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Abstract
In this paper, we study the boundary value problem of a fractional q-difference
equation with nonlocal conditions involving the fractional q-derivative of the Caputo
type, and the nonlinear term contains a fractional q-derivative of Caputo type. By
means of Bananch’s contraction mapping principle and Schaefer’s fixed-point
theorem, some existence results for the solutions are obtained. Finally, examples are
presented to illustrate our main results.
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1 Introduction
The q-difference calculus is an interesting and old subject. The q-difference calculus or
quantum calculus was first developed by Jackson [, ], while basic definitions and prop-
erties can be found in the papers [, ]. The origin of the fractional q-difference calculus
can be traced back to the work in [, ] by Al-Salam and by Agarwal. The q-difference
calculus describes many phenomena in various fields of science and engineering [].
The q-difference calculus is an important part of discrete mathematics. More re-

cently, the fractional q-difference calculus has caused wide attention of scholars, many
researchers devoted themselves to studying it [–]. The relevant theory of fractional
q-difference calculus has been established [], such as q-analogues of the fractional in-
tegral and the difference operators properties as Mitlagel Leffler function [], q-Laplace
transform, q-Taylor’s formula [, ], just tomention some. It is not only the requirements
of the fractional q-difference calculus theory but also its the broad application.
Apart from this old history of q-difference equations, the subject received a consider-

able interest ofmanymathematicians and frommany aspects, theoretical and practical. So
specifically, q-difference equations have been widely used in mathematical physical prob-
lems, for dynamical system and quantum models [], for q-analogues of mathematical
physical problems including heat and wave equations [], for sampling theory of signal
analysis [, ].What is more, the fractional q-difference calculus plays an important role
in quantum calculus.
As generalizations of integer order q-difference, fractional q-difference can describe

physical phenomenamuch better andmore accurately. Perhaps due to the development of
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fractional differential equations [–], an interest has been aroused in studying bound-
ary value problems of fractional q-difference equations, especially as regards the existence
of solutions for boundary value problems [, , –].
In , Ferreira [] considered the existence of nontrivial solutions to the fractional

q-difference equation

(
Dα

q y
)
(x) = –f

(
x, y(x)

)
,  < x < ,

subject to the boundary conditions

y() = , y() = ,

where  < α ≤  and f : [, ]×R→R is a nonnegative continuous function.
In , El-Shahed and Al-Askar [] studied the existence of a positive solution for the

boundary value problem of the nonlinear factional q-difference equation

cDα
qu + a(t)f (t) = ,  ≤ t ≤ ,  < α ≤ ,

with the boundary conditions

u() =D
qu() = , γDqu() + βD

qu() = ,

where γ ,β ≤  and cDα
q is a fractional q-derivative of Caputo type.

In , Liang andZhang [] studied the existence and uniqueness of positive solutions
for the three-point boundary problem of fractional q-differences

(
Dα

qu
)
(t) + f

(
t,u(t)

)
= ,  < t < ,  < α < ,

u() = (Dqu)() = , (Dqu)() = β(Dqu)(η),

where  < βηα– < . By using a fixed-point theorem in partially ordered sets, they got
some sufficient conditions for the existence and uniqueness of positive solutions to the
above boundary problem.
In , Zhou and Liu [] considered the existence of solutions for the boundary value

problems of the following nonlinear fractional q-difference equations:

cDα
qu + f (t,u) = , t ∈ J = [, ],  < α ≤ ,

u() =
(
D

qu
)
() = , γ (Dqu)() + βD

qu() = ,

where γ ,β ≥  and cDq is the fractional q-derivative of Caputo type. By virtue of Mönch’s
fixed-point theorem and the technique ofmeasure of weak noncompactness and got some
conditions of positive solutions.
In , Zhou et al. [] studied the existence results for fractional q-difference equa-

tions with nonlocal q-integral boundary conditions,

(
Dα

qu
)
(t) + f

(
t,u(t)

)
= , t ∈ (, ),

u() = , u() = μIβq u(η) = μ

∫ η



(η – qs)(β–)

�q(β)
u(s)dqs,
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where μ >  is a parameter, Dα
q is the q-derivative of Rieman-Liouville type of order α.

