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Abstract
We investigate the local and global character of the equilibrium and the local stability

of the period-two solution of the difference equation xn+1 =
βxnxn–1+γ x2n–1+δxn
Bxnxn–1+Cx2n–1+Dxn

where

the parameters β , γ , δ, B, C, D are nonnegative numbers which satisfy B + C + D > 0
and the initial conditions x–1 and x0 are arbitrary nonnegative numbers such that
Bxnxn–1 + Cx2n–1 + Dxn > 0 for all n≥ 0.
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1 Introduction and preliminaries
In this paper we study the global dynamics of the following rational difference equation:

xn+ =
βxnxn– + γ xn– + δxn
Bxnxn– +Cxn– +Dxn

, n = , , , . . . , ()

where the parameters β , γ , δ, B, C, D are nonnegative numbers which satisfy B + C +
D >  and the initial conditions x– and x are arbitrary nonnegative numbers such that
Bxnxn– +Cxn– +Dxn >  for all n≥ .
Equation (), which has been studied in [–], is a special case of a general second-order

quadratic fractional equation of the form

xn+ =
Axn + Bxnxn– +Cxn– +Dxn + Exn– + F
axn + bxnxn– + cxn– + dxn + exn– + f

, n = , , . . . ()

with nonnegative parameters and initial conditions such that A + B + C > , a + b + c +
d + e + f >  and axn + bxnxn– + cxn– + dxn + exn– + f > , n = , , . . . . Several global
asymptotic results for some special cases of () were obtained in [–].
The change of variable xn = /un transforms () into the difference equation

un+ =
Dun– +Cun + Bun–
δun– + γun + βun–

, n = , , . . . , ()
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where we assume that δ + β + γ >  and that the nonnegative initial conditions u–, u are
such that δun– + γun +βun– >  for all n≥ . Thus the results of this paper extend to ().
The first systematic study of global dynamics of a special quadratic fractional case of ()

where A = C = D = a = c = d =  was performed in [, ]. The dynamics of some related
quadratic fractional difference equations was considered in the papers [–]. In this paper
we will perform the local stability analysis of the unique equilibrium and the period-two
solution and we will give the necessary and sufficient conditions for the equilibrium to be
locally asymptotically stable, a saddle point, a repeller or a non-hyperbolic equilibrium.
The local stability analysis indicates that some possible dynamics scenarios for () include
period-doubling bifurcations and Naimark-Sacker bifurcation and global attractivity of
the equilibrium, see [, ]. This means that the techniques we used in [, , –] are
applicable. We will also obtain the global asymptotic stability results for (). As we have
seen in [] an efficient way of studying the dynamics of () is considering the dynamics of
 special cases of () which are obtained when one or more coefficients are set to zero.
Based on our results in [], it is difficult to prove global asymptotic stability results of
the unique equilibrium even for linear fractional difference equations; there are still two
remaining cases one needs to study to prove the general conjecture that the local stability
of the unique equilibrium implies the global stability.
Some interesting special cases of (), which were thoroughly studied in [], are the fol-

lowing equations.
() The Beverton-Holt difference equation when γ = δ = C = :

xn+ =
βxn–

Bxn– +D
, n = , , . . . ,

which represents the basic discrete model in population dynamics, see [].
() The Riccati difference equation when γ = C = :

xn+ =
βxn– + δ

Bxn– +D
, n = , , . . . .

() The difference equation studied in [, , ], when δ =D = :

xn+ =
βxn + γ xn–
Bxn +Cxn–

, n = , , . . . , ()

which represents the discretization of the differential equation model in biochemical
networks, see [].

The global attractivity results obtained specifically for the complicated cases of () are
the following theorems [].

Theorem  Assume that () has the unique equilibrium x̄. If the following condition holds:

(|A – ax̄| + |B – bx̄| + |C – cx̄|)(U + x̄) + |D – dx̄| + |E – ex̄|
(a + b + c)L + (d + e)L + f

< ,

where L and U are lower and upper bounds of all solutions of () and L + f > , then x̄ is
globally asymptotically stable.
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Theorem  Assume that () has the unique equilibrium x̄ in the interval [m,M], where
m =min{x̄,x–,x} and M =max{x̄,x–,x} are lower and upper bounds of a specific solu-
tion of () and m + f > . If the following condition holds:

(|A–ax̄|+ |B–bx̄|+ |C – cx̄|)(M+ x̄) + |D–dx̄|+ |E– ex̄| < (a+b+ c)m + (d+ e)m+ f ,

then x̄ is globally asymptotically stable on the interval [m,M].

In the case of () Theorems  and  give the following special results.

Corollary  If the following condition holds:

(|β – Bx̄| + |γ –Cx̄|)(U + x̄) + |δ –Dx̄|
(B +C)L +DL

< , ()

where L >  and U are lower and upper bounds of all solutions of (), then x̄ is globally
asymptotically stable.

Corollary  If the following condition holds:

(|β – Bx̄| + |γ –Cx̄|)(M + x̄) + |δ –Dx̄| < (B +C)m +Dm, ()

where m = min{x̄,x–,x} >  and M = max{x̄,x–,x} are lower and upper bounds of a
specific solution of (), then the unique equilibrium x̄ is globally asymptotically stable on
the interval [m,M].

In this paper we present the local stability analysis for the unique equilibrium and the
period-two solutions of () and then we apply Corollaries  and  to some special cases of
() to obtain global asymptotic stability results for those equations. The obtained results
will give the regions of the parametric space where the unique positive equilibrium of ()
is globally asymptotically stable. In an upcoming manuscript we will give more precisely
the dynamics in some special cases of () such as the case where the right-hand side of
() is decreasing in xn and increasing in xn–; here the theory of monotone maps can be
applied to give the global dynamics. The application of themonotonemap theory requires
precise information on the local stability of the equilibrium solutions and the period-two
solutions which will be given in this paper. See [, ] for an application of the monotone
maps techniques to some competitive systems of linear fractional difference equations.
These results will give the parameter regions where a global period-doubling bifurcation
takes place, see []. The special cases of () where the unique equilibrium changes its sta-
bility character from the local stability to repeller are cases where the Naimark-Sacker
bifurcation occurs, see [, ], and these cases will be treated in an upcomingmanuscript.
Following the approach from [], we divide () into  special cases of types (k,m) where
k (resp.m) denotes the number of positive parameters in the numerator (resp. denomina-
tor). We summarize information as regards the stability of both the equilibrium solution
and the period-two solution as well as the monotonic character of the right-hand side of
the special cases of types (, ), (, ), (, ), (, ) and (, ) of () in Tables -. We did
not include the cases of the type (, ), which are well known from [] as well as  cases
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Table 1 Equations of type (1, 2)

Equation Equilibrium point Stability of
equilibrium point

Period-two
solution and
stability

Partial
derivatives

xn+1 =
βxn–1xn
Cx2n–1+xn

x̄ = β–1
C for β > 1

no eq. point for β ≤ 1
LAS for β > 1 no period-two

solution
f ′u =

Cv3β
(Cv2+u)2

f ′v =
uβ(u–Cv2)
(Cv2+u)2

xn+1 =
γ x2n–1

Cx2n–1+xn
x̄ = γ –1

C for γ > 1
no eq. point for
γ ≤ 1

LAS for γ > 3
a saddle point
for 1 < γ < 3
a non-hyp. eq.
for γ = 3

{0,γ /C}-LAS
{ γ+1–

√
(γ –3)(γ+1)
2C ,

γ+1+
√

(γ –3)(γ+1)
2C }

a saddle point for
γ > 3
a non-hyp. eq. for
γ = 3

f ′u = – γ v2

(Cv2+u)2

f ′v =
2γ uv

(Cv2+u)2

xn+1 =
γ x2n–1

Bxn–1xn+xn
x̄ = γ –1

B for γ > 1
no eq. point for
γ ≤ 1

a saddle point for
γ > 1

no period-two
solution

f ′u = – γ v2

u2(Bv+1)

f ′v =
γ v(Bv+2)
u(Bv+1)2

xn+1 =
δxn

Bxnxn–1+x
2
n–1

x̄ =
√

δ
B+1 a repeller for δ > 0,

B > 0
no period-two
solution

f ′u = δ

(Bu+v)2

f ′v = – uδ(Bu+2v)
(Buv+v2)2

xn+1 =
δxn

Cx2n–1+xn
x̄ =

√
4Cδ+1–1
2C LAS for cδ < 2

a repeller for cδ > 2
a non-hyp. eq. for
cδ = 2

no period-two
solution

f ′u = Cv2δ
(Cv2+u)2

f ′v = – 2Cuvδ
(Cv2+u)2

of types (, ), (, ), and (, ) for which global stability will be given in Section . Using
the techniques established in [–] one can determine the rate of convergence for all
regions of parameters for which we established convergence.
Some special cases of () have very interesting dynamics such as xn+ = βxn–xn

Cxn–+xn
given

in Table  where, in the case β ≤ , every solution converges to  although  is out of
range of this equation. Another interesting example is the equation xn+ =

γ xn–
Cxn–+xn

from
Table , where, in the case γ ≤ , every solution converges to  or to the unique period-
two solution. It is interesting to notice that  is out of the range of this equation. Another
interesting example is the equation xn+ =

βxnxn–+γ xn–
xn from Table , which has the prop-

erty that if β ≥  every solution approaches ∞. None of these dynamics scenarios were
possible in the case of the linear fractional difference equation, which is also a special case
of () and which was studied in great detail in [].

