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Abstract
In this paper, we will use the Krasnosel’skii fixed point theorem to investigate a
discrete fractional boundary value problem of the form
–�νy(t) = λh(t + ν – 1)f (y(t + ν – 1)), y(ν – 2) =�(y), y(ν + b) =�(y), where 1 < ν ≤ 2,
t ∈ [0,b]N0 , f : [0,∞)→ [0,∞) is a continuous function,
h : [ν – 1,ν + b – 1]Nν–1 → [0,∞), � ,� :Rb+3 → R are given functionals, where � , �
are linear functionals, and λ is a positive parameter.
MSC: 26A33; 39A05; 39A12
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1 Introduction
The theory of fractional differential equations and their applications has received inten-
sive attention. However, the theory of fraction difference equations is still limited. But in
the last few years, a number of papers on fractional difference equations have appeared
[–]. Among them, Atici and Eloe [] introduced and developed properties of discrete
fractional calculus. In [], Atici and Eloe studied a two-point boundary valve problem for a
finite fractional difference equation. They obtained sufficient conditions for the existence
of solutions for the following boundary value problem:

–�νy(t) = f
(
t + ν – , y(t + ν – )

)
, y(ν – ) =  = y(ν + b + ),

where t ∈ [,b + ]N ,  < ν ≤ , and f : [ν – ,ν + b]Nν– × R → R is a continuous func-
tion. Goodrich [] deduced uniqueness theorems by means of the Lipschitz condition
and deduced the existence of one or more positive solutions by using the cone theoretic
techniques for this same boundary value problem. He showed that many of the classical
existence and uniqueness theorems for second-order discrete boundary value problems
extend to the fraction-order case. In [], Goodrich obtained the existence of positive solu-
tions to another boundary value problem. Goodrich [] also considered a pair of discrete
fractional boundary value problem of the form

–�νy(t) = λa(t + ν – )f
(
y(t + ν – ), y(t + ν – )

)
,

–�νy(t) = λa(t + ν – )f
(
y(t + ν – ), y(t + ν – )

)
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y(ν – ) = �(y), y(ν – ) = �(y),

y(ν + b) = �(y), y(ν + b) = �(y),

where t ∈ [,b]N , λi > , ai :R → [,∞), νi ∈ (, ] for each i = , . �i,�i :Rb+ → R are
given functionals, and fi : [,∞)× [,∞) → [,∞) is continuous for each admissible i.
Extensive literature exists on boundary value problems of fractional difference equations

[–]. Ferreiraa [] provided sufficient conditions for the existence and uniqueness of so-
lution to some discrete fractional boundary value problems of order less than . Goodrich
[–] studied a ν order ( < ν ≤ ) discrete fractional three-point boundary value prob-
lem and semipositone discrete fractional boundary value problems.
In this paper, we consider the following boundary value problems of fractional difference

equation with nonlocal conditions:

–�νy(t) = λh(t + ν – )f
(
y(t + ν – )

)
, ()

y(ν – ) = �(y), ()

y(ν + b) = �(y), ()

where t ∈ [,b]N ,  < ν ≤ , f : [,∞)→ [,∞) is a continuous function. h : [ν – ,ν + b–
]Nν– → [,∞),� ,� :Rb+ →R are given linear functionals and λ is a positive parameter.
The boundary conditions ()-() are generally called nonlocal conditions. Our analysis
relies on the Krasnosel’kill fixed-point theorem to get the main results of problem ()-().
The paper will be organized as follows. In Section , wewill present basic definitions and

demonstrate some lemmas in order to prove our main results. In Section , we establish
some results for the existence of solutions to problem ()-(), and we provide an example
to illustrate our main results.

2 Preliminaries
Let us first recall some basic lemmas which plays an important role in our discussions.

Definition . [] We define

t(ν) =
�(t + )

�(t +  – ν)
,

for any t and ν for which the right-hand side is defined. We also appeal to the convention
that if t +  – ν is a pole of the Gamma function and t +  is not a pole, then t(ν) = .