By using the generalized Banach contraction principle, the monotone iterative method
and Krasnoselskii’s fixed-point theorem, some existence results of positive solutions to
the above boundary value problems have been enunciated.
In , Li et al. [] investigated the existence of solutions for the following two-point

boundary value problem of nonlinear fractional q-difference equations:

(
Dα

qu
)
(x) + λf

(
u(x)

)
= ,  < x < ,

u() =Dqu() =Dqu() = ,

where  < q < ,  < α < , f : C((, ), (,∞)). They proved the existence of positive so-
lutions for boundary value problems by utilizing a fixed-point theorem in cones. Several
existence results for positive solutions in terms of different values of the parameter λ were
obtained.
In , Benchohra et al. [] studied the boundary value problem for fractional differ-

ential equations with nonlocal conditions

cDα
+y(t) = f

(
t, y(t)

)
, t ∈ J = [,T],  < α < ,

y() = g(y), y(T) = yT ,

where cDα
+ is the Caputo fractional derivative, f : [,T]×R →R is a continuous function,

g : C(J ,R) →R is a continuous function, and yT ∈R.
To the best of our knowledge, there are a few papers that consider the boundary value

of nonlinear fractional q-difference equations with nonlocal conditions and in which the
nonlinear term contains a fractional q-derivative of Caputo type. Theory and applications
seem to be just being initiated. In this paper we investigate the existence of solutions for
the following boundary value problem of nonlinear fractional q-difference equations:

(cDα
qx

)
(t) + f

(
t, cDσ

q x(t)
)
= ,  < t < , (.)

subject to the boundary conditions

x() = y(x), γ (Dqx)() – βD
qx() = , (.)

where  < q < ,  < α < ,  < σ < , βγ ≥  and (–t)(α–)
(–t)(α–) ≥ [α]qβ

γ
, f : C((, )×R), and y is

a continuous functional. The condition of γ (Dqx)() – βD
qx() =  is representative and

general; the conditions of Dqx() =  in [] and Dqx() = β in [] can be viewed as two
special cases. We will prove the existence of solutions for the boundary value problem
(.)-(.) by utilizing Banach’s contraction mapping principle and Schaefer’s fixed-point
theorem. Several existence results for the solutions are obtained. This work is motivated
by papers [, ].
The paper is organized as follows. In Section , we introduce some definitions of

q-fractional integral and differential operator together with some basic properties and
lemmas to prove our main results. In Section , we investigate the existence of solutions
for the boundary value problem (.)-(.) by the Banach contraction mapping principle
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and Schaefer’s fixed-point theorem. Moreover, some examples are given to illustrate our
main results.

2 Preliminaries
In the following section, we collect some definitions and lemmas about the fractional q-
integral and fractional q-derivative for the full theory for which one is referred to [, ].
Let q ∈ (, ) and define

[a]q =
 – qa

 – q
, a ∈R,

and

(a;q)∞ =
∞∏
i=

(
 – aqi

)
, (a;q)α =

(a;q)∞
(aqα ;q)∞

(a,α ∈R).

The q-analogue of the power function (a – b)n with n ∈N is

(a – b) = , (a – b)n =
n–∏
k=

(
a – bqk

)
, n ∈N,a,b ∈R.

More generally, if α ∈ R, then

(a – b)(α) = aα

∞∏
n=

a – bqn

a – bqα+n .

It is easy to see that [a(t – s)](α) = aα(t – s)(α). And note that, if b = , then a(α) = aα .
The q-gamma function is defined by

�q(x) =
( – q)(x–)

( – q)x–
, x ∈R\{,–,–, . . .},

and it satisfies �q(x + ) = [x]q�q(x).
The q-derivative of a function f is here defined by

(Dqf )(x) =
f (x) – f (qx)
( – q)x

, (Dqf )() = lim
x→

(Dqf )(x), for x �= ,

and q-derivatives of higher order are defined by

(
D

qf
)
(x) = f (x) and

(
Dn

qf
)
(x) =Dq

(
Dn–

q f
)
(x), n ∈N.

The q-integral of a function f defined on the interval [,b] is given by

(Iqf )(x) =
∫ x


f (t)dqt = x( – q)

∞∑
n=

f
(
xqn

)
qn, x ∈ [,b].