2 Local stability of the positive equilibrium
In this section we investigate the equilibrium points of Eq. () where β ,γ , δ,A,B,C ∈
[,∞), β + γ + δ,A + B + C ∈ (,∞) and where the initial conditions x– and x are ar-
bitrary nonnegative real numbers such Bxnxn– +Cxn– +Dxn >  for all n≥ .
In view of the above restriction on the initial conditions of (), the equilibrium points of

() are positive solutions of the equation

x̄ =
βx̄ + γ x̄ + δx̄
Bx̄ +Cx̄ +Dx̄

, ()

or equivalently

x̄(B +C) + x̄(D – β – γ ) – δ = . ()

http://www.advancesindifferenceequations.com/content/2014/1/68
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Table 2 Equations of type (2, 1)

Equation Equilibrium point Stability of
equilibrium point

Period-two
solution and
stability

Partial
derivatives

xn+1 =
βxnxn–1+γ x2n–1

xn
x̄ = t, t > 0 for
β + γ = 1
no eq. point for
β + γ �= 1

a non-hyp. for
β + γ = 1

no minimal
period-two solution

f ′u = – v2γ
u2

f ′v =
2vγ
u + β

xn+1 =
βxn–1xn+δxn

x2n–1
x̄ = 1

2 (
√

β2 + 4δ + β) a repeller for
β ,δ > 0

no minimal
period-two solution

f ′u =
vβ+δ

v2

f ′v = – u(vβ+2δ)
v3

xn+1 =
γ x2n–1+δxn
xn–1xn

x̄ = 1
2 (

√
γ 2 + 4δ + γ ) LAS for 4δ > 3γ 2

a saddle point for
4δ < 3γ 2

a non-hyp. for
4δ = 3γ 2

{ γ δ+
√

δ2(4δ–3γ 2)
2(γ 2–δ)

,

γ δ–
√

δ2(4δ–3γ 2)
2(γ 2–δ)

}
exists for
3γ 2 < 4δ < 4γ 2

a saddle point
for 3γ 2 < 4δ < 4γ 2

f ′u = – vγ
u2

f ′v =
v2γ –uδ
uv2

xn+1 =
γ x2n–1+δxn

x2n–1
x̄ = 1

2 (
√

γ 2 + 4δ + γ ) LAS for δ < 2γ 2

a repeller for δ > 2γ 2

a non-hyp. for
δ = 2γ 2

possible
Naimark-Sacker
bifurcation

f ′u = δ

v2

f ′v = –2uδ
v3

xn+1 =
γ x2n–1+δxn

xn
x̄ = δ

γ –1 for γ < 1 LAS for 3γ < 1
a saddle point for
3γ > 1
a non-hyp. for 3γ = 1

{φ ,ψ} for 3γ < 1

φ = –
√

(γ+1)(1–3γ )δ2+γ δ+δ
2γ (γ+1)

ψ =
√

(γ+1)(1–3γ )δ2+γ δ+δ
2γ (γ+1)

a saddle point for 3γ < 1

f ′u = – v2γ
u2

f ′v =
2vγ
u

When

δ = , B +C >  and β + γ >D

the unique positive equilibrium of () is given by

x̄ =
β + γ –D
B +C

.

When

δ > , B +C =  and D > β + γ

the unique positive equilibrium of () is given by

x̄ =
δ

D – β – γ
.

Finally when

δ >  and B +C > 

the only equilibrium point of () is the positive solution

x̄ =
√
δ(B +C) + (D – β – γ ) –D + β + γ

(B +C)

of the quadratic equation ().

http://www.advancesindifferenceequations.com/content/2014/1/68
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Table 3 Equations of type (2, 2)

Equation Equilibrium point Stability of
equilibrium point

Period-two
solution and
stability

Partial
derivatives

xn+1 =
βxnxn–1+γ x2n–1

Cx2n–1+xn
x̄ = β+γ –1

C for
β + γ > 1
no eq. point for
β + γ ≤ 1

LAS for (3β + γ >
3∧ γ ≤ 3)∨ γ > 3
a saddle point for
β < 1∧ β + γ >
1∧ 3β + γ < 3
a non-hyp. eq. for
γ < 3∧ 3β + γ = 3

{φ1,ψ1} = {0,γ /C}-LAS for
β < 1
saddle for β > 1;
non-hyp. for β = 1
{φ2,ψ2} exists for β < 1,
3β + γ > 3
a saddle point for β < 1,
3β + γ > 3
ψ1 =
(γ+1–β)+

√
(γ+1–β)(3β+γ –3)
2c

φ2 =
(γ+1–β)–

√
(γ+1–β)(3β+γ –3)
2c

f ′u =
v2(Cvβ–γ )
(Cv2+u)2

f ′v =
u(v(2γ –Cvβ)+uβ)

(Cv2+u)2

xn+1 =
βxnxn–1+γ x2n–1
Bxn–1xn+xn

x̄ = β+γ –1
B for

β + γ > 1
LAS for β > γ + 1
a saddle for
1 – γ < β < γ + 1
a non-hyp. for
β = γ + 1

{φ ,ψ} for φ ,ψ > 0
for β = γ + 1

f ′u = – v2γ
u2(Bv+1)

f ′v =
vγ (Bv+2)+uβ
u(Bv+1)2

xn+1 =
βxn–1xn+δxn
Bxnxn–1+x

2
n–1

x̄ =
√

4Bδ+β2+4δ+β
2(B+1) LAS for Bβ2 > δ

a repeller for Bβ2 < δ

a non-hyp. for
Bβ2 = δ

no minimal
period-two solution

f ′u =
vβ+δ

(Bu+v)2

f ′v =
–u(Buδ+v2β+2vδ)

v2(Bu+v)2

xn+1 =
βxn–1xn+δxn
Cx2n–1+xn

x̄ =
√

4Cδ+(β–1)2+β–1
2C a LAS for

cδ < 2D(1 + β)
a repeller for
cδ > 2D(1 + β)
a non-hyp. eq. for
cδ = 2D(1 + β)

no minimal
period-two solution

f ′u =
Cv2(vβ+δ)
(Cv2+u)2

f ′v =
u(uβ–Cv(vβ+2δ))

(Cv2+u)2

xn+1 =
γ x2n–1+δxn

Bxn–1xn+x
2
n–1

x̄ =
√

4Bδ+γ 2+4δ+γ
2(B+1) LAS for 3(B–1)γ 2

(B+2)2
< 4δ

or δ < 2(2B + 1)γ 2

saddle point for

B > 1∧ δ < 3(B–1)γ 2

4(B+2)2

non-hyp. eq. for
(4b + 2)γ 2 = δ or
4(B+2)2δ = 3(B–1)γ 2

repeller for
δ > 2(2B + 1)γ 2

possible
Naimark-Sacker
bifurcation

f ′u =
δ–Bvγ
(Bu+v)2

f ′v =
u(Bv2γ –2vδ–Buδ)

v2(Bu+v)2

xn+1 =
γ x2n–1+δxn
Bxnxn–1+xn

x̄ =
√

4Bδ+(1–γ )2+γ –1
2B LAS for δ > (γ+1)(3γ –1)

4B
a saddle point for
δ < (γ+1)(3γ –1)

4B
a non-hyperbolic eq.
for δ = (γ+1)(3γ –1)

4B

{φ ,ψ} exists for
(γ+1)(3γ –1)

