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Abstract
For a complex value q �= 0, 1, and a transcendental entire function f (z) with order,
0 < σ (f ) < ∞, we study the value distribution of q-difference differential polynomials
[f n(z)(f (qz) – f (z))](k) and [f (z)f (qz)](k).
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1 Introduction andmain results
A meromorphic function f (z) means meromorphic in the complex plane C. If no poles
occur, then f (z) reduces to an entire function. For every real number x ≥ , we define
log+ x :=max{, logx}. Assume that n(r, f ) counts the number of poles of f in |z| < r, each
pole according to its multiplicity, and that n(r, f ) counts the number of the distinct poles
of f in |z| < r, ignoring the multiplicity. The characteristic function of f (z) is defined by

T(r, f ) :=m(r, f ) +N(r, f ),

where

N(r, f ) :=
∫ r



n(t, f ) – n(, f )
t

dt + n(, f ) log r

and

m(r, f ) :=

π

∫ π


log+

∣∣f (reiθ )∣∣dθ .

The notation N(r, f ) is similarly defined with n(r, f ) instead of n(r, f ). More notations and
definitions of the Nevanlinna value distribution theory of meromorphic functions can be
found in [, ].
A meromorphic function α(z) is called a small function with respect to f (z), if T(r,α) =

S(r, f ), where S(r, f ) denotes any quantity satisfying S(r, f ) = o(T(r, f )) as r → ∞ outside
a possible exceptional set E of finite logarithmic measure. The order and the exponent of
convergence of zeros of meromorphic function f (z) is, respectively, defined as

σ (f ) = lim sup
r→∞

logT(r, f )
log r

, λ(f ) = lim sup
r→∞

logN(r, f )
log r

.
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The difference operators for a meromorphic function f (z) are defined as

�cf (z) = f (z + c) – f (z) (c �= ),

∇qf (z) = f (qz) – f (z) (q �= , ).

A Borel exceptional value of f (z) is any value a ∈C∪ {∞} satisfying λ(f – a) < σ (f ), where
λ(f –∞) means λ( f ).
Recently, the difference variant of the Nevanlinna theory has been established indepen-

dently in [–]. Using these theories, value distributions of difference polynomials have
been studied bymany papers. For example, Laine and Yang [] proved that if f (z) is a tran-
scendental entire function of finite order, c is a nonzero complex constant and n≥ , then
f n(z)f (z + c) takes every nonzero value infinitely often.
Chen [] considered the value distribution of f (z)f (z + c) and obtained the following

theorem.

Theorem A [, Corollary .] Let f (z) be a transcendental entire function of finite order,
and let c be a nonzero complex constant. If f (z) has the Borel exceptional value , then
H(z) = f (z)f (z + c) takes every nonzero value a ∈ C infinitely often.

Chen [] considered zeros of difference productHn(z) = f n(z)�cf (z) and gave some con-
ditions that guarantee Hn(z) has finitely many zeros or infinitely many zeros.

Theorem B [, Theorem ] Let f (z) be a transcendental entire function of finite order and
c ∈ C \ {} be a constant such that f (z + c) �≡ f (z). Set Hn(z) = f n(z)�cf (z) where �cf (z) =
f (z + c) – f (z), n ≥  is an integer. Then the following statements hold.
() If f (z) satisfies σ (f ) �= , or has infinitely many zeros, then Hn(z) has infinitely many

zeros.
() If f (z) has only finitely many zeros and σ (f ) = , then Hn(z) has only finitely many

zeros.

The zero distribution of differential polynomials is a classical topic in the theory ofmero-
morphic functions. Hayman [, Theorem ] firstly considered the value distribution of
f nf ′ – , where f is a transcendental function.
Recently, Liu, Liu and Cao [] investigated the zeros of [f (z)nf (z + c)](k) – α(z) and

[f (z)n�cf (z)](k) – α(z), where α(z) is a nonzero small function with respect to f (z).

TheoremC [, Theorems . and .] Let f (z) be a transcendental entire function of finite
order and α(z) be a nonzero small function with respect to f (z). If n≥ k +, then [f (z)nf (z+
c)](k) – α(z) has infinitely many zeros. If f (z) is not a periodic function with period c and
n≥ k + , then [f (z)n�cf (z)](k) – α(z) has infinitely many zeros.