If a ∈ [,b] and f is defined on the interval [,b], its q-integral from a to b is defined by

∫ b

a
f (t)dqt =

∫ b


f (t)dqt –

∫ a


f (t)dqt.
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Similarly as done for derivatives, an operator Inq can be defined,

(
Iq f

)
(x) = f (x) and

(
Inq f

)
(x) = Iq

(
In–q f

)
(x), n ∈N.

From the definition of q-integral and the properties of series, we can get the following
results concerning q-integral, which are helpful in the proofs of our main results.

Lemma .
() If f and g are q-integral on the interval [a,b], α ∈R, c ∈ [a,b], then

(i)
∫ b
a (f (t) + g(t))dqt =

∫ b
a f (t)dqt +

∫ b
a g(t)dqt;

(ii)
∫ b
a αf (t)dqt = α

∫ a
b f (t)dqt;

(iii)
∫ b
a f (t)dqt =

∫ c
a f (t)dqt +

∫ b
c f (t)dqt.

() If |f | is q-integral on the interval [,x], then | ∫ x
 f (t)dqt| ≤

∫ x
 |f (t)|dqt.

() If f and g are q-integral on the interval [,x], f (t) ≤ g(t) for all t ∈ [,x], then∫ x
 f (t)dqt ≤ ∫ x

 g(t)dqt.

The fundamental theorem of calculus applies to the operators Iq and Dq, i.e.,

(DqIqf )(x) = f (x),

and if f is continuous at x = , then

(IqDqf )(x) = f (x) – f ().

The basic properties of the q-integral operator and the q-differential operator can be
found in the book [].
We now point out three formulas that will be used later (iDq denotes the derivative with

respect to variable i)

tDq(t – s)(α) = [α]q(t – s)(α–),(
xDq

∫ x


f (x, t)dqt

)
(x) =

∫ x


xDqf (x, t)dqt + f (qx,x).

Remark . We note that if α >  and a≤ b ≤ t, then (t – a)(α) ≥ (t – b)(α).

Definition. [] Let α ≥  and f be a function defined on [,b]. The fractional q-integral
of the Riemann-Liouville type is (Iq f )(x) = f (x) and

(
Iαq f

)
(x) =


�q(α)

∫ x


(x – qt)(α–)f (t)dqt, α > ,x ∈ [,b].

Definition. [] The fractional q-derivative of theCaputo type of order α >  is defined
by

(cDα
q f

)
(x) =

(
I�α	–α
q D�α	

q f
)
(x), α > ,

where �α	 is the smallest integer greater than or equal to α.
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Next, we list some properties of the q-derivative and the q-integral that are already
known in the literature.

Lemma . [] Let α,β ≥  and f be a function defined on [,b]. Then the following for-
mulas hold:

(i) (Iβq Iαq f )(x) = (Iα+β
q f )(x);

(ii) (Dα
q Iαq f )(x) = f (x).

Lemma . [] Let α ∈R
+\N and a < x, then the following is valid:

(
Iαq

cDα
q f

)
(x) = f (x) –

�α	–∑
k=

(Dk
qf )(a)

�q(k + )
xk(a/x;q)k .

Lemma . [] Let B be a Banach space with C ⊆ B closed and convex. Assume U is a
relatively open subset of C with  ∈U and F :U → C is a continuous, compact map. Then
either
() F has a fixed point in U ; or
() there exist u ∈ ∂U and λ ∈ (, ) with u = λFu.

The next result is important in the sequel.

Lemma . Let  < α <  and h is continuous functional, a function x is a solution of the
fractional integral equation

x(t) = y(x) +
(∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)
h(s)dqs

)
t

–
∫ t



(t – qs)(α–)

�q(α)
h(s)dqs, (.)

if and only if x is a solution of the equation

(cDα
qx

)
(t) + h(t) = ,  < t < , (.)

x() = y(x), γ (Dqx)() – βD
qx() = . (.)

Proof ByDefinition . andLemma., we can reduce (.) to an equivalent integral equa-
tion

x(t) = x() +At – Iαq h(t), (.)

where A = Dqx()
�q() . Applying the boundary conditions x() = y(x), we have

x(t) = y(x) +At –
∫ t



(t – qs)(α–)

�q(α)
h(s)dqs.