4B < δ < γ (γ+1)
B

φ =
δ(–

√
4Bδ–γ (3γ+2)+1+γ+1)

2(–Bδ+γ 2+γ )
ψ =
δ(
√

4Bδ–γ (3γ+2)+1+γ+1)

2(–Bδ+γ 2+γ )
a saddle point for
(γ+1)(3γ –1)

4B < δ < γ (γ+1)
B

f ′u = – v2γ
u2(Bv+1)

f ′v =
vγ (Bv+2)–Buδ

u(Bv+1)2

xn+1 =
γ x2n–1+δxn

Cx2n–1+xn
x̄ =

√
4Cδ+(1–γ )2+γ –1

2C LAS δ < (γ+2)(2γ+1)
C

and (3–γ )(3γ –1)
16C < δ

a repeller for
δ > (γ+2)(2γ+1)

C
a saddle for
(3–γ )(3γ –1)

16C > δ

a non-hyp. eq. for
(3–γ )(3γ –1)

16C = δ or

δ = (γ+2)(2γ+1)
C

possible
Naimark-Sacker
bifurcation

f ′u =
v2(Cδ–γ )
(Cv2+u)2

f ′v =
2uv(γ –Cδ)
(Cv2+u)2
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Table 4 Equations of type (3, 1)

Equation Equilibrium point Stability of
equilibrium point

Period-two
solution and
stability

Partial
derivatives

xn+1 =
βxnxn–1+γ x2n–1+δxn

xn–1xn
x̄ =

√
(β+γ )2+4δ+β+γ

2 LAS for β > γ or
β ≤ γ ∧ β2 + 2βγ +
4δ > 3γ 2

a saddle point for
β < γ ∧ β2 + 2βγ +
4δ < 3γ 2

a non-hyp. eq. for
β < γ ∧ β2 + 2βγ +
4δ = 3γ 2

no minimal
period-two sol.

f ′u = – vγ
u2

f ′v =
v2γ –uδ
uv2

xn+1 =
βxnxn–1+γ x2n–1+δxn

x2n–1
x̄ =

√
(β+γ )2+4δ+β+γ

2 LAS for δ < γ (β + 2γ )
a repeller for
δ > γ (β + 2γ )
a non-hyp. eq. for
δ = γ (β + 2γ )

possible
Naimark-Sacker
bifurcation

f ′u =
vβ+δ

v2

f ′v =
–uvβ–2uδ

v3

xn+1 =
βxnxn–1+γ x2n–1+δxn

xn
x̄ = δ

1–β–γ LAS for β > γ or
β + 3γ < 1
a saddle for
β + 3γ > 1
a non-hyperbolic eq.
for β + 3γ = 1

{φ ,ψ} exists for
β + 3γ < 1
φ =
δ(γ –β+1+

√
(β–γ –1)(β+3γ –1))

2γ (–β+γ+1)
ψ =
δ(γ –β+1–

√
(β–γ –1)(β+3γ –1))

2γ (–β+γ+1)
a saddle point for
β + 3γ < 1

f ′u = – v2γ
u2

f ′v =
uβ+2vγ

u

Table 5 Equations of type (1, 3)

Equation Equilibrium point Stability of
equilibrium point

Period-two
solution and
stability

Partial
derivatives

xn+1 =
xn–1xn

Bxnxn–1+Cx
2
n–1+Dxn

x̄ = 1–D
B+C exists for

D < 1
LAS for D < 1 no minimal

period-two sol.
f ′u = Cv3

(v(Bu+Cv)+Du)2

f ′v = Du2–Cuv2

(Buv+Cv2+Du)2

xn+1 =
x2n–1

Bxnxn–1+Cx
2
n–1+Dxn

x̄ = 1–D
B+C exists for

D < 1
LAS for D < C–B

B+3C
a saddle for D > C–B

B+3C
a non-hyp. for
D = C–B

B+3C

{φ1,ψ1} = {0, 1/C}-LAS
{φ2,ψ2} exists for
D < C–B

B+3C

φ2 =
D+1+

√
�

B–C
2C

φ2 =
D+1–

√
�

B–C
2C

� = (D + 1)(B – C)(BD +
B + 3CD – C)
a saddle point for
D < C–B

B+3C

f ′u = –v2(Bv+D)
(v(Bu+Cv)+Du)2

f ′v = Buv2+2Duv
(Buv+Cv2+Du)2

xn+1 =
xn

Bxnxn–1+Cx
2
n–1+Dxn

x̄ =
√

4B+4C+D2–D
2(B+C) LAS for B > C2–2CD2

D2

a repeller for

B < C2–2CD2

D2

a non-hyp. eq. for

B = C2–2CD2

D2

no minimal
period-two sol.

f ′u = Cv2

(v(Bu+Cv)+Du)2

f ′v = –u(Bu+2Cv)
(Buv+Cv2+Du)2
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In summary, it is interesting to observe that when () has a positive equilibrium x̄, then
x̄ is unique and it satisfies () and (). This observation simplifies the investigation of the
local stability of the positive equilibrium of ().
Next, we investigate the stability of the positive equilibrium of (). Set

f (u, v) =
uvβ + uδ + vγ
Buv +Cv +Du

and observe that

fu(u, v) =
v(C(vβ + δ) – γ (Bv +D))

(v(Bu +Cv) +Du)

and

fv(u, v) =
u(–Buδ + Bvγ –Cv(vβ + δ) +D(uβ + vγ ))

(v(Bu +Cv) +Du)
.

If x̄ denotes an equilibrium point of (), then the linearized equation associated with ()
about the equilibrium point x̄ is

zn+ = pzn + qzn–,

where

p = fu(x̄, x̄) and q = fv(x̄, x̄).

Theorem  Assume that

δ = , B +C >  and β + γ >D.

Then the unique equilibrium point

x̄ =
β + γ –D
B +C

of () is
(i) locally asymptotically stable if C(–D + β + γ ) > B(D – β + γ );
(ii) a saddle point if C(–D + β + γ ) < B(D – β + γ );
(iii) a non-hyperbolic equilibrium if C(–D + β + γ ) = B(D – β + γ ) or

(B = γ =D = ∧ β > ∧C > ).

Proof It is easy to see that

p = fu(x̄, x̄) =
C(β –D) – Bγ

(B +C)(β + γ )
and q = fv(x̄, x̄) =

B(D + γ ) +C(D – β)
(B +C)(β + γ )

.

Then the proof follows from Theorem .. in [] and the fact that

 – p – q =
β + γ –D

β + γ
> , p – q +  =

C(–D + β + γ ) – B(D – β + γ )
(B +C)(β + γ )
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and

q +  =
B(D + β + γ ) +C(D + γ )

(B +C)(β + γ )
≥ . �

Theorem  Assume that

δ > , B +C =  and D > β + γ .

Then the unique equilibrium point

x̄ =
δ

D – β – γ

of () is
(i) locally asymptotically stable if D > β + γ ;
(ii) a saddle point if β + γ <D < β + γ ;
(iii) a non-hyperbolic if D = β + γ .

Proof It is easy to see that

p = fu(x̄, x̄) = –
γ

D
and q = fv(x̄, x̄) =

β + γ
D

.

Then the proof follows from Theorem .. in [] and the fact that

 – p – q =
D – β – γ

β + γ
, p – q +  =

D – β – γ
D

, q +  =
D + β + γ

D
. �

As we previously mentioned if

δ >  and B +C > 

the only equilibrium point of () is the positive solution

x̄ =
√
δ(B +C) + (D – β – γ ) –D + β + γ

(B +C)

of the quadratic equation ().
By using the identity

x̄(B +C) = x̄(β + γ –D) + δ

one can see that

p = fu(x̄, x̄) =
x̄(Cβ – Bγ ) +Cδ –Dγ

(x̄(B +C) +D)

=
x̄(Cβ – Bγ ) +Cδ –Dγ

Dx̄(B +C) + x̄(B +C) +D

=
x̄(Cβ – Bγ ) +Cδ –Dγ

x̄(B +C)(D + β + γ ) + δ(B +C) +D , ()

http://www.advancesindifferenceequations.com/content/2014/1/68
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q = fv(x̄, x̄) =
x̄(Bγ –Cβ) – δ(B + C) +D(β + γ )

(x̄(B +C) +D)

=
x̄(Bγ –Cβ) – δ(B + C) +D(β + γ )

Dx̄(B +C) + x̄(B +C) +D

=
x̄(Bγ –Cβ) – δ(B + C) +D(β + γ )
x̄(B +C)(D + β + γ ) + δ(B +C) +D , ()

and

p – q +  =
x̄(B(D + β – γ ) +C(D + β + γ )) + δ(B + C) +D –D(β + γ )

x̄(B +C)(D + β + γ ) + δ(B +C) +D ,

 – p – q =
x̄(B +C)(D + β + γ ) + δ(B +C) +D –D(β + γ )

x̄(B +C)(D + β + γ ) + δ(B +C) +D ,

q +  =
x̄(B(D + β + γ ) +C(D + γ )) –Cδ +D(D + β + γ )

x̄(B +C)(D + β + γ ) + δ(B +C) +D ,

q –  =
x̄(Bγ –Cβ) – δ(B + C) +D(β + γ )
x̄(B +C)(D + β + γ ) + δ(B +C) +D .