Definition . [] The νth fractional sum of a function f defined on the set Na := {a,a +
, . . .}, for ν > , is defined to be

�–ν f (t) = �–ν f (t;a) :=


�(ν)

t–ν∑
s=a

(t – s – )(ν–)f (s),

where t ∈ {a + ν,a + ν + , . . .} =:Na+ν . We also define the νth fractional difference, where
ν >  and  ≤N –  < ν ≤N , to be

�ν f (t) =�N�ν–Nf (t),

where t ∈Na+ν .

http://www.advancesindifferenceequations.com/content/2014/1/7
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Lemma . [] Let t and ν be any numbers for which t(ν) and t(ν–) are defined. Then

�t(ν) = νt(ν–).

Lemma . [] Let  ≤N –  < ν ≤N . Then

�–ν�νy(t) = y(t) + ct(ν–) + ct(ν–) + · · · + cNt(ν–N),

for some ci ∈ R, with ≤ i≤N .

Lemma. [] Let  < ν ≤ , and h : [ν–,ν+b–]Nν– →R be given.The unique solution
of the FBVP

–�νy(t) = g(t + ν – ), y(ν – ) =  = y(ν + b)

is given by

y(t) =
b∑
s=

G(t, s)g(s + ν – ),

where G : [ν – ,ν + b]Nν– × [,b]N →R is defined by

G(t, s) =


�(ν)

⎧⎨⎩
t(ν–)(ν+b–s–)(ν–)

(ν+b)(ν–) – (t – s – )(ν–), ≤ s < t – ν +  ≤ b,
t(ν–)(ν+b–s–)(ν–)

(ν+b)(ν–) ,  ≤ t – ν +  ≤ s ≤ b.
()

Lemma . [] The Green function G(t, s) given in Lemma . satisfies:
(i) G(t, s)≥ , for each (t, s) ∈ [ν – ,ν + b]Nν– × [,b]N ;
(ii) maxt∈[ν–,ν+b]Nν–

G(t, s) =G(s + ν – , s) for each s ∈ [,b]N ; and
(iii) there exists a number γ ∈ (, ) such that

min
ν+b
 ≤t≤ (ν+b)



G(t, s) ≥ γ max
t∈[ν–,ν+b]Nν–

G(t, s) = γG(s + ν – , s),

for s ∈ [,b]N .

Theorem . Let f : [,∞)→ [,∞), and � ,� ∈ C([ν – ,ν + b]Nν– ,R) be given. A func-
tion y(t) is a solution of the discrete FBVP ()-() if and only if y(t) is a fixed point of the
operator

Ty(t) := α(t)�(y) + β(t)�(y) + λ

b∑
s=

G(t, s)h(s + ν – )f
(
y(s + ν – )

)
, ()

where

α(t) :=


�(ν – )

[
t(ν–) –


b + 

t(ν–)
]
, ()

β(t) :=
t(ν–)

(ν + b)(ν–)
, ()

and G(t, s) is as given in Lemma ..
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Proof From Lemma ., we find that a general solution to problem ()-() is

y(t) = –�–νλh(t + ν – )f
(
y(t + ν – )

)
+ ct(ν–) + ct(ν–).

From the boundary condition (), we get

y(ν – ) = –�–νλh(t + ν – )f
(
y(t + ν – )

)|t=ν– + c(ν – )(ν–) + c(ν – )(ν–)

= –


�(ν)

t–ν∑
s=

(t – s – )(ν–)λh(s + ν – )f
(
y(s + ν – )

)|t=ν– + c�(ν – )

= c�(ν – )

= �(y),

so

c =
�(y)

�(ν – )
.

On the other hand, applying the boundary condition () to y(t) implies that

y(ν + b) = –�–νλh(t + ν – )f
(
y(t + ν – )

)|t=ν+b + c(ν + b)(ν–) + c(ν + b)(ν–)

= –


�(ν)

t–ν∑
s=

(t – s – )(ν–)λh(s + ν – )f
(
y(s + ν – )

)|t=ν+b

+c(ν + b)(ν–) +
�(y)

�(ν – )
(ν + b)(ν–)

= �(y).