Thus, we obtain

(Dqx)(t) = A –
∫ t



[α – ]q(t – qs)(α–)

�q(α)
h(s)dqs,
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Li et al. Advances in Difference Equations 2014, 2014:57 Page 7 of 16
http://www.advancesindifferenceequations.com/content/2014/1/57

(
D

qx
)
(t) = –

∫ t



[α – ]q[α – ]q(t – qs)(α–)

�q(α)
h(s)dqs.

Next by the condition γ (Dqx)() – βD
qx() = , we have

A =
∫ 



( – qs)(α–)

�q(α – )
h(s)dqs –

∫ 



β( – qs)(α–)

γ�q(α – )
h(s)dqs. (.)

Therefore, the unique solution of the problem (.)-(.) is

x(t) = y(x) +
(∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)
h(s)dqs

)
t –

∫ t



(t – qs)(α–)

�q(α)
h(s)dqs,

which completes the proof. �

3 Main results
We are now in a position to state and prove our main results in this paper.
Let B = {x | x ∈ C[, ] and Dqx ∈ C[, ]} be the Banach space endowed with the norm

‖x‖ = maxt∈[,]{|x(t)|, |cDσ
q x(t)|}. Define the closed subset K ⊂ B by K = {x(t) ∈ C[, ] |

x(t)≥ }.
Define the operator F : K → K by

(Fx)(t) = y(x) +
(∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)
f
(
s, cDσ

q x(s)
)
dqs

)
t

–
∫ t



(t – qs)(α–)

�q(α)
f
(
s, cDσ

q x(s)
)
dqs, t ∈ [, ]. (.)

Obviously, the fixed points of the operator F are solutions of the boundary value problem
(.)-(.).
For convenience, we define

C =
∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)
dqs,

C =
∫ 



( – qs)(α–)

�q(α)
dqs.

Then we have the following results.

Theorem . Assume that
(H) there exists a constant l >  such that |f (t, z) – f (t, z)| ≤ l(|z – z|), for each

t ∈ [, ] and all z, z ∈R;
(H) there exists a constant l >  such that |y(x) – y(x)| ≤ l‖x – x‖, for each

x,x ∈ K ;
(H) θ =max{l + l(C +C), l(C +

[α–]q
�q(α) C) C

�q(–σ ) } < , where C and C are defined
as (.) and (.).

Then the boundary value problem (.)-(.) has at least one positive solution.
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Proof Let x,x ∈ K , then for all t ∈ [, ], the following inequality holds:

∣∣(Fx)(t) – (Fx)(t)
∣∣

≤
∣∣∣∣
∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)(
f
(
s, cDσ

q x(s)
)
– f

(
s, cDσ

q x(s)
))
dqs

∣∣∣∣
+

∣∣∣∣
∫ t



(t – qs)(α–)

�q(α)
(
f
(
s, cDσ

q x(s)
)
– f

(
s, cDσ

q x(s)
))
dqs

∣∣∣∣ + ∣∣y(x) – y(x)
∣∣

≤
∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)∣∣f (s, cDσ
q x(s)

)
– f

(
s, cDσ

q x(s)
)∣∣dqs

+
∫ t



(t – qs)(α–)

�q(α)
∣∣f (s, cDσ

q x(s)
)
– f

(
s, cDσ

q x(s)
)∣∣dqs + ∣∣y(x) – y(x)

∣∣. (.)

By (H) and (H), we may arrange (.) as follows:

∣∣(Fx)(t) – (Fx)(t)
∣∣

≤ l‖x – x‖ +
∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)
l
∣∣cDσ

q x(s) –
cDσ

q x(s)
∣∣dqs

+
∫ t



(t – qs)(α–)

�q(α)
l
∣∣cDσ

q x(s) –
cDσ

q x(s)
∣∣dqs

≤ l‖x – x‖ +
∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)
l
∥∥cDσ

q x –
cDσ

q x
∥∥dqs

+
∫ 



( – qs)(α–)

�q(α)
l
∥∥cDσ

q x –
cDσ

q x
∥∥dqs

≤ l‖x – x‖ + (C +C)l
∥∥cDσ

q x –
cDσ

q x
∥∥

≤ l‖x – x‖ + (C +C)l‖x – x‖
=

(
l + l(C +C)

)‖x – x‖.