()

Let

ρ =
D(–D + β + γ ) – δ(B + C)
B(D + β – γ ) +C(D + β + γ )

,

ρ =
D(–D + β + γ ) – δ(B +C)

(B +C)(D + β + γ )
,

ρ =
Cδ –D(D + β + γ )

B(D + β + γ ) +C(D + γ )
.

()

Now if we set

F(u) = u(B +C) + u(D – β – γ ) – δ

it is clear that F(x̄) =  and that x̄ > ρ if and only if F(ρ) <  while x̄ < σ if and only if
F(σ ) >  for some ρ,σ ∈ [,∞).
A straightforward computation gives

F(ρ) =
(
δ(B +C) –D(β + γ )

)
× ((D – β – γ )((B + C)(D – β) + γ (B –C)) + δ(B + C))

(BD + Bβ – Bγ +CD + Cβ +Cγ )
,

F(ρ) =
(δ(B +C) –D(β + γ ))(δ(B +C) + (–D + β + γ ))

(B +C)(D + β + γ )
,

F(ρ) =
(D(β + γ ) – δ(B +C))(B(D + β + γ ) +C((D + γ )(D + β + γ ) –Cδ))

(BD + Bβ + Bγ +CD +Cγ )
.

Lemma  Let p and q be partial derivatives given by () and (). Assume that

δ > , B +C > .

http://www.advancesindifferenceequations.com/content/2014/1/68
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(a) Then  – p – q >  is true for all values of parameters.
(b) Then p – q +  >  if and only if

δ > –
(D – β – γ )((B + C)(D – β) + γ (B –C))

(B + C)
.

(c) Then q +  >  if and only if

C = 

or

C >  and δ <
(D + β + γ )(B(D + β + γ ) +C(D + γ ))

C .

Proof (a) The inequality  – q – p >  is equivalent to

D(–D + β + γ ) – δ(B +C) ≤  or
(
D(–D + β + γ ) – δ(B +C) >  and F(ρ) < 

)
,

which is equivalent to

C ≥ D(–D + β + γ ) – Bδ

δ
or(

C <
D(–D + β + γ ) – Bδ

δ
and C <

–Bδ +Dβ +Dγ

δ

)
.

Since

–Bδ +Dβ +Dγ

δ
–
D(–D + β + γ ) – Bδ

δ
=
D +Dβ +Dγ

δ
≥ 

we find that  – q – p >  is always true.
(b) There are three cases to consider.
(i) Assume B(D + β – γ ) + C(D + β + γ ) > . Then p – q +  >  is equivalent to x̄ > ρ.

One can see that

F(ρ) < 

if and only if

δ ∈
(
–
(D – β – γ )((B + C)(D – β) + γ (B –C))

(B + C)
,
D(β + γ )
B +C

)
,

since

D(β + γ )
B +C

+
(D – β – γ )((B + C)(D – β) + γ (B –C))

(B + C)

=
(B(D + β – γ ) +C(D + β + γ ))(B(D + β + γ ) +C(D + β + γ ))

(B +C)(B + C)
> .
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From (), we have p – q +  >  if and only if

δ ≥ –
D(D – β – γ )
(B + C)

or
(

δ < –
D(D – β – γ )
(B + C)

and F(ρ) < 
)
,

which is equivalent to

δ ≥ –
D(D – β – γ )
(B + C)

or

δ ∈
(
–
(D – β – γ )((B + C)(D – β) + γ (B –C))

(B + C)
, –

D(D – β – γ )
(B + C)

)
,

()

since

D(D – β – γ )
(B + C)

–
(D – β – γ )((B + C)(D – β) + γ (B –C))

(B + C)

=
(D – β – γ )(B(D + β – γ ) +C(D + β + γ ))

(B + C)
<  ()

and

D(D – β – γ )
(B + C)

+
D(β + γ )
B +C

=
D(B(D + β – γ ) +C(D + β + γ ))

(B +C)(B + C)
.

Statement () is equivalent to

δ > –
(D – β – γ )((B + C)(D – β) + γ (B –C))

(B + C)
,

from which the proof follows.
(ii) Assume B(D + β – γ ) + C(D + β + γ ) < . Then p – q +  >  if and only if x̄ < ρ. It

is easy to see that

F(ρ) > 

if and only if

δ <
D(β + γ )
B +C

or δ > –
(D – β – γ )((B + C)(D – β) + γ (B –C))

(B + C)
,

which implies that p – q +  >  if and only if

δ > –
D(D – β – γ )
(B + C)

and F(ρ) > 

which is equivalent to

δ > –
D(D – β – γ )
(B + C)

and δ > –
(D – β – γ )((B + C)(D – β) + γ (B –C))

(B + C)
, ()

since

D(D – β – γ )
(B + C)

+
D(β + γ )
B +C

=
D(B(D + β – γ ) +C(D + β + γ ))

(B +C)(B + C)
< .
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In view of the left-hand side of () we see that () is equivalent to

δ > –
(D – β – γ )((B + C)(D – β) + γ (B –C))

(B + C)
,

from which the proof follows.
(iii) If B(D + β – γ ) +C(D + β + γ ) = , then the proof follows from ().
(c) The inequality q > – is equivalent to

Cδ –D(D + β + γ ) ≤  or
(
Cδ –D(D + β + γ ) >  and F(ρ) < 

)
, ()

which is true for C = . If C > , then () is equivalent to

δ ≤ D(D + β + γ )
C

()

or

δ >
D(D + β + γ )

C
and

δ ∈
(
D(β + γ )
B +C

,
(D + β + γ )(B(D + β + γ ) +C(D + γ ))

C

)
,

()

since

(D + β + γ )(B(D + β + γ ) +C(D + γ ))
C –

D(β + γ )
B +C

=
(B(D + β + γ ) +C(D + γ ))(B(D + β + γ ) +C(D + β + γ ))

C(B +C)
> .

It is easy to see that

D(D + β + γ )
C

–
(D + β + γ )(B(D + β + γ ) +C(D + γ ))

C

= –
(D + β + γ )(B(D + β + γ ) +C(D + γ ))

C ≤ 

and

D(β + γ )
B +C

–
D(D + β + γ )

C
= –

D(B(D + β + γ ) +C(D + γ ))
C(B +C)

≤ ,

from which it follows that () is equivalent to

δ ∈
(
D(D + β + γ )

C
,
(D + β + γ )(B(D + β + γ ) +C(D + γ ))

C

)
. ()

Since C > , in view of () we find that () and () are equivalent to

δ <
(D + β + γ )(B(D + β + γ ) +C(D + γ ))

C . �
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Theorem  Assume

δ > , B +C > .

Then the unique equilibrium point

x̄ =
√
δ(B +C) + (D – β – γ ) –D + β + γ

(B +C)

of () is
(i) locally asymptotically stable if and only if any of the following holds:
(a)

C > 

and

–
(D – β – γ )((B + C)(D – β) + γ (B –C))

(B + C)

< δ <
(D + β + γ )(B(D + β + γ ) +C(D + γ ))

C

(b)

C =  and δ > –
(D – β – γ )(D – β + γ )

B
;

(ii) a repeller if and only if the following holds:

C >  and δ >
(D + β + γ )(B(D + β + γ ) +C(D + γ ))

C ;

(iii) a saddle point if and only if the following holds:

δ < –
(D – β – γ )((B + C)(D – β) + γ (B –C))

(B + C)
;

(iv) a non-hyperbolic equilibrium if and only if any of the following holds:
(a)

δ = –
(D – β – γ )((B + C)(D – β) + γ (B –C))

(B + C)

(b)

C >  and δ =
(D + β + γ )(B(D + β + γ ) +C(D + γ ))

C .