Namely

c(ν + b)(ν–) = �(y) –
�(y)

�(ν – )
(ν + b)(ν–)

+


�(ν)

t–ν∑
s=

(t – s – )(ν–)λh(s + ν – )f
(
y(s + ν – )

)|t=ν+b,

so

c =
�(y)

(ν + b)(ν–)
–

�(y)(ν + b)(ν–)

�(ν – )(ν + b)(ν–)

+


�(ν)(ν + b)(ν–)

b∑
s=

(ν + b – s – )(ν–)λh(s + ν – )f
(
y(s + ν – )

)
=

�(y)
(ν + b)(ν–)

–
�(y)

(b + )�(ν – )

+


�(ν)(ν + b)(ν–)

b∑
s=

(ν + b – s – )(ν–)λh(s + ν – )f
(
y(s + ν – )

)
.
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Finally, we get

y(t) = –


�(ν)

t–ν∑
s=

(t – s – )(ν–)λh(s + ν – )f
(
y(s + ν – )

)
+

(
�(y)

(ν + b)(ν–)
–

�(y)
(b + )�(ν – )

)
t(ν–)

+
t(ν–)

�(ν)(ν + b)(ν–)

b∑
s=

(ν + b – s – )(ν–)λh(s + ν – )f
(
y(s + ν – )

)
+

�(y)
�(ν – )

t(ν–)

= �(y)
(
–

t(ν–)

(b + )�(ν – )
+

t(ν–)

�(ν – )

)
+�(y) · t(ν–)

(ν + b)(ν–)

+
t–ν∑
s=

(
t(ν–)(ν + b – s – )(ν–)

�(ν)(ν + b)(ν–)
–
(t – s – )(ν–)

�(ν)

)
λh(s + ν – )f

(
y(s + ν – )

)

+
b∑

s=t–ν+

t(ν–)(ν + b – s – )(ν–)

�(ν)(ν + b)(ν–)
λh(s + ν – )f

(
y(s + ν – )

)

= �(y)α(t) +�(y)β(t) + λ

b∑
s=

G(t, s)h(s + ν – )f
(
y(s + ν – )

)
.

Consequently, we see that y(t) is a solution of ()-() if and only if y(t) is a fixed point
of (), as desired. �

Lemma. The function α(t) is strictly decreasing in t, for t ∈ [ν–,ν+b]Nν– . In addition,
mint∈[ν–,ν+b]Nν–

α(t) = , and maxt∈[ν–,ν+b]Nν–
α(t) = . On the other hand, the function

β(t) is strictly increasing in t, for t ∈ [ν –,ν +b]Nν– . In addition,mint∈[ν–,ν+b]Nν–
β(t) = ,

and maxt∈[ν–,ν+b]Nν–
β(t) = .

Proof Note that for every t ∈ [ν – ,ν + b]Nν– ,

�tα(t) = �t

(
t(ν–)

�(ν – )
–

t(ν–)

(b + )�(ν – )

)
=


�(ν – )

(
(ν – )t(ν–) – (ν – )

t(ν–)

b + 

)
< .

So, the first claim about α(t) holds. On the other hand,

α(ν – ) =
(ν – )(ν–)

�(ν – )
–

(ν – )(ν–)

(b + )�(ν – )
= ,

α(ν + b) =
(ν + b)(ν–)

�(ν – )
–

(ν + b)(ν–)

(b + )�(ν – )

=
�(ν + b + )

�(ν + b +  – ν + )�(ν – )
–

�(ν + b + )
�(ν + b +  – ν + )(b + )�(ν – )
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=
�(ν + b + )

�(b + )�(ν – )
–

�(ν + b + )
�(b + )(b + )�(ν – )

= .

It follows that

max
t∈[ν–,ν+b]Nν–

α(t) = , min
t∈[ν–,ν+b]Nν–

α(t) = .

In a similar way, it may be shown that β(t) satisfies the properties given in the statement
of this lemma. We omit the details. �

Corollary . Let I = [ b+ν
 , (b+ν)

 ]. There are constants Mα ,Mβ ∈ (, ) such that
mint∈I α(t) =Mα‖α‖, mint∈I β(t) =Mβ‖β‖, where ‖ · ‖ is the usual maximum norm.

Lemma . [] Let E be a Banach space, and let K ⊂ E be a cone in E. Assume the
bounded sets �, � are open subsets of E with  ∈ � ⊂ � ⊂ �, and let

S :K ∩ (� \ �) →K

be a completely continuous operator such that either
() ‖Su‖ ≤ ‖u‖, u ∈K ∩ ∂�, ‖Su‖ ≥ ‖u‖, u ∈K ∩ ∂�; or
() ‖Su‖ ≥ ‖u‖, u ∈ K ∩ ∂�, ‖Su‖ ≤ ‖u‖, u ∈ K ∩ ∂�.

