real parts of both eigenvalues of J(E) are
negative, and therefore a sufficient condition for stability is

tr
(
J(E)

)
<  and det

(
J(E)

)
> . (.)

Obviously, (.) has three boundary equilibria, E = (, ), E = ( rp , ) and E = (, rk
β
),

whose Jacobian matrices are

J(E) =

(
r 
 r

)
,

J(E) =

(
–r – αr

ap+br
 r

)
,

and

J(E) =

(
r – αrk

aβ+crk


r
β

–r

)
,

respectively. As a direct consequence of (.), we have the following result.

Proposition .
(i) Both E and E are unstable.
(ii) E is locally asymptotically stable if αrk > arβ + rrck, while it is unstable if

αrk < arβ + rrck.

Besides the three boundary equilibria, (.) may have (componentwise) positive equi-
libria. Suppose that Ê = (x̂, ŷ) is such an equilibrium. Then

r – px̂ =
αŷ

a + bx̂ + cŷ
,

ŷ =
r(x̂ + k)

β
.

(.)
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One can easily see that x̂ satisfies

(rcp + bpβ)x̂ + Bx̂ + αrk – arβ – rrck = , (.)

where B �= αr + prck + apβ – rrc – brβ . Moreover, for convenience, we denote

�
�= B – (rcp + bpβ)(αrk – arβ – rrck).

Hence, we have the following result.

Proposition . Suppose that

(H) αrk < arβ + rrck

holds, then system (.) has a unique positive equilibrium Ê = (x̂, ŷ), where

x̂ =
–B +

√
�

(rcp + bpβ)
and ŷ =

r(x̂ + k)
β

.

We now want to study the stability of the positive equilibrium Ê = (x̂, ŷ). It follows from
the Jacobian matrix of systems (.) and (.) that

tr
(
J(Ê)

)
=
(rb – ap)x̂ – pbx̂ – pcx̂ŷ

a + bx̂ + cŷ
– r

=
–(pbβ + pcr)x̂ + (rbβ – apβ – rbβ – rc)x̂ – rck – pcrk – arβ

aβ + (bβ + cr)x̂ + crk
,

and

det
(
J(Ê)

)
=
r(pbx̂ – (rb – ap)x̂ + pcx̂ŷ)

a + bx̂ + cŷ
+
rx̂(a + bx̂)(r – px̂)

β(a + bx̂ + cŷ)ŷ

=
rx̂

a + bx̂ + cŷ

(
pbx̂ – (rb – ap) +

pcr(x̂ + k)
β

+
(a + bx̂)(r – px̂)

(x̂ + k)

)

=
rx̂

β(a + bx̂ + cŷ)(x̂ + k)
(
(pbβ + pcr)x̂ + (pcrk + pbkβ)x̂

+ pcrk + arβ + apkβ – rbkβ
)
.

Thus, if rb < ap, we have

tr
(
J(Ê)

)
<  and det

(
J(Ê)

)
> .

Hence, the following proposition follows from (.).

Proposition . Assume that

(H) rb < ap

holds, then the positive equilibrium Ê is locally asymptotically stable.
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Proposition . and Proposition . naturally motivate us to seek sufficient conditions
on the global stability of E and the unique positive equilibrium to (.). To achieve it, we
need the bounds for positive solutions.

3 Boundedness and permanence
The following result can be proved by slightly modifying the proof of Lemma . of Chen
[] and it will play an important role in finding the bounds for positive solutions to (.).

Lemma . If a > , b >  and ẋ ≥ x(b – ax), when t ≥ t and x(t) > , we have

lim inf
t→+∞ x(t)≥ b

a
.

If a > , b >  and ẋ ≤ x(b – ax), when t ≥ t and x(t) > , we have

lim sup
t→+∞

x(t)≤ b
a
.

Proposition . Let (x(t), y(t)) be any positive solution of (.). Then

lim sup
t→+∞

x(t)≤ r
p

�=M, (.)

and

m ≤ lim inf
t→+∞ y(t) ≤ lim sup

t→+∞
y(t) ≤ M,

where m
�= rk

β
and M

�= rr+prk
pβ .

Proof Since (x(t), y(t)) is a positive solution of (.), we have

ẋ ≤ (r – px)x,

ẏ ≥
(
r –

βy
k

)
y.

(.)