As

Dq(Fx)(t) =
∫ 



( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )
f
(
s, cDσ

q x(s)
)
dqs

–
∫ t



[α – ]q(t – qs)(α–)

�q(α)
f
(
s, cDσ

q x(s)
)
dqs, (.)

by the Definition ., here  < σ < , �σ	 = , and

(cDσ
q Fx

)
(t) =

(
I�σ	–σ
q D�σ	

q Fx
)
(t)

=
∫ t



(t – qs)(�σ	–σ–)

�q(�σ	 – σ )
(
D�σ	

q Fx
)
(s)dqs

=
∫ t



(t – qs)(–σ )

�q( – σ )
(DqFx)(s)dqs. (.)

http://www.advancesindifferenceequations.com/content/2014/1/57
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We can get the following deduction:

∣∣Dq(Fx)(t) –Dq(Fx)(t)
∣∣

≤
∣∣∣∣
∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)(
f
(
s, cDσ

q x(s)
)
– f

(
s, cDσ

q x(s)
))
dqs

∣∣∣∣
+

∣∣∣∣
∫ t



[α – ]q(t – qs)(α–)

�q(α)
f
(
s, cDσ

q x(s)
)
– f

(
s, cDσ

q x(s)
)
dqs

∣∣∣∣
≤

∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)∣∣f (s, cDσ
q x(s)

)
– f

(
s, cDσ

q x(s)
)∣∣dqs

+
∫ t



[α – ]q(t – qs)(α–)

�q(α)
∣∣f (s, cDσ

q x(s)
)
– f

(
s, cDσ

q x(s)
)∣∣dqs. (.)

By (H) and (H), we arrange (.) as follows:

∣∣Dq(Fx)(t) –Dq(Fx)(t)
∣∣

≤
∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)
l
∥∥cDσ

q x –
cDσ

q x
∥∥dqs

+
∫ t



[α – ]q(t – qs)(α–)

�q(α)
l
∥∥cDσ

q x –
cDσ

q x
∥∥dqs

≤
∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)
l
∥∥cDσ

q x –
cDσ

q x
∥∥dqs

+
[α – ]q( – q)

�q(α)
t(α–)

∞∑
n=

(
 – qn+

)(α–)qnl∥∥cDσ
q x –

cDσ
q x

∥∥dqs

≤
(
Cl +

[α – ]q( – q)
�q(α)

∞∑
n=

(
 – qn+

)(α–)qnl
)∥∥cDσ

q x –
cDσ

q x
∥∥dqs. (.)

By the theory of series, let

an =
(
 – qn+

)(α–)qn = ∞∏
k=

 – qn+k+

 – qn+k+α– q
n

= qne
∑∞

k= ln(–q
n+k+)–ln(–qn+k+α–),

bn =
∞∑
k=

(
ln

(
 – qn+k+

)
– ln

(
 – qn+k+α–)).

Note that  < q < , so
∑∞

k= qn+k+ and
∑∞

k= qn+k+α+ are convergent, which imply that∑∞
k= ln( – qn+k+) and

∑∞
k= ln( – qn+k+α–) are convergent. Thus

∑∞
k= bn is convergent.

Hence
∑∞

n= an =
∑∞

n=( – qn+)(α–)qn is convergent.
Setting

C =
∞∑
n=

(
 – qn+

)(α–)qn (.)
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and combining with (.), we get

∣∣Dq(Fx)(t) –Dq(Fx)(t)
∣∣ ≤

(
C +

[α – ]q( – q)
�q(α)

C

)
l
∥∥cDσ

q x –
cDσ

q x
∥∥.

So,

∣∣(cDσ
q Fx

)
(t) –

(cDσ
q Fx

)
(t)

∣∣
≤

∫ t



(t – qs)(–σ )

�q( – σ )

(
C +

[α – ]q( – q)
�q(α)

C

)
l
∥∥cDσ

q x –
cDσ

q x
∥∥dqs

= l
(
C +

[α – ]q( – q)
�q(α)

C

)∥∥cDσ
q x –

cDσ
q x

∥∥ t( – q)
∑∞

n=(t – qn+t)(–σ )qn

�q( – σ )

= l
(
C +

[α – ]q( – q)
�q(α)

C

)∥∥cDσ
q x –

cDσ
q x

∥∥
× t(–σ )( – q)

∑∞
n=( – qn+)(–σ )qn

�q( – σ )
. (.)