Then S has a fixed point in K ∩ (� \ �).

3 Main results
In the sequel, we let

σ :=  max
t∈[ν–,ν+b]Nν–

b∑
s=

G(t, s)h(s + ν – ), ()

τ := min
t∈[ν–,ν+b]Nν–

[ (b+ν)
 –ν+]∑

s=[ b+ν
 –ν+]

G(t, s)h(s + ν – ), ()

γ̃ :=min{γ ,Mα ,Mβ}, ()

where γ is the number given in Lemma .(iii). Observe that γ̃ ∈ (, ). We now present
the conditions on � , �, and f that we presume in the sequel:
(S) limy→

f (y)
y =∞, limy→∞ f (y)

y =∞.
(S) limy→

f (y)
y = , limy→∞ f (y)

y = .
(S) limy→

f (y)
y = l,  < l < ∞.

(S) limy→∞ f (y)
y = L,  < L <∞.

(G) The functionals � , � are linear. In particular, we assume that

�(y) =
ν+b∑
i=ν–

ci–ν+y(i), �(y) =
ν+b∑

k=ν–

dk–ν+y(k),

for ci–ν+,dk–ν+ ∈ R.

http://www.advancesindifferenceequations.com/content/2014/1/7
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(G) We have both
∑ν+b

i=ν– ci–ν+G(i, s) ≥  and
∑ν+b

k=ν– dk–ν+G(k, s)≥ , for each
s ∈ [,b]N , and

ν+b∑
i=ν–

ci–ν+ +
ν+b∑

k=ν–

dk–ν+ ≤ 

.

(G) Each of �(α), �(β), �(α), �(β) is nonnegative.
First, we let B represent all maps from [ν – ,ν+b]Nν– into R, and equipped with the

maximum norm ‖ · ‖. Clearly, B is a Banach space. We define the cone K ⊂ B by

K :=
{
y ∈ B|y(t)≥ , min

t∈[ b+ν
 , (ν+b) ]

y(t) ≥ γ̃ ‖y‖,�(y) ≥ ,�(y) ≥ 
}
. ()

Lemma . Assume that (G)-(G) hold, and let T be the operator defined in (). Then
T :K →K.

Proof For every y ∈K, by (G), we show first that

�(Ty) =
ν+b∑
i=ν–

ci–ν+(Ty)(i) =
ν+b∑
i=ν–

ci–ν+

b∑
s=

G(i, s)λh(s + ν – )f
(
y(s + ν – )

)

+
ν+b∑
i=ν–

ν+b∑
j=ν–

ci–ν+cj–ν+y(j)α(i) +
ν+b∑
i=ν–

ν+b∑
k=ν–

ci–ν+dk–ν+y(k)β(i)

= �

( b∑
s=

G(t, s)λh(s + ν – )f
(
y(s + ν – )

))
+�(α)�(y) +�(β)�(y).

By assumptions (G) and (G) together with the nonnegativity of f (y) and the fact that
y ∈ K, we can get �(Ty) ≥ :

�(Ty) =
ν+b∑

k=ν–

dk–ν+(Ty)(k) =
ν+b∑

k=ν–

dk–ν+

b∑
s=

G(k, s)λh(s + ν – )f
(
y(s + ν – )

)

+
ν+b∑

k=ν–

ν+b∑
l=ν–

dk–ν+cl–ν+y(l)α(k) +
ν+b∑

k=ν–

ν+b∑
i=ν–

dk–ν+di–ν+y(i)β(k)

= �

( b∑
s=

G(t, s)λh(s + ν – )f
(
y(s + ν – )

))
+�(α)�(y) +�(β)�(y).