Then (.) and lim inft→+∞ y(t) ≥ m follow directly from Lemma .. Thus, for any ε > ,
there exists T >  such that

x(t)≤ r
p
+ ε for t ≥ T .

This combined with the second equation of (.) leads to

ẏ≤
(
r –

βy
r
p + ε + k

)
y for t ≥ T .

Using Lemma . again, one has

lim sup
t→+∞

y(t) ≤ r( rp + ε + k)
β

.

Thus lim supt→∞ y(t) ≤ M by letting ε → . �
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Proposition . Suppose that

(H) arpβ > α(rr + prk).

If (x(t), y(t)) is a positive solution to system (.), then

lim inf
t→+∞ x(t)≥ arpβ – α(rr + prk)

apβ
�=m.

Proof Denote

ε =
arpβ – α(rr + prk)

αpβ
.

Then, for ε ∈ (, ε), we have

arpβ > α(rr + prk + pβε).

According to Proposition ., there exists T >  such that

y(t) ≤ rr + prk
pβ

+ ε for t ≥ T .

This, combined with the first equation of (.), produces

ẋ ≥
(
r – px –

α(rr + prk + pβε)
apβ

)
x for t ≥ T .

It follows from Lemma . that

lim inf
t→+∞ x(t)≥ r – α(rr+prk+pβε)

apβ

p
.

This gives lim inft→+∞ x(t) ≥m by letting ε → . �

Combing Proposition . with Proposition . gives the permanence of (.).

Theorem . Suppose that (H) holds, then (.) is permanent.

4 Global asymptotic stability
The goal of this section is to establish sufficient conditions on the global asymptotic sta-
bility of equilibrium to (.). The first two results are proved by employing the fluctuation
lemma, which is cited below for the convenience of the readers. See Hirsch et al. [] or
Tineo [] for more details on the fluctuation lemma.

Lemma . (Fluctuation lemma) Let x(t) be a bounded differentiable function on [α,∞).
Then there exist sequences τn → ∞ and σn → ∞ such that

(i) ẋ(τn) →  and x(τn) → lim supt→∞ x(t) = x as n→ ∞;
(ii) ẋ(σn)→  and x(σn) → lim inft→∞ x(t) = x as n→ ∞.

http://www.advancesindifferenceequations.com/content/2014/1/84
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Theorem . Assume that

(H) αrpβ + brβ + crrkp < αprk.

Then E = (, rk
β
) is globally asymptotically stable for system (.).

Proof Let (x(t), y(t)) be any positive solution of (.). According to (H), we can choose
ε ∈ (, rk

β
) such that

αrpβ + brβ + crrkp < αprk + (cr – br – α)pβε. (.)

It follows from Proposition . that there exists T >  such that

x(t)≤ r
p
+ ε and y(t) ≥ rk

β
– ε for t ≥ T .

These inequalities combined with the first equation of (.) give us

ẋ ≤
(
r –

αp(rk – βε)
apβ + brβ + crkp + (b – c)pβε

)
for t ≥ T ,

or

ẋ
x

≤
(
r –

αp(rk – βε)
apβ + brβ + crkp + (b – c)pβε

)
for t ≥ T . (.)

Integrating both sides of (.) on interval [T , t] leads to

x(t)≤ x(T) exp
{(

r –
αp(rk – βε)

apβ + brβ + crkp + (b – c)pβε

)
(t – T)

}
.

Due to (.), one has lim supt→+∞ x(t)≤ . Hence

lim
t→+∞x(t) = . (.)

Proposition . again tells us that y(t) is bounded and y �= lim supt→+∞ y(t) ≥ y �=
lim inft→+∞ y(t) > . By Lemma ., there exist sequences τn → ∞, σn → ∞ such that
ẏ(τn) → , ẏ(σn) → , y(τn) → y, and y(σn) → y, as n→ ∞.
It follows from the second equation of (.) and limt→+∞ x(t) =  that

 =
(
r –

βy
k

)
y or y =

rk
β

. (.)

Similarly, one can show that

y =
rk
β

. (.)

Equation (.) combined with (.) implies that

lim
t→+∞ y(t) =

rk
β

. (.)

It follows from (.) and (.) that E = (, rk
β
) is globally asymptotically stable. �
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Theorem . In addition to (H), further suppose that

(H) rbβ + αr ≤ bpβm + apβ + cprk + crr,

where m is defined in Proposition .. Then system (.) has a unique positive equilibrium
which is globally asymptotically stable.