Choosing un = ( – qn+)(–σ )qn, we see that
∑∞

n= un =
∑∞

n=( – qn+)(–σ )qn is convergent,
and we may as well set

C =
∞∑
n=

(
 – qn+

)(–σ )qn (.)

and combining with (.), we get

∣∣(cDσ
q Fx

)
(t) –

(cDσ
q Fx

)
(t)

∣∣ ≤ l
(
C +

[α – ]q( – q)
�q(α)

C

)
( – q)

�q( – σ )
C‖x – x‖

≤ l
(
C +

[α – ]q
�q(α)

C

)
C

�q( – σ )
‖x – x‖.

It follows that

‖Fx – Fx‖ = max
t∈[,]

{∣∣F(x)(t) – F(x)(t)
∣∣, ∣∣cDσ

q F(x)(t) –
cDσ

q F(x)(t)
∣∣}

≤ θ‖x – x‖.

Consequently F is a contraction map as θ < . As a consequence of Banach’s fixed-point
theorem, we deduce that F has a fixed point which is a solution of the problem (.)-(.).
The proof is completed. �

Denote

M = max
t∈[,]

∣∣y(x(t))∣∣, M = max
t∈[,]

∣∣f (t, cDσ
q x(t)

)∣∣,
A =M +M(C +C), B =

CM

�q( – σ )

(
C +

[α – ]qC

�q(α)

)
.
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Theorem . Assume Dqx(t) and f : [, ]×R →R are continuous, and y >  is a contin-
uous functional. Suppose the following conditions are satisfied:
(H) there exists a continuous function ϕ : (, +∞) →R with |f (t, z)| ≤ ϕ(z) on

[, ]× (, +∞);
(H) there exists r > , with ‖ϕ‖ ≤ r–M

C+C
.

Then the boundary value problem (.)-(.) has a solution.

Proof We will prove the result by using Schaefer’s fixed-point theorem and divide the
proof into four steps.
First, set U = {x | x ∈ K ,‖x‖ < r}, then U = {x | x ∈ K ,‖x‖ ≤ r}, we show F : U → K is

continuous.
SinceDqx(t) is continuous, then cDσ

q x(t) =
∫ t


(–qs)(–σ )

�q(–σ ) Dqx(s)dqs is continuous. Choosing
{xn} to be a sequence such that xn → x in U , then

∣∣(Fxn)(t) – (Fx)(t)
∣∣

≤
∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)∣∣f (s, cDσ
q xn(s)

)
– f

(
s, cDσ

q x(s)
)∣∣dqs

+
∫ t



(t – qs)(α–)

�q(α)
∣∣f (s, cDσ

q xn(s)
)
– f

(
s, cDσ

q x(s)
)∣∣dqs + ∣∣y(xn) – y(x)

∣∣
≤

∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)
max
s∈[,]

∣∣f (s, cDσ
q xn(s)

)
– f

(
s, cDσ

q x(s)
)∣∣dqs

+
∫ t



(t – qs)(α–)

�q(α)
max
s∈[,]

∣∣f (s, cDσ
q xn(s)

)
– f

(
s, cDσ

q x(s)
)∣∣dqs + ∣∣y(xn) – y(x)

∣∣.
From f and y are continuous, we have

∥∥F(xn) – F(x)
∥∥ →  as n→ ∞.

Now, we prove that F :U → K is a compactmap. For any  < η ≤ r, set E = {x ∈ K | ‖x‖ ≤
η}, it suffices to show that F(E) is relatively compact set in K . In fact, for each t ∈ [, ],

∣∣(Fx)(t)∣∣ = ∣∣∣∣y(x) +
(∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)
f
(
s, cDσ

q x(s)
)
dqs

)
t

–
∫ t



(t – qs)(α–)

�q(α)
f
(
s, cDσ

q x(s)
)
dqs

∣∣∣∣
≤ ∣∣y(x)∣∣ + ∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)∣∣f (s, cDσ
q x(s)

)∣∣dqs
+

∫ t



(t – qs)(α–)