The main purpose of this paper is to consider a transcendental entire function f (z)
with positive and finite order and obtain some results on the value distributions of the
q-difference differential polynomials [f n(z)(f (qz) – f (z))](k) and [f (z)f (qz)](k). The first the-
orem will consider what conditions guarantee that [f n(z)∇qf (z)](k) has infinitely many ze-
ros.
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Theorem . Let f (z) be a transcendental entire function of finite and positive order σ (f ),
q ∈ C \ {, } be a constant such that qσ (f ) �=  and f (z) �≡ f (qz). Set H(z) = [f n(z)∇qf (z)](k),
n≥  is an integer. If f (z) has finitely many zeros, then H(z)–α(z) has infinitely many zeros,
where α(z) is a nonzero small entire function with respect to f (z).

In the following, we will study the value distribution of [f (z)f (qz)](k).

Theorem . Let f (z) be a transcendental entire function of finite and positive order σ (f ),
a be a finite Borel exceptional value of f (z), q ∈C \ {, } be a constant such that qσ (f ) �=±.
Set H(z) = [f (z)f (qz)](k), then the following statements hold.
() If a = , then  is also the Borel exceptional value of H(z). So that H(z) has no

nonzero finite Borel exceptional value.
() If a �= , then H(z) has no finite Borel exceptional value.
() H(z) takes every nonzero value c ∈C infinitely often and satisfies λ(H – c) = σ (f ).

Using the similar method of the proof of Theorem .(), we get the following result
immediately.

Corollary . Let f (z) be a transcendental entire function of finite and positive order σ (f ),
q ∈C\ {, } be a constant such that qσ (f ) �= –n. If  is a Borel exceptional value of f (z), then
 is also the Borel exceptional value of [f n(z)f (qz)](k).

2 Some lemmas
The following are the well-known Weierstrass factorization and Hadamard factorization
theorems.

Lemma . [] If an entire function f (z) has a finite exponent of convergence λ(f ) for its
zero-sequence, then f (z) has a representation in the form

f (z) =Q(z)eg(z),

satisfying λ(Q) = σ (Q) = λ(f ). Further, if f (z) is of finite order, then g(z) in the above form is
a polynomial of degree less or equal to the order of f (z).

Lemma . [] Suppose that f(z), f(z), . . . , fn(z) (n ≥ ) are meromorphic functions and
g(z), g(z), . . . , gn(z) are entire functions satisfying the following conditions:
()

∑n
j= fj(z)e

gj(z) ≡ ;
() gj(z) – gk(z) are not constants for ≤ j < k ≤ n;
() For ≤ j ≤ n, ≤ h < k ≤ n, T(r, fj) = o(T(r, egh–gk )) (r → ∞, r /∈ E).

Then fj(z) ≡  (j = , , . . . ,n).

3 The proofs
3.1 Proof of Theorem 1.1
Since f (z) is a transcendental entire function of finite order and has finitely many zeros,
then by Lemma ., f (z) can be written as

f (z) = g(z)eh(z),
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where g(z) ( �≡ ), h(z) are polynomials. Set

h(z) = aszs + · · · + a,

where as,as–, . . . ,a are constants, and as �= . Since σ (f ) �= , then σ (f ) = deg(h(z)) = s ≥ .
So

H(z) =
[
f n(z)∇qf (z)

](k)
=

[
gn(z)g(qz)enh(z)+h(qz) – gn+(z)e(n+)h(z)

](k)
= g(z)enh(z)+h(qz) – g(z)e(n+)h(z),

where g(z), g(z) are nonzero polynomials and

(n + )h(z) –
(
nh(z) + h(qz)

)
=

(
 – qs

)
aszs +

(
 – qs–

)
as–zs– + · · · + ( – q)az.

Since qσ (f ) = qs �= , then (n+)h(z)– (nh(z)+h(qz)) is not a constant. SoH(z) is a transcen-
dental entire function, suppose thatH(z)–α(z) has finitelymany zeros, then by Lemma.,
H(z) – α(z) can be written as

H(z) – α(z) = g(z)eh(z).