It also shows that �(Ty)≥ .
On the other hand, it follows from both Lemma . and Corollary . that

min
t∈[ b+ν

 , (ν+b) ]
(Ty)(t) ≥ min

t∈[ b+ν
 , (ν+b) ]

λ

b∑
s=

G(t, s)h(s + ν – )f
(
y(s + ν – )

)
+ min

t∈[ b+ν
 , (ν+b) ]

α(t)�(y) + min
t∈[ b+ν

 , (ν+b) ]
β(t)�(y)

≥ γ̃ max
t∈[ν–,ν+b]Nν–

λ

b∑
s=

G(t, s)h(s + ν – )f
(
y(s + ν – )

)

http://www.advancesindifferenceequations.com/content/2014/1/7
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+Mα‖α‖�(y) +Mβ‖β‖�(y)

≥ γ̃ max
t∈[ν–,ν+b]Nν–

λ

b∑
s=

G(t, s)h(s + ν – )f
(
y(s + ν – )

)
+ γ̃ ‖α‖�(y) + γ̃ ‖β‖�(y)

≥ γ̃ ‖Ty‖.

Hence

min
t∈[ b+ν

 , (ν+b) ]
(Ty)(t)≥ γ̃ ‖Ty‖.

Finally, for every y ∈K,

(Ty)(t) = α(t)�(y) + β(t)�(y) + λ

b∑
s=

G(t, s)h(s + ν – )f
(
y(s + ν – )

) ≥ .

So, we conclude that T :K →K, and the proof is complete. �

Lemma . Suppose that conditions (G)-(G) hold, and there exist two different positive
numbers a, b such that

max
≤y≤a

f (y) ≤ a
λσ

; ()

min
γ̃ b≤y≤b

f (y) ≥ b
λτ

. ()

Then, problem ()-() has at least one positive solution y ∈ K such that min{a,b} ≤ ‖y‖ ≤
max{a,b}.

Proof Let �a := {y ∈K : ‖y‖ < a}. Then, for any y ∈K ∩ ∂�a, we have

(Ty)(t) = α(t)�(y) + β(t)�(y) + λ

b∑
s=

G(t, s)h(s + ν – )f
(
y(s + ν – )

)

≤ �(y) +�(y) + λ

b∑
s=

G(t, s)h(s + ν – )
a

λσ

≤
ν+b∑
i=ν–

ci–ν+y(i) +
ν+b∑

k=ν–

dk–ν+y(k) + λ
σ


· a
λσ

≤
(

ν+b∑
i=ν–

ci–ν+ +
ν+b∑

k=ν–

dk–ν+

)
‖y‖ + a



≤ a

+
a


= ‖y‖,

that is, ‖Ty‖ ≤ ‖y‖ for y ∈ ∂�a ∩K.

http://www.advancesindifferenceequations.com/content/2014/1/7
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On the other hand, we let �b := {y ∈K : ‖y‖ < b}. For any y ∈K ∩ ∂�b, we have

(Ty)(t) = α(t)�(y) + β(t)�(y) + λ

b∑
s=

G(t, s)h(s + ν – )f
(
y(s + ν – )

)

≥ λ

[ (b+ν)
 –ν+]∑

s=[ b+ν
 –ν+]

G(t, s)h(s + ν – )f
(
y(s + ν – )

)

≥ λ

[ (b+ν)
 –ν+]∑

s=[ b+ν
 –ν+]

G(t, s)h(s + ν – )
b
λτ

≥ λτ · b
λτ

= ‖y‖,

that is, ‖Ty‖ ≥ ‖y‖ for y ∈ K ∩ ∂�b. By means of Lemma ., there exists y ∈ K such that
Ty = y. �

Theorem. Suppose that conditions (S), and (G)-(G) hold.Then, for every λ ∈ (,λ∗),
problem ()-() has at least two positive solutions, where

λ∗ =

σ
sup
r>

r
max≤y≤r f (y)

. ()

Proof Define function q(r) = r
σ max≤y≤r f (y)

. In view of the continuity of the function f (y),

we have q(r) ∈ C((,∞), (,∞)). From limy→
f (y)
y = ∞, we see that limr→

r
σ f (r) = , that

is,

r
σ f (r)

≥ r
σ max≤y≤r f (y)

= q(r) > ,

so

lim
r→

q(r) = .

By limy→∞ f (y)
y = ∞, we see further that limr→∞ q(r) = . Thus, there exists r >  such

that q(r) =maxr> q(r) = λ∗. For any λ ∈ (,λ∗), by means of the intermediate value theo-
rem, there exist two points l, l ( < l < r < l < ∞) such that q(l) = q(l) = λ. Thus, we
have

f (y) ≤ l
λσ

, y ∈ [, l]; f (y) ≤ c
λσ

, y ∈ [, l].