�q(α)
∣∣f (s, cDσ

q x(s)
)∣∣dqs

≤M +M

∫ 



( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )
dqs +M

∫ 



( – qs)(α–)

�q(α)
dqs

≤M +M(C +C) = A.
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We consider

∣∣Dq(Fx)(t)
∣∣ = ∣∣∣∣

∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)
f
(
s, cDσ

q x(s)
)
dqs

–
∫ t



[α – ]q(t – qs)(α–)

�q(α)
f
(
s, cDσ

q x(s)
)
dqs

∣∣∣∣
≤

∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)∣∣f (s, cDσ
q x(s)

)∣∣dqs
+

∫ t



[α – ]q(t – qs)(α–)

�q(α)
∣∣f (s, cDσ

q x(s)
)∣∣dqs

=

[∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)
dqs

+
[α – ]q( – q)

�q(α)
t(α–)

∞∑
n=

(
 – qn+

)(α–)qn
]∣∣f (s, cDσ

q x(s)
)∣∣

≤M

(
C +

[α – ]q
�q(α)

∞∑
n=

(
 – qn+

)(α–)qn
)

≤M

(
C +

[α – ]qC

�q(α)

)
.

We get

∣∣(cDσ
q Fx

)
(t)

∣∣ = ∣∣∣∣
∫ t



(t – qs)(–σ )

�q( – β)
DqF(x)dqs

∣∣∣∣
≤M

(
C +

[α – ]qC

�q(α)

)∫ t



(t – qs)(–σ )

�q( – σ )
dqs

=M

(
C +

[α – ]qC

�q(α)

)
t( – q)

∞∑
n=

(t – tqn+)(–σ )

�q( – σ )
qn

≤ CM

�q( – σ )

(
C +

[α – ]qC

�q(α)

)
= B.

For each t ∈ [, ], we have

‖Fx‖ ≤M +M(C +C) = A, (.)

∥∥(cDσ
q Fx

)∥∥ ≤ CM

�q( – σ )

(
C +

[α – ]qC

�q(α)

)
= B. (.)

Hence, we conclude that

‖Fx‖ =max
{∣∣(Fx)(t)∣∣, ∣∣cDσ

q (Fx)(t)
∣∣} ≤ l =max{A,B},

which shows F(E) is uniform bounded.
On the other hand, for any given ε > , setting

δ =min

{


,

ε

M(C + C)

}
,
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for each x ∈ E,  ≤ t ≤ t ≤  and |t – t| < δ, one has |(Fx)(t) – (Fx)(t)| < ε, that is to say,
F(E) is equicontinuous. In fact,

∣∣(Fx)(t) – (Fx)(t)
∣∣

≤
∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)∣∣f (s, cDσ
q x(s)

)∣∣dqs(t – t)

+
∣∣∣∣
∫ t



(t – qs)(α–)

�q(α)
f
(
s, cDσ

q x(s)
)
dqs –

∫ t



(t – qs)(α–)

�q(α)
f
(
s, cDσ

q x(s)
)
dqs

∣∣∣∣
≤M

∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)
dqs(t – t)

+
M

�q(α)

∣∣∣∣
∫ t


(t – qs)(α–) dqs –

∫ t


(t – qs)(α–) dqs

∣∣∣∣
≤M

∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)
dqs(t – t)

+
M

�q(α)

∣∣∣∣t(α)

∫ 


( – qs)(α–) dqs – t(α)

∫ 


( – qs)(α–) dqs

∣∣∣∣
=MC(t – t) +MC

∣∣t(α) – t(α)
∣∣.

Now, we estimate t(α) – t(α) :
() for  ≤ t < δ, δ ≤ t < δ, t(α) – t(α) ≤ t(α) < (δ)(α) ≤ δ;
() for  ≤ t < t ≤ δ, t(α) – t(α) ≤ t(α–) < δ(α–) ≤ δ;
() for δ ≤ t < t ≤ . From the mean value theorem of differentiation, we have t(α) –

t(α) ≤ [α](t – t)≤ δ. Thus, we have

∣∣Fx(t) – Fx(t)
∣∣ <MCδ + MCδ < ε.