Here g(z) ( �≡ ), h(z) are polynomials. Combing the above equalities, we obtain

g(z)enh(z)+h(qz) – g(z)e(n+)h(z) – g(z)eh(z) – α(z) = . (.)

Note that (n+ )h(z) – (nh(z) + h(qz)) is not a constant and g(z), g(z), g(z) are nonzero
polynomials. If (nh(z) +h(qz)) –h(z) and (n+)h(z) –h(z) are not constants, then by (.)
and Lemma ., we obtain

g(z) ≡ , g(z) ≡ , g(z) ≡ , α(z) ≡ .

This is a contradiction.
If (nh(z) + h(qz)) – h(z) = c, where c is a constant, then (.) can be rewritten as

(
g(z) – e–cg(z)

)
enh(z)+h(qz) – g(z)e(n+)h(z) – α(z) = . (.)

By (.) and Lemma ., we obtain

g(z) – e–cg(z) ≡ , g(z) ≡ , α(z)≡ .

This is a contradiction.
If (n + )h(z) – h(z) = c, where c is a constant, then using the same method as above, we

also obtain a contradiction.
Hence H(z) – α(z) has infinitely many zeros.
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3.2 Proof of Theorem 1.2
Since f (z) is a transcendental entire function of finite and positive order with a Borel ex-
ceptional value a, then by Lemma ., f (z) can be written as

f (z) = a + g(z)eαzs .

Here s is a positive integer, α is a nonzero constant, g(z) is a nonzero entire function sat-
isfying σ (g) < σ (f ) = s, thus

f (z)f (qz) =
(
a + g(z)eαzs)(a + g(qz)eαqszs)

= a + ag(qz)eαqszs + ag(z)eαzs + g(z)g(qz)eα(+qs)zs .

Since qσ (f ) = qs �=±, g(z) is a nonzero entire function satisfying σ (g) < s, f (z)f (qz) is a tran-
scendental entire function and σ (f (z)f (qz)) = s, and by the classical result of Nevanlinna
theory, we get σ (H) = σ (f (z)f (qz)) = s. Then

H(z) =
[
f (z)f (qz)

](k)
=

[
a + ag(qz)eαqszs + ag(z)eαzs + g(z)g(qz)eα(+qs)zs](k)

= g(z)eαqszs + g(z)eαzs + g(z)eα(+qs)zs .

Here g(z), g(z), g(z) are differential polynomials of g(z), g(qz) and σ (gi(z)) < s, i = , , .
Case . a = , by the above equality, we get

H(z) = g(z)eα(+qs)zs .

Since qσ (f ) = qs �= – and σ (g(z)) < s, this implies that  is the Borel exceptional value of
H(z).
Case . a �= , suppose H(z) has a finite Borel exceptional value b, then by Lemma .,

H(z) can be written as

H(z) = b + h(z)eβzs .

Here β is a nonzero constant, h(z) is a nonzero entire function satisfying σ (h) < σ (H) = s.
Combing the above equalities, we obtain

g(z)eαqszs + g(z)eαzs + g(z)eα(+qs)zs – h(z)eβzs – b = . (.)

Since qσ (f ) = qs �=±, we have αqs �= α �= α( + qs).
If αqs �= β , α �= β , α( + qs) �= β . By (.) and Lemma ., we obtain

g(z) ≡ , g(z) ≡ , g(z) ≡ , h(z) ≡ , b ≡ .

This is a contradiction.
If αqs = β , then (.) can be rewritten as

(
g(z) – h(z)

)
eαqszs + g(z)eαzs + g(z)eα(+qs)zs – b = . (.)
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By (.) and Lemma ., we obtain

g(z) – h(z) ≡ , g(z) ≡ , g(z) ≡ , b ≡ .

Which is a contradiction.
If α = β or α( + qs) = β , then using the same method as above, we also obtain a contra-

diction.
Case . From Case  and Case , we get that if f (z) has a finite Borel exceptional value,

then any nonzero finite value c must not be the Borel exceptional value of H(z), so H(z)
takes every nonzero value c ∈ C infinitely often, since σ (H) = s, then λ(H – c) = σ (H) =
σ (f ).
The proof of Theorem . is completed.
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