Proof The proof follows from Theorem .. in [] and Lemma . �
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3 Existence of period-two solutions
Assume that {φ,ψ} is a minimal period-two solution of (). Then

φ = f (ψ ,φ) and ψ = f (φ,ψ) with ψ ,φ ∈ [,∞) and φ �=ψ ,

which is equivalent to

φ =
βφψ + γφ + δψ

Bφψ +Cφ +Dψ
and ψ =

βφψ + γψ + δφ

Bφψ +Cψ +Dφ
,

from which it immediately follows that

φ
(
Bφψ +Cφ +Dψ

)
= βφψ + γφ + δψ ()

and

ψ
(
Bφψ +Cψ +Dφ

)
= βφψ + γψ + δφ. ()

Lemma  Equation () has a minimal period-two solution {φ,ψ} with φψ =  if and only
if the following holds:

(i) δ = , γ >  and C > , then {φ,ψ} = {,γ /C} is the minimal period-two solution.
(ii) δ = , γ =  and C = , then {φ,ψ} = {,ψ}, with ψ �=  is a minimal period-two

solution.

Proof If φ = , then () and () are equivalent to

ψδ =  and ψ(Cψ – γ ) = ,

from which the proof follows. �

Assume that φψ �= . Subtracting equations () and () we get

(φ –ψ)
(
φψ(B +C) +C

(
φ +ψ) – γ (φ +ψ) + δ

)
= . ()

Dividing () by φ and () by ψ and subtracting them we get

(φ –ψ)(φψ(C(φ +ψ) –D + β – γ ) + δ(φ +ψ))
φψ

= .

If we set

φ +ψ = x and φψ = y,

where x, y > , then φ and ψ are positive and different solutions of the quadratic equation

t – xt + y = . ()

In addition to the conditions x, y >  it is necessary that x – y > .
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From () and () we get the system

{
y(Cx –D + β – γ ) + xδ = ,
y(B –C) +Cx – xγ + δ = .

()

Theorem  For () the following holds:
(i) If γ =  then () has no a minimal period-two solution.
(ii) If C = , γ >  and δ >  then () has the minimal period-two solution {φ,ψ} where

φ =
δ(D – β + γ +

√
Bδ + (D – β – γ )(D – β + γ ))

γ (D – β + γ ) – Bδ
, ()

ψ =
δ(D – β + γ –

√
Bδ + (D – β – γ )(D – β + γ ))

γ (D – β + γ ) – Bδ
()

if and only if

Bδ + (D – β – γ )(D – β + γ ) >  and γ (D – β + γ ) – Bδ > .

(iii) If δ = , γ >  and C >  then () has two minimal period-two solutions {,γ /C} and
{φ,ψ} where

φ =
(B –C)(D – β + γ ) +

√
D – β + γ

√
(B –C)((B + C)(D – β) + γ (B –C))

C(B –C)
,

ψ =
(B –C)(D – β + γ ) –

√
D – β + γ

√
(B –C)((B + C)(D – β) + γ (B –C))

C(B –C)
,

if and only if

(
(B + C)(D – β) + γ (B –C)

)
(B –C) >  and D – β + γ > ∧ (B –C)(D – β) < .

(iv) If δ = C = , γ >  then () has no minimal period-two solution.

Proof (i) The proof follows from (), since φ,ψ ≥  and φ �=ψ .
(ii) Assume that C =  and δ > . By using () we see that x and y satisfy the following

equations:

y(–D + β – γ ) + xδ = ∧ By = (xγ – δ). ()

Assume that γ (D – β + γ ) – Bδ �= . The solution of system () is given by

x =
δ(D – β + γ )

γ (D – β + γ ) – Bδ
, y =

δ

γ (D – β + γ ) – Bδ
,

and x, y > ∧ x – y >  if and only if

Bδ + (D – β – γ )(D – β + γ ) > ∧ γ (D – β + γ ) – Bδ > ,

http://www.advancesindifferenceequations.com/content/2014/1/68
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since

x – y =
δ(D – β + γ )

(γ (D – β + γ ) – Bδ)
–

δ

γ (D – β + γ ) – Bδ

=
δ(Bδ + (D – β – γ )(D – β + γ ))

(γ (D – β + γ ) – Bδ)
.

In this case the equation

t –
δ(D – β + γ )

γ (D – β + γ ) – Bδ
t +

δ

γ (D – β + γ ) – Bδ
= 

has positive distinct solutions which are given by

t± =
δ(D – β + γ ± √

Bδ + (D – β – γ )(D – β + γ ))
γ (D – β + γ ) – Bδ

.

If γ (D – β + γ ) – Bδ = , it is easy to see that system () has no solutions from which
follows that () has no minimal period-two solution.
(iii) Assume that δ = , γ >  and C > . By using () we find that x and y satisfy the

following equations:

{
y(Cx –D + β – γ ) = ,
y(B –C) +Cx – xγ = .

()

Assume that y �=  and B �= C. The solution of system () is given by

x =
D – β + γ

C
and y = –

(D – β)(D – β + γ )
C(B –C)

,

and x, y > ∧ x – y >  if and only if

(
(B + C)(D – β) + γ (B –C)

)
(B –C) > ∧D – β + γ > ∧ (B –C)(D – β) < ,

since

x – y =
(D – β + γ )

C +
(D – β)(D – β + γ )

C(B –C)

=
(D – β + γ )((B + C)(D – β) + γ (B –C))

C(B –C)
.

In this case the equation

t –
D – β + γ

C
t –

(D – β)(D – β + γ )
C(B –C)

= 

has positive distinct solutions which are given by

t± =
(B –C)(D – β + γ )± √

D – β + γ
√
(B –C)((B + C)(D – β) + γ (B –C))

C(B –C)
.
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If y = , then from () we have x = γ

C , which implies that { γ

C , } is the minimal period-
two solution.
If y �=  and B = C, then the rest of the proof follows from Lemma .
(iv) The proof follows from the proof of Lemma . �

Theorem  Assume that C = B > , δ >  and γ > . Let

x± =
γ ± √

γ  – Cδ

C
, y± =

δ((γ ± √
γ  – Cδ)(D – β + γ ) – Cδ)

C(Cδ + (D – β)(D – β + γ ))
.

Then for () the following holds:
(i) If

γ  > cδ and D >


(√

γ  – Cδ + γ
)
+ β

then () has two minimal period-two solutions {φ+,ψ+} and {φ–,ψ–}, where φ+ and
ψ+ are solutions of equation t – x+t + y+ =  and φ– and ψ– are solutions of
equation t – x–t + y– = .

(ii) If

γ  > cδ and


(
γ –

√
γ  – Cδ

)
+ β <D ≤ 


(
γ +

√
γ  – Cδ

)
+ β

then () has one minimal period-two solution {φ+,ψ+} where φ+ and ψ+ are
solutions of equation t – x+t + y+ = .

(iii) In all other cases () has no minimal period-two solution.

Proof It is clear that (x±, y±) are solutions of system (). Then minimal period-two so-
lutions are solutions of the equation t – x+t + y+ =  if x+, y+ >  ∧ x+ – y+ >  and the
equation t – x–t + y– =  if x–, y– > ∧ x– – y– > . Let

� =D(γ  – Cδ
)
+D

(
Cβδ – Cγ δ – βγ  + γ )

+ β(γ  – Cδ
)
– β

(
γ  – Cγ δ

)
+ Cδ

(
Cδ – γ )

and


 =D
(
–Cδ – βγ + γ ) + Cβδ – Cγ δ +Dγ + βγ – βγ .

One can show that the following identities hold:

x± – y± =
� ± 


√
γ  – cδ

Cδ + (D – β)(D – β + γ )
,

� – 
(γ  – cδ
)
= Cδ

(
Cδ + (D – β)(D – β + γ )

)(
Cδ + (D – β)(D – β – γ )

)
,

from which the proof follows. �
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Assume now that B �= C and C > . Solving the second equation of system () for y we
get

y =
–Cx + xγ – δ

B –C
. ()

Substituting () in the first equation of system () we see that x satisfies the following
equation:

–Cx +Cx(D – β + γ ) + x
(
Bδ – Cδ –Dγ + βγ – γ ) + δ(D – β + γ ) = . ()

In a similar way one can show that y satisfies the following equation:

Cy(C – B) +Cy
(
–Bδ +Cδ –D + Dβ –Dγ – β + βγ

)
+ yδ

(
–Bδ –Cδ +Dγ – βγ + γ ) – δ = .