Proof Note that (H) implies (H), thus (.) has a unique positive equilibrium according
to Proposition .. Let (x(t), y(t)) be any positive solution of (.). By the results in Sec-
tion , x �= lim supt→∞ x(t) ≥ x �= lim inft→∞ x(t) ≥ m (> ) and y �= lim supt→∞ y(t) ≥ y �=
lim inft→∞ y(t) > .
We claim that x = x. Suppose that x > x. According to Lemma ., there exist sequences

ξn → ∞, ηn → ∞, τn → ∞ and σn → ∞, such that ẋ(ξn) → , ẋ(ηn) → , x(ξn) → x and
x(ηn) → x, ẏ(τn) → , ẏ(σn) → , y(τn) → y and y(σn) → y, as n→ ∞. First, it follows from
the second equation of (.) that

ẏ(τn) ≤
(
r –

βy(τn)
supt≥τn x(τn) + k

)
y(τn)

and

ẏ(τn) ≥
(
r –

βy(τn)
inft≥τn x(τn) + k

)
y(τn).

Letting n → ∞ gives us

 ≤
(
r –

βy
x + k

)
y

and

 ≥
(
r –

βy
x + k

)
y.

Hence

r(x + k)
β

≤ y≤ r(x + k)
β

. (.)

Similar arguments as above also produce

r(x + k)
β

≤ y≤ r(x + k)
β

. (.)

Second, from the first equation of (.), we have

ẋ(ξn) =
(
r – px(ξn) –

αy(ξn)
a + bx(ξn) + cy(ξn)

)
x(ξn). (.)

Equation (.) implies

ẋ(ξn) ≤
(
r – px(ξn) –

α inft≥ξn y(ξn)
a + bx(ξn) + c inft≥ξn y(ξn)

)
x(ξn).
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Taking limit as n→ ∞, one obtains

 ≤
(
r – px –

αy
a + bx + cy

)
x.

This, combined with (.), gives us

 ≤
(
r – px –

αr(x + k)
aβ + bβx + cr(x + k)

)
x.

It follows that

(rbβ – apβ)x – bpβx – cprx(x + k) + crrx + arβ + crrk ≥ αr(x + k). (.)

Similarly, one can show that

(rbβ – apβ)x – bpβx – cprx(x + k) + crrx + arβ + crrk ≤ αr(x + k). (.)

Multiplying (.) by – and adding it to (.), we have

bpβ
(
x – x

)
+ (apβ – rbβ + cprk + crr – αr)(x – x) ≤ .

Due to x > x, one gets

bpβ(x + x) + (apβ + cprk + crr – rbβ – αr) ≤ . (.)

On the other hand,

bpβ(x + x) + (apβ + cprk + crr – rbβ – αr)

> bpβm + (apβ + cprk + crr – rbβ – αr)

≥  by (H),

which contradicts with (.). Therefore, x = x and the claim is proved. The claim implies
that limt→+∞ x(t) exists and we denote it by x∗. Then it follows from (.) and (.) that
limt→+∞ y(t) exists and limt→+∞ y(t) �= y∗ = r(x∗+k)

β
> . Letting n→ ∞ in (.) gives us

(rcβ + bpβ)x∗ + (αr + prck + apβ – rrc – brβ)x∗ + αrk – arβ – rrck = .

Thus (x∗, y∗) satisfies

r – px∗ =
αy∗

a + bx∗ + cy∗ ,

y∗ =
r(x∗ + k)

β
.

That is, (x∗, y∗) is a positive equilibrium of (.). This completes the proof as the posi-
tive equilibrium is unique and so the unique equilibrium point is globally asymptotically
stable. �
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The following results in this section are proved by qualitative method and applying the
Lyapunov direct method with the Lyapunov function.

Theorem. Assume that (H) and (H) hold, then (.) has a unique positive equilibrium
which is globally asymptotically stable.