Therefore, F(E) is equicontinuous. By means of the Arzela-Ascoli theorem, F(E) is a rela-
tively compact set in K , then the operator F :U → K is completely continuous.
In the fourth step, we have a priori bounds.
Suppose x ∈ ∂U is a solution of

x(t) = λFx(t), (.)

for λ ∈ (, ), where F is given by (.). We know that F : U → K is continuous and com-
pletely continuous. Furthermore, by (H) and (H) we have

x(t) = λFx(t)

= λ

(
y(x) +

[∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)
f
(
s, cDσ

q x(s)
)
dqs

]
t

–
∫ t



(t – qs)(α–)

�q(α)
f
(
s, cDσ

q x(s)
)
dqs

)

< y(x) +
∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)
ϕ
(cDσ

q x(s)
)
dqs
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+
∫ t



(t – qs)(α–)

�q(α)
ϕ
(cDσ

q x(s)
)
dqs

≤ y(x) +
∫ 



(
( – qs)(α–)

�q(α – )
–

β( – qs)(α–)

γ�q(α – )

)
ϕ
(cDσ

q x(s)
)
dqs

+
∫ 



( – qs)(α–)

�q(α)
ϕ
(cDσ

q x(s)
)
dqs

=M + ‖ϕ‖(C +C) ≤ r,

where r is defined as (H). It follows that ‖x‖ < r, that is, there is no x ∈ ∂U such that
x = λF(x) for λ ∈ (, ). As a consequence of Lemma ., F has a fixed point x ∈ U which
is a solution of the boundary value problem (.)-(.), and the proof is completed. �

4 Examples
In this section, we present some examples to illustrate our main results.

Example . Consider the following boundary value problem:

cD


q x(t) + f

(
t, cD



q x(t)

)
= , (.)

x() = y(x) = c, γ (Dqx)() – βD
qx() = , (.)

here α = 
 , σ = 

 , β = , and c is a constant. Note that

C =
∫ 



( – qs)(– 
 )

�q(  )
dqs, C =

∫ 



( – qs)(  )

�q(  )
dqs,

C =
∞∑
n=

(
 – qn+

)(– 
 )qn dqs, C =

∞∑
n=

(
 – qn+

)(– 
 )qn dqs.

For convenience, we denote A = C
�q(–σ ) (C +

[α–]q
�q(α) C), A = (C + C). Choosing A >

max{A,A}, let l = 
A

> , l =  – A
A

> , and we get θ = max{lA, l + l(C + C)} < .

When f (t, cD


q x(t)) = lcD



q x(t) and y(x) = c, for any t, t ∈ [, ], x,x ∈ K , the following

equalities hold:

∣∣f (t, cD 

q x(t) – f

(
t, cD



q x(t)

)∣∣ = l
(∣∣cD 


q x(t) – cD



q x(t)

∣∣),
and

∣∣y(x) – y(x)
∣∣ = .

Hence, by Theorem ., the boundary value problem (.)-(.) has a solution.

Example . Consider the following boundary value problem:

cD


q x(t) –

�q(  )(t sin(
cD



q x(t)))∫ 

 [

 ]q( – qs)(– 

 ) dqs +
∫ 
 ( – qs)(  ) dqs

= , (.)
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x() = y(x) = sinx(t), γ (Dqx)() – βD
qx() = , (.)

here α = 
 , β = , σ = 

 , f (t,
cD 

 x(t)) = – �q(  )(t sin(
cD



q x(t)))∫ 

 [  ]q(–qs)
(– 

 ) dqs+
∫ 
 (–qs)

(  ) dqs
, x() = y(x) = sinx(t)

and

C =
∫ 



( – qs)(– 
 )

�q(  )
dqs, C =

∫ 



( – qs)(  )

�q(  )
dqs.

Note that

M = max
t∈[,]

∣∣y(x(t))∣∣ = ,

ϕ
(cD 


q x(t)

)
=


C +C

=
�q(  )∫ 

 [

 ]q( – qs)(– 

 ) dqs +
∫ 
 ( – qs)(  ) dqs

,

and we get |f (t, cD 
 x(t))| ≤ ϕ(cD



q x(t)) with ‖ϕ‖ = 

C+C
. Choosing r = , it is clear that

‖ϕ‖ ≤ r–M
C+C

= 
C+C

. By Theorem ., the boundary value problem (.)-(.) has a solu-
tion.
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