Let

a = –C, b = C(D – β + γ ),

c =
(
Bδ – Cδ –Dγ + βγ – γ ), d = –δ.

The solutions of () are given by

x = S + T –
b
a

, x = –
S + T


–
b
a

+
i
√



(S – T),

x = –
S + T


–
b
a

–
i
√



(S – T),

where

S = 
√
R +

√
Q + R and T = 

√
R –

√
Q + R

and

Q =
ac – b

a
, R =

abc – ad – b

a
.

Then the solutions of the system () are given by

(xi, yi) =
–Cxi + xiγ – δ

B –C
, i = , , .

If xi, yi >  and xi – yi > , then () has minimal period-two solutions given by

{
φi =

xi –
√
xi – yi


,ψi =
xi +

√
xi – yi


}
for i = , , .
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Let g be a function given by

g(x) = Cx(C – B) –Cx(C – B)(D – β + γ ) + x
(
δ
(
B – BC +C)

+ γ (C – B)(D – β + γ ) +C(D – β)(D – β + γ )
)

+ x
(
δ
(
B(D – β + γ ) – C(D – β + γ )

)
+ γ (β –D)(D – β + γ )

)
+ xδ

(
–Bδ +Cδ + (D – β + γ )

)
– xδ(D – β + γ ) + δ.

Eliminating φ and ψ from () and () implies that if {φ,ψ} is a minimal period-two
solution; then

g(φ) =  and g(ψ) =  with φ �=ψ ,

from which it follows that

g(t) = C(C – B)
(
t – xt + y

)(
t – xt + y

)(
t – xt + y

)
for B �= C, since {φi,ψi} are distinct roots of equation t – xit + yi = .

4 Local stability of period-two solutions
Let {φ,ψ} be a minimal period-two solution of ().
Set

un = xn– and vn = xn for n = , , . . .

and write () in the equivalent form

un+ = vn,

vn+ =
βvnun + γun + δvn
Bunvn +Cun +Dvn

for n = , , . . . . Let T be the function defined by

T(u, v) =
(
v,

βvu + γu + δv
Buv +Cu +Dv

)
.

Then {φ,ψ} is a fixed point of T, the second iterate of T , and

T(u, v) =
(
G(u, v),H(u, v)

)
,

where H(u, v) =G(v,G(u, v)) and

G(u, v) =
uγ + uvβ + vδ
Buv +Cu +Dv

,

H(u, v) =
uv(v(Bvγ + β) + βδ) + uγ (v(Cv + β) + δ) + v(Dvγ + δ(vβ + δ))

Cv(Bu +D) + (Bv +D)(uγ + uvβ + vδ) +Cuv
.
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By definition

JT (φ,ψ) =

(
∂G
∂u (φ,ψ) ∂G

∂v (φ,ψ)
∂H
∂u (φ,ψ) ∂H

∂v (φ,ψ)

)
.

Theorem  If C = , γ >  and δ > , then () has the minimal period-two solution {φ,ψ}
where φ and ψ are given by () and () if and only if

Bδ + (D – β – γ )(D – β + γ ) > ∧ γ (D – β + γ ) – Bδ > .

In this case the minimal period-two solution {φ,ψ} is a saddle point.

Proof The existence of the minimal period-two solution follows from Theorem . Now,
we prove that the minimal period-two solution is a saddle point. Since G(φ,ψ) = φ we
have

δ =
φ(ψ(Bφ +D – β) – γφ)

ψ
. ()

Using () and the fact C =  we see that the Jacobian matrix of T at the point {φ,ψ} is
given by

JT (φ,ψ)

=

( γφ–Bψφ+βψ

(D+Bφ)ψ – γφ

(D+Bφ)ψ
γψ(–γφ+Bψφ–βψ)

φ(D+Bφ)(D+Bψ)
φψ(D+Bψ)γ +(D+Bφ)(Dψ+B(φ+ψ))γ–φ(D+Bφ)(Bφ–β)ψ

φ(D+Bφ)ψ(D+Bψ)

)
. ()

The determinant of the Jacobian matrix () is given by

det JT (φ,ψ)

=
(Bφψ – βψ – γφ)(φψ(Bφ +D)(Bφ – β) – γ (B(φ +ψ) + Dψ))

φψ(Bφ +D)(Bψ +D)
. ()

The trace of the Jacobian matrix () is given by

tr JT (φ,ψ)

=
–φψ(Bφ+D)(Bφ–β)+γ φψ(Bψ+D)+γ (Bφ+D)(B(φ+ψ)+Dψ)

φ(Bψ+D) – Bφψ + βψ + γφ

ψ(Bφ +D)
. ()

Substituting () and () into () and () we find that the determinant of the Jacobian
matrix () is given by

det JT (φ,ψ)

=
Bδ – Bδ(D(β + γ ) + γ (γ – β)) + γ (D – β + γ )(Dβ – β – βγ + γ )

Bδ + BDδ(γ – β) +Dγ (D – β + γ )
,
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and the trace of the Jacobian matrix () is given by

tr JT (φ,ψ)

=
–Bδ – Bδ(D – Dγ + β + γ (β – γ )) + γ (D – Dγ + γ )(D – β + γ )

Bδ + BDδ(γ – β) +Dγ (D – β + γ )
.

The period-two solution {φ,ψ} is a saddle point if and only if

∣∣tr JT (φ,ψ)
∣∣ > ∣∣ + det JT (φ,ψ)

∣∣.
One can see that

 + det JT (φ,ψ) – tr JT (φ,ψ) = –
(γ (D – β + γ ) – Bδ)(Bδ + (D – β – γ )(D – β + γ ))

Bδ + BDδ(γ – β) +Dγ (D – β + γ )

and

 + det JT (φ,ψ) + tr JT (φ,ψ) =
γ (D – β + γ )(D – γ (D + β) + Dβ – β + γ )

Bδ + BDδ(γ – β) +Dγ (D – β + γ )

–
Bδ(–γ (D + β) + (D + β) + γ )

Bδ + BDδ(γ – β) +Dγ (D – β + γ )
.

Since

γ (D – β + γ ) – Bδ >  ()

we have

β <
–Bδ +Dγ + γ 

γ
.

Since

Bδ + BDγ δ +Dγ +Dγ 

D(Bδ +Dγ )
–
–Bδ +Dγ + γ 

γ
=

Bδ(D + γ )
Dγ (Bδ +Dγ )

≥ 

we have

Bδ + BDγ δ +Dγ +Dγ 

D(Bδ +Dγ )
> β ,

which implies

Bδ + BDδ(γ – β) +Dγ (D – β + γ ) > .

Hence, we prove that  + det JT (φ,ψ) – tr JT (φ,ψ) < . From () we have

B <
γ (D – β + γ )

δ
.
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Let h(x) = x –γ x+γ . Since the discriminant of h is negative we have h(x) >  for x ∈R,
which implies

(D + β) – γ (D + β) + γ  > .

Since

γ (D – β + γ )(D – γ (D + β) + Dβ – β + γ )
δ(–γ (D + β) + (D + β) + γ )

–
γ (D – β + γ )

δ

=
γ (D + β)(D – β + γ )

δ(–γ (D + β) + (D + β) + γ )
≥ ,

we have

γ (D – β + γ )(D – γ (D + β) + Dβ – β + γ )
δ(–γ (D + β) + (D + β) + γ )

> B. ()

Inequality () is equivalent to

γ (D – β + γ )
(
D – γ (D + β) + Dβ – β + γ )

– Bδ
(
–γ (D + β) + (D + β) + γ ) > ,

from which it follows that

 + det JT (φ,ψ) + tr JT (φ,ψ) > . �

Theorem  Assume δ = , γ >  and C > . Then () has the minimal period-two solution
{φ,ψ} where

φ =
(B –C)(D – β + γ ) +

√
D – β + γ

√
(B –C)((B + C)(D – β) + γ (B –C))

C(B –C)
,

ψ =
(B –C)(D – β + γ ) –

√
D – β + γ

√
(B –C)((B + C)(D – β) + γ (B –C))

C(B –C)

if and only if

(
(B + C)(D – β) + γ (B –C)

)
(B –C) > ∧D – β + γ > ∧ (B –C)(D – β) < .