On the other hand, in view of (S), we see that there exist d, d ( < d < l < r < l <
d < ∞) such that

f (y)
y

≥ 
λγ̃ τ

, y ∈ (,d]∪ [dγ̃ ,∞).

http://www.advancesindifferenceequations.com/content/2014/1/7
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That is,

f (y) ≥ d
λτ

, y ∈ [dγ̃ ,d]; f (y) ≥ d
λτ

, y ∈ [dγ̃ ,d].

An application of Lemma . leads to two distinct solutions of ()-() which satisfy d ≤
‖y‖ ≤ l, l ≤ ‖y‖ ≤ d. �

Theorem . Suppose (S) and (G)-(G) hold. Then for any λ > λ∗∗, equations ()-()
have at least two positive solutions. Here

λ∗∗ =

τ
inf
r>

r
minγ̃ r≤y≤r f (y)

. ()

The proof is similar to Theorem . and hence is omitted.

Theorem . Assume that (S), (S) and (G)-(G) hold. For each λ satisfying


γ̃ τL

< λ <

σ l

, ()

or


γ̃ τ l

< λ <


σL
, ()

equations ()-() have a positive solution.

Proof Suppose () holds. Let η >  be such that


γ̃ τ (L – η)

≤ λ ≤ 
σ (l + η)

.

Note that l > . There exists H >  such that f (y) ≤ (l + η)y for  < y ≤H. So, for y ∈K
and ‖y‖ =H, we have

(Ty)(t) = α(t)�(y) + β(t)�(y) + λ

b∑
s=

G(t, s)h(s + ν – )f
(
y(s + ν – )

)

≤ �(y) +�(y) + λ(l + η)
b∑
s=

G(t, s)h(s + ν – )y(s + ν – )

=
ν+b∑
i=ν–

ci–ν+y(i) +
ν+b∑

k=ν–

dk–ν+y(k) + λ(l + η)
b∑
s=

G(t, s)h(s + ν – )y(s + ν – )

≤
(

ν+b∑
i=ν–

ci–ν+ +
ν+b∑

k=ν–

dk–ν+

)
‖y‖ + λ(l + η) · σ


‖y‖

≤ H


+
H


= ‖y‖.

That is, ‖Ty‖ ≤ ‖y‖ for y ∈K and ‖y‖ =H.
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Next, since L > , there exists a H >  such that f (y) ≥ (L – η)y for y ≥ γ̃H. Let H =
max{H,H}. Then, for y ∈K with ‖y‖ =H,

(Ty)(t) = α(t)�(y) + β(t)�(y) + λ

b∑
s=

G(t, s)h(s + ν – )f
(
y(s + ν – )

)

≥ λ

b∑
s=

G(t, s)h(s + ν – )f
(
y(s + ν – )

)

≥ λ(L – η)
[ (b+ν)

 –ν+]∑
s=[ b+ν

 –ν+]

G(t, s)h(s + ν – )y(s + ν – )

≥ λ(L – η)γ̃ ‖y‖
[ (b+ν)

 –ν+]∑
s=[ b+ν

 –ν+]

G(t, s)h(s + ν – )

≥ λ(L – η)γ̃ ‖y‖τ
≥ ‖y‖,

that is, ‖Ty‖ ≥ ‖y‖ for y ∈K and ‖y‖ =H.
In view of Lemma ., we see that equations ()-() have a positive solution. The other

case is similarly proved. �

Example . Consider the following boundary value problems:

� 
 y(t) = –λ

(
y



(
t +




)
+ y

(
t +




))
, ()

y
(
–



)
=




y
(



)
–




y
(



)
, ()

y
(



)
=




y
(



)
–




y
(



)
, ()

where b = , ν = 
 , and we take

f (y) = y

 + y,

ψ(y) =



y
(



)
–




y
(



)
, φ(y) =




y
(



)
–




y
(



)
,

f : [, +∞)× [, +∞)→ [, +∞), and y is defined on the time scale {– 
 ,


 , . . . ,


 }, f and

ψ , φ satisfy conditions of Theorem ..
A computation shows that λ∗ ≈ . × –. Then, for every λ ∈ (,λ∗), problem ()-

() has at least two positive solutions.
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