Proof According to Proposition ., (.) has a unique positive equilibrium Ê = (x̂, ŷ). Tak-
ing Dulac function D(x, y) = x–(a + bx + cy)y–, we obtain

∂(DP)
∂x

+
∂(DQ)

∂y
=
(rb – ap) – pbx – pcy

y
–
r(a + bx)

xy
–

βc
x(x + k)

,

where (P,Q) is the vector field of (.). By the positivity of x, y, it is easy to obtain that
∂(DP)

∂x + ∂(DQ)
∂y <  if (H) holds. Then, by the Dulac criteria, (.) admits no limit cycles

or separatrix cycles. Proposition . shows that Ê = (x̂, ŷ) is locally asymptotically stable
when (H) holds. On the other hand, (.) admits only four equilibria Ei (i = , , ) and Ê.
Also, Proposition . shows that Ei (i = , , ) are all unstable when αrk < arβ + rrck
holds. So, according to Proposition . and the Poincaré-Bendixson theorem, Ê is globally
asymptotically stable. �

Theorem . Suppose that (H) holds, further assume that

(H)
αbŷ
a

+
αM

k
+

α(a + bx̂)
a

< p(a + bx̂ + cŷ) and Ma < k(a – bx̂)

hold, then (.) has a unique positive equilibrium Ê = (x̂, ŷ)which is globally asymptotically
stable.

Proof Let (x(t), y(t)) be any positive solution of (.). According to Proposition ., (.)
has a unique positive equilibrium Ê = (x̂, ŷ). From (H), we can choose an ε >  such that

αbŷ
a

+
α(M + ε)

k
+

α(a + bx̂)
a

< p(a + bx̂ + cŷ) and
M + ε

k
+
a + bx̂
a

< . (.)

Moreover, it follows from Proposition . that there exists T >  such that

 < y(t) ≤M + ε for t ≥ T . (.)

Let V (x, y) = V(x, y) + V(x, y), where V(x, y) = (a + bx̂ + cŷ)(x – x̂ – x̂ ln( xx̂ )) and V(x, y) =
α(x̂+k)

β
(y– ŷ– ŷ ln( yŷ )). Calculating the derivative of V along the solution of system (.), we

have

V̇ (x, y) = (a + bx̂ + cŷ)(x – x̂)
(
r – px –

αy
a + bx + cy

)
+

α(x̂ + k)
β

(y – ŷ)
(
r –

βy
x + k

)

= (a + bx̂ + cŷ)(x – x̂)
(
–p(x – x̂) +

αŷ
a + bx̂ + cŷ

–
αy

a + bx + cy

)

+
α(x̂ + k)

β
(y – ŷ)

(
β ŷ
x̂ + k

–
βy
x + k

)
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=
(

αbŷ
a + bx + cy

– p(a + bx̂ + cŷ)
)
(x – x̂) – α(y – ŷ)

+
(

αy
x + k

–
α(a + bx̂)
a + bx + cy

)
(x – x̂)(y – ŷ)

≤
(

αbŷ
a + bx + cy

– p(a + bx̂ + cŷ)
)
(x – x̂) – α(y – ŷ)

+
(

αy
x + k

+
α(a + bx̂)
a + bx + cy

)
(x – x̂) + (y – x̂)



≤
(

αbŷ
a

– p(a + bx̂ + cŷ)
)
(x – x̂) – α(y – ŷ)

+
(

αy
k

+
α(a + bx̂)

a

)
(x – x̂) + (y – x̂)



=
(

αbŷ
a

– p(a + bx̂ + cŷ) +
αy
k

+
α(a + bx̂)

a

)
(x – x̂)

+
(

αy
k

+
α(a + bx̂)

a
– α

)
(y – ŷ)

≤
(

αbŷ
a

– p(a + bx̂ + cŷ) +
α(M + ε)

k
+

α(a + bx̂)
a

)
(x – x̂)

+ α

(
M + ε

k
+
a + bx̂
a

– 
)
(y – ŷ).

According to (.) and (.), V̇ (x, y) <  strictly for all x, y >  except the positive equi-
librium Ê = (x̂, ŷ), where V̇ (x, y) = . Thus, V (x, y) satisfies Lyapunov’s asymptotic stability
theorem, and the positive equilibrium Ê of system (.) is globally asymptotically stable.
This ends the proof of Theorem .. �

Conclusion
In this paper, we consider a predator-prey model with modified Leslie-Gower and
Beddington-DeAngelis functional response. We discuss the structure of nonnegative
equilibria and their local stability. Also, the permanence of the system is investigated.
By applying the fluctuation lemma, qualitative analysis and Lyapunov direct method, re-
spectively, three sufficient conditions on the global asymptotic stability of a positive equi-
librium are obtained. Compare Theorem . with Theorem .. Since (H) contains (H),
what will happen when (H) and (H) hold? This is a further problem, which can be stud-
ied in the future.
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