The minimal period-two solution {φ,ψ} is
(i) locally asymptotically stable if

D – β + γ > ∧D < β ∧ (B + C)(D – β) + γ (B –C) > ,

(ii) a saddle point if

γ + β – D > ∧D > β ∧ (B + C)(D – β) + γ (B –C) < .
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Proof The existence of the minimal period-two solution follows from Theorem . Now,
we investigate the stability of {φ,ψ}. The Jacobian matrix of T at the point {φ,ψ} is given
by

JT (φ,ψ) =

(
e f
g h

)
, ()

where

e =
ψ(–Cβφ + γ (D + Bφ)φ +Dβψ)

(Cφ + (D + Bφ)ψ)
, f =

φ(Cβφ – γ (D + Bφ))
(Cφ + (D + Bφ)ψ)

,

g =
ψ(–Cβφ + γ (D + Bφ)φ +Dβψ)(Cβψ – γ (D + Bψ))
(C(D + Bφ)ψ +Cφψ + φ(D + Bψ)(γφ + βψ))

,

h =
(
φ
(
βψ(Dβφ –Cψ(Bφ +D)

)
+ γ φ

(
Cφψ(Bψ + D)

+ψ(Bφ +D)(Bψ + D) +Dβφ)))
/
((
Cψ(Bφ +D) + φ(Bψ +D)(βψ + γφ) +Cφψ))

+
βγφψ(ψ(ψ(Bφ +D)(D –Cφ) + Bψ(Bφ +D) +Cφ(D –Cφ)) + Dβφ)

(Cψ(Bφ +D) + φ(Bψ +D)(βψ + γφ) +Cφψ)
.

The determinant of the Jacobian matrix () is given by

det JT (φ,ψ) = eh – gf

=
φψ(βψ + γφ)(–γφ(Bφ + D) +Cβφ –Dβψ)

(ψ(Bφ +D) +Cφ)

× βψ(Cψ(ψ(Bφ +D) +Cφ) –Dβφ)
(Cψ(Bφ +D) + φ(Bψ +D)(βψ + γφ) +Cφψ)

–
γ (ψ(Bψ + D)(ψ(Bφ +D) +Cφ) +Dβφ)

(Cψ(Bφ +D) + φ(Bψ +D)(βψ + γφ) +Cφψ)
.

By using

φ =
(B –C)(D – β + γ ) +

√
D – β + γ

√
(B –C)((B + C)(D – β) + γ (B –C))

C(B –C)
,

ψ =
(B –C)(D – β + γ ) –

√
D – β + γ

√
(B –C)((B + C)(D – β) + γ (B –C))

C(B –C)

we find that

det JT (φ,ψ)

= –
(D – β)(BD(D – β + γ ) + BC(D – β)(D – γ ) –C(β – D))
(B –C)(γ (Bβ –CD) + βγ (B +C)(D – β) +Cβ(β –D))

, ()
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tr JT (φ,ψ) = e + h

=
(D – β)(Bβ(β –D) + BCβ(β – D) +C(D + Dβ – β))
(B –C)(γ (Bβ –CD) + βγ (B +C)(D – β) +Cβ(β –D))

+
γ (D – β)(B(D – β) + BC(D – β) +C(β – D))

(B –C)(γ (Bβ –CD) + βγ (B +C)(D – β) +Cβ(β –D))

+
γ (B –C)(BD +C(β – D))

(B –C)(γ (Bβ –CD) + βγ (B +C)(D – β) +Cβ(β –D))
. ()

From () and () it follows that

 + det JT (φ,ψ) – tr JT (φ,ψ) =
(D – β)(D – β + γ )((B + C)(D – β) + γ (B –C))
γ (CD – Bβ) + βγ (B +C)(β –D) +Cβ(D – β)

,

 + det JT (φ,ψ) + tr JT (φ,ψ)

=
(β –D)(D(B + BC – C) – β(B +C) + CDβ(B +C))
(B –C)(γ (Bβ –CD) + βγ (B +C)(D – β) +Cβ(β –D))

× γ (B –C)(B(D + β) +C(β – D)) – Cγ (D – β)(B(β – D) +CD)
(B –C)(γ (Bβ –CD) + βγ (B +C)(D – β) +Cβ(β –D))

,

 – det JT (φ,ψ)

=
γ (D – β)(B(D + β) + BC(β – D) –Cβ)

(B –C)(γ (Bβ –CD) + βγ (B +C)(D – β) +Cβ(β –D))

+
(D – β)(BD + BC(D + β) – CD) + γ (B –C)(Bβ –CD)
(B –C)(γ (Bβ –CD) + βγ (B +C)(D – β) +Cβ(β –D))

.

The rest of the proof follows from Lemma . �

Lemma  Assume that D – β + γ > .
() If D < β then D – Dβ + β + βγ + γ  > .
() D –D(β + γ ) – β – βγ – γ  < .

Proof
() It is sufficient to prove that the inequality D – Dβ + β + βγ >  holds for

D – β + γ >  and D < β . Since

–D + Dβ – β

β
– (β –D) = –

(D – β)(D – β)
β

< 

we find that

–D + Dβ – β

β
< β –D < γ

which implies

–D + Dβ – β

β
– γ =

–D + Dβ – β – βγ

β
< ,

from which the inequality follows.
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() In view of the assumption of the lemma we have

D –D(β + γ ) – β – βγ – γ 

= D(D – γ ) –Dβ – β – βγ – γ 

<Dβ – β – βγ – γ  < (β + γ )β – β – βγ – γ 

= –β – βγ – γ  < ,

from which the proof follows. �

Lemma  If C > , γ >  and

(
(B + C)(D – β) + γ (B –C)

)
(B –C) > ∧D – β + γ > ∧ (B –C)(D – β) < ,

then
(i) (B –C)(γ (Bβ –CD) + βγ (B +C)(D – β) +Cβ(β –D)) > ;
(ii) γ (D – β)(B(D + β) + BC(β – D) –Cβ) + (D – β)(BD + BC(D + β) – CD) +

γ (B –C)(Bβ –CD) > ;
(iii) (β –D)(D(B + BC – C) – β(B +C) + CDβ(B +C)) + γ (B –C)(B(D + β) +

C(β – D)) – Cγ (D – β)(B(β – D) +CD) > .

Proof (i) Assume that D > β and β >  holds. Observe that

–CDβ +CDβγ –CDγ  +Cβ –Cβγ

βγ (–D + β – γ )
–C =

C(D – β)(β – γ )

βγ (D – β + γ )
≥ .

Since B < C, we obtain

–CDβ +CDβγ –CDγ  +Cβ –Cβγ

βγ (–D + β – γ )
– B

=
γ (Bβ –CD) + βγ (B +C)(D – β) +Cβ(β –D)

βγ (–D + β – γ )
≥ .

Since D – β + γ > , we obtain

γ (Bβ –CD) + βγ (B +C)(D – β) +Cβ(β –D) < ,

which implies

(B –C)
(
γ (Bβ –CD) + βγ (B +C)(D – β) +Cβ(β –D)

)
> .

Similarly, one can prove the statement of the lemma if (D < β and β > ) or β = .
(ii) Assume D > β . The lemma’s assumptions imply

B < C and B <
C(–D + β + γ )

D – β + γ
and –D + β + γ > . ()
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Assume for the sake of contradiction that D – β – γ ≥ . Then –D + β + γ >  and
D – β – γ ≥  imply D < β , which is a contradiction. Hence, D – β – γ < . Let

� = (D – β)
(
D +D(γ – β) +D(β + βγ – γ )

+ Dβ
(
β – βγ + γ ) + (

β – βγ + γ ))
and

H(B) := γ (D – β)
(
B(D + β) + BC(β – D) –Cβ

)
+ (D – β)

(
BD + BC(D + β) – CD

)
+ γ (B –C)(Bβ –CD).

The solutions of the equation H(B) =  for B are given by

B± =
C(–D + Dβ + Dγ – Dβγ +Dγ  – β + βγ + βγ  ± √

�)
(D – β + γ )(D –Dβ + βγ )

.

Since the coefficient of B in the quadratic equationH(B) =  is positive we haveH(B) >
 ⇔ B ∈ [,B–)∪ (B+,∞).
Note that the following three identities hold:

D – Dβ + β + βγ + γ  = (β + γ –D)(β + γ +D) + D(D – β) + βγ ; ()

� – (D – β)
(
D – Dβ + β + βγ + γ )

= (D – β)(D – β – γ )
(
D –Dβ + βγ

)(
D + (β + γ )

)
; ()

B± –
C(–D + β + γ )

D – β + γ
=
C((D – β)(D – Dβ + β + βγ + γ )± √

�)
(D – β + γ )(D –Dβ + βγ )

. ()

If � <  then H(B) >  for all B ≥ . Assume � ≥  holds. Since

B <
C(–D + β + γ )

D – β + γ
and D > β and D – β – γ < 

from (), () and () we have B– > C(–D+β+γ )
D–β+γ

> B, which implies that H(B) > .
Similarly, if D < β the assumption of the lemma implies

B > C and B >
C(–D + β + γ )

D – β + γ
and D – β + γ > ,

from which it follows that

D –Dβ + βγ >D –Dβ +Dγ =D(D – β + γ ) ≥ . ()

In view of Lemma , (), and () we get

B+ <
C(–D + β + γ )

D – β + γ
< B,

which implies H(B) >  for C(–D+β+γ )
D–β+γ

< B, from which the proof follows.
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(iii) Assume that D > β . As in case (ii) we have

B <
C(–D + β + γ )

D – β + γ
and D – β – γ < . ()

Let

� = (D – β)
(
D + γ (D – Dβ + β)

– Dβ + Dβ – Dγ (D – β)(D + β) – Dγ  – β + γ )
and

H(B) := (β –D)
(
D(B + BC – C) – β(B +C) + CDβ(B +C)

)
+ γ (B –C)

(
B(D + β) +C(β – D)

)
– Cγ (D – β)

(
B(β – D) +CD

)
.

The solutions of the equation H(B) =  for B are given by

B± =
C(–D + Dγ +D(β – βγ – γ ) + βγ ± √

�)
(D + β)(D – β – γ )(D – β + γ )

.

Note that the following two identities hold:

� – (D – β)
(
D –D(β + γ ) – β – βγ – γ )

= (D – β)(D + β)(D – β – γ )
(
D + Dβ + Dγ + β + βγ + γ ), ()

B± –
C(–D + β + γ )

D – β + γ

=
C((D – β)(D –D(β + γ ) – β – βγ – γ )± √

�)
(D + β)(D – β – γ )(D – β + γ )

. ()

In view of (), (), (), D > β , D – β – γ < , which by Lemma  implies that B– >
B+ > B. This and the fact that the coefficient of B is positive imply H(B) > .
Assume that D < β and for the sake of contradiction that D – β – γ ≥ . Then, adding

the inequalitiesD–β +γ >  andD–β –γ ≥ , we obtainD > β , which is a contradiction.
Hence, D – β – γ < . Similarly, by using (), (), (), and Lemma , one can prove
statement (iii) if D < β , and the proof will be omitted. �

5 Boundedness of solutions of (1)
In view of Theorems  and  and Corollaries  and , any result on the existence of lower
and upper bounds of the solutions of () yields some global asymptotic stability result for
the unique equilibrium of (). See Section  for such results. As we show in Remark 
global asymptotic results obtained by application of Theorems  and  and Corollaries 
and  are not sharp, in the sense that they do not cover the whole parametric region of
global asymptotic stability, but they are robust as they can be applied as soon as we have
the lower and upper bounds of the solutions. The problem of boundedness of all solutions
of () is more difficult than the corresponding problem for the linear fractional equation
and in view of its importance requires a separate paper. An additional difficulty in studying
boundedness is the presence of quadratic terms.
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Here we will give some equations for which the boundedness of all solutions is clear and
leave the problem of determining the boundedness of all solutions for a future study. The
boundedness or existence of unbounded solutions for all nine special cases of () of the
type (, ) follows immediately from the corresponding properties of the linear equation
obtained by the substitution xn = eun and it can range from boundedness of all solutions,
periodicity of all solutions with the same period, to the unboundedness of all solutions. All
three special cases of () of the type (, ), and all three special cases of () of the type (, )
as well as the special case of the type (, ) have all solutions uniformly bounded that is,
there are constants L, U , L < U such that every solution satisfies L ≤ xn ≤ U , n = , , . . . .
All six special cases of () of the type (, ), where the term in the nominator is also present
in the denominator are also uniformly bounded as well as three special cases of () of the
type (, ), with corresponding terms in the nominator and the denominator. Two spe-
cial cases of (), where B = C =  and B = C = γ =  allow the existence of unbounded
solutions. The remaining  special cases of () require detailed study and probably new
methods in determining boundedness of solutions and complete classification of all spe-
cial cases of ().

6 Global asymptotic stability results
In this section we give the following global asymptotic stability result for some special
cases of ().

Theorem 
(i) Consider (), where D = , and all other coefficients are positive, subject to the

condition

(|β – Bx̄| + |γ –Cx̄|)(U + x̄) + δ

(B +C)L
< ,

where L = min{β ,γ ,δ}
max{B,C} , U = max{β ,γ }

min{B,C} +
δ
BL . Then x̄ is globally asymptotically stable.

(ii) Consider (), where all coefficients are positive, subject to condition (), where
L = min{β ,γ ,δ}

max{B,C,D} , U = max{β ,γ ,δ}
min{B,C,D} . Then x̄ is globally asymptotically stable.

Proof In view of Corollary  we need to find the lower and upper bounds for all solutions
of () for n≥ .

(i) In this case the lower and upper bounds for all solutions of () for n≥  are derived
as

xn+ =
βxnxn– + γ xn– + δxn

Bxnxn– +Cxn–
≥ min{β ,γ , δ}

max{B,C}
xn– + xnxn– + xn
xn– + xnxn–

≥ min{β ,γ , δ}
max{B,C} = L > ,

and

xn+ =
βxnxn– + γ xn– + δxn

Bxnxn– +Cxn–
=

βxnxn– + γ xn–
Bxnxn– +Cxn–

+
δxn

Bxnxn– +Cxn–

≤ max{β ,γ }
min{B,C}

xn– + xnxn–
xn– + xnxn–

+
δ

Bxn–
≤ max{β ,γ }

min{B,C} +
δ

BL
=U .
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(ii) In this case the lower and upper bounds for all solutions of () for n≥  are derived
as

xn+ =
βxnxn– + γ xn– + δxn
Bxnxn– +Cxn– +Dxn

≥ min{β ,γ , δ}
max{B,C,D}

xn– + xnxn– + xn
xn– + xnxn– + xn

=
min{β ,γ , δ}
max{B,C,D} = L > ,

and

xn+ =
βxnxn– + γ xn– + δxn
Bxnxn– +Cxn– +Dxn

≤ max{β ,γ , δ}
min{B,C,D}

xn– + xnxn– + xn
xn– + xnxn– + xn

=
max{β ,γ , δ}
min{B,C,D} =U .

�

By using a similar method as in the proof of Theorem  one can prove the following
result.

Theorem  Consider (), where B = β = , and all other coefficients are positive, subject
to the condition

|γ –Cx̄|(U + x̄) + |δ –Dx̄|
CL +DL

< ,

where L = min{γ ,δ}
max{C,D} , U = max{γ ,δ}

min{C,D} . Then x̄ is globally asymptotically stable.

Proof Now, we have

xn+ =
γ xn– + δxn
Cxn– +Dxn

≥ min{γ , δ}
max{C,D}

xn– + xn
xn– + xn

=
min{γ , δ}
max{C,D} = L > ,

and

xn+ =
γ xn– + δxn
Cxn– +Dxn

≤ max{γ , δ}
min{C,D}

xn– + xn
xn– + xn

=
max{γ , δ}
min{C,D} =U . �

Remark  Equation (), where D = δ =  and all other coefficients are positive, reduces to
the well-known equation () which was studied in great detail in [, ] and for which we
have shown that the unique equilibrium is globally asymptotically stable if and only if is
locally asymptotically stable, that is, if and only if condition (i) of Theorem  holds. This
result is certainly better than the global asymptotic result we derive from Corollaries 
and .

Remark  Equation (), where either B =  or C = , and all other coefficients are pos-
itive, can be treated with Corollary  and the global asymptotic stability of the equi-
librium (whenever it exists) follows from condition () in the interval [min{x̄,x–,x},
max{x̄,x–,x}] when min{x̄,x–,x} > , that is, when x–x > . Similarly, (), where ex-
actly one of the coefficients β , γ or δ is zero, and all other coefficients are positive, can
be treated with Corollary  and the global asymptotic stability of the equilibrium follows
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from condition () in the interval [min{x̄,x–,x},max{x̄,x–,x}] when min{x̄,x–,x} > ,
that is, when x–x > . In this case max{x̄,x–,x} can be replaced by U = max{β ,γ ,δ}

min{B,C,D} .
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