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Abstract
In this study, sliding velocity, pole lines, hodograph, and acceleration poles of
two-parameter Lorentzian homothetic motions at ∀(λ,μ) positions are obtained. By
defining two-parameter Lorentzian homothetic motion along a curve in Lorentzian
space L3, the theorems related to this motion and characterizations of the trajectory
surface are given.
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1 Introduction
To investigate the geometry of the motion of a line or a point in the motion of space is im-
portant in the study of space kinematics or spatial mechanisms or in physics. The geome-
try of such a motion of a point or line has a number of applications in geometric modeling
and model-bored manufacturing of mechanical products or in the design of robotic mo-
tion. These are specifically used to generate geometric models of shell-type objects and
thick surfaces [–].
Muller has introduced one- and two-parameter planar motions and obtained the re-

lations between absolute, relative, sliding velocity, and pole curves of these motions [].
Moreover, two-parameter motions in three-dimensional space are defined by [] and [].
Lorentzian metric in three-dimensional Minkowski space L is indefinite. In the theory of
relativity, the geometry of indefinite metric is very crucial. Thus, by taking a Lorentzian
plane L instead of an Euclidean plane E, Ergin [] has introduced one-parameter pla-
nar motion in the Lorentzian plane. In [] all one-parameter motions obtained from two-
parameter motion on the Lorentzian plane are investigated.
In this paper, firstly we introduce two-parameter homothetic motions in a Lorentzian

plane L and we calculate the pole points obtained from Lorentzian homothetic motion.
Additionally, we give some theorems and corollaries as regards these pole points. Simi-
larly, we calculate the acceleration poles of Lorentzian homothetic motions. By consid-
ering the above mentioned, we define two-parameter homothetic motion along a curve
in Lorentzian space L and we give the equation of the trajectory surfaces formed by
Lorentzian homothetic motions. Finally, we obtain the parametrizations of the trajectory
surfaces and give some examples for these trajectory surfaces.
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2 Two-parameter homothetic motions in Lorentzian plane
The Lorentzian homothetic motion is examined by

Y = hAX +C (.)

for h(λ,μ) �= const. Also, there can be given some special results of (λ,μ) = (, ) and
h(λ,μ).

Definition . In a Lorentzian plane, general two-parameter homothetic motion is de-
fined by

[
y
y

]
= h(λ,μ)

[
ch θ (λ,μ) sh θ (λ,μ)
sh θ (λ,μ) ch θ (λ,μ)

][
x
y

]
+

[
a(λ,μ)
b(λ,μ)

]
, (.)

where (y, y) and (x, y) are coordinate functions of the fixed L′ plane and moving L

planes, respectively. If λ and μ in C∞ are given by the differential functions of the time
parameter t, then homothetic motions MI are obtained and called homothetic motions
MI obtained from homothetic motionsMII on the Lorentzian plane.
Here, at the initial time (λ,μ) = (, ) and θ (, ) = a(, ) = b(, ) = (, ), the coordi-

nate systems of the moving L and fixed L′ planes are congruent.

Theorem . The equation of the pole points of Lorentzian homothetic motions MI ob-
tained from Lorentzian homothetic motions MII on a moving plane is

(hȧθ̇ ch θ + ḣȧ sh θ – hḃθ̇ sh θ – ḣḃ ch θ )xp

+ (hȧθ̇ sh θ + ḣȧ ch θ – hḃθ̇ ch θ – ḣḃ sh θ )yp = , (.)

when |ḣ| �= |hθ̇ |.

Proof By differentiating equation (.) with respect to t and simplifying it, we obtain

xp =
–hȧθ̇ sh θ – ḣȧ ch θ + hḃθ̇ ch θ + ḣḃ sh θ

ḣ – hθ̇
,

yp =
hȧθ̇ ch θ + ḣȧ sh θ – hḃθ̇ sh θ – ḣḃ ch θ

ḣ – hθ̇
.

(.)

After some routine calculations, the equation of the pole points (.) is obtained. The
pole points of Lorentzian homothetic motions MI obtained from Lorentzian homothetic
motionsMII on a moving plane are given by

P(xp, yp) =
(
hḃθ̇ – ḣȧ
ḣ – hθ̇

,
hȧθ̇ – ḣḃ
ḣ – hθ̇

)
(.)

at the position of (λ,μ) = (, ) and the equation of the pole points is

(hȧθ̇ – ḣḃ)xp – (hḃθ̇ – ḣȧ)yp = . (.)
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The pole points of Lorentzian homothetic motions MI obtained from Lorentzian homo-
thetic motions MII on a moving plane at the position of (λ,μ) = (, ) give the following
results. �

Corollary . If θ (λ,μ) = const, then the pole points lie on the line

(hμbλ – hλbμ)xp + (hλaμ – hμaλ)yp = aλbμ – aμbλ. (.)

Corollary . If h(λ,μ) �=  is a constant, then the pole points lie on the line

(aμθλ – aλθμ)xp – (bμθλ – bλθμ)yp =

h
(aλbμ – aμbλ). (.)

Corollary . If h(λ,μ) = , then the pole points lie on the line

(aμθλ – aλθμ)xp – (bμθλ – bλθμ)yp = aλbμ – aμbλ, []. (.)

Theorem . The equation of the pole points of Lorentzian homothetic motions MI ob-
tained from Lorentzian homothetic motions MII on a fixed plane is

(hȧθ̇ – ḣḃ)x̄p – (hḃθ̇ – ḣȧ)ȳp = a(hȧθ̇ – ḣḃ) – b(hḃθ̇ – ḣȧ), (.)

at the position of λ = μ =  and when |ḣ| �= |hθ̇ |.

Proof By taking P(xp, yp) in equation (.), we have the pole points

P̄(x̄p, ȳp) =
(
hḃθ̇ – ḣhȧ
ḣ – hθ̇

+ a,
hȧθ̇ – ḣhḃ
ḣ – hθ̇

+ b
)

(.)

and the equation of the pole points (.) is obtained. The pole points of Lorentzian ho-
mothetic motionsMI obtained from Lorentzian homothetic motionsMII on a fixed plane
at the position of (λ,μ) = (, ) give the following results. �

Corollary . On the fixed plane θ (λ,μ) = const, the pole points lie on the line

(hμbλ – hλbμ)x̄p + (hλaμ – hμaλ)ȳp = h(aλbμ – aμbλ). (.)

Corollary . As a special case in Corollary ., if h(λ,μ) = , the pole points of the fixed
and moving planes are congruent.

Corollary . If h(λ,μ) �=  is constant, the pole points of fixed planes lie on the line equa-
tion (.) [].

Corollary . As a special case in Corollary ., if h(λ,μ) = , the pole points of moving
planes are congurent to pole lines of fixed plane in Corollary ..

If the pole points of Lorentzian homothetic motions MI obtained from Lorentzian ho-
mothetic motions MII are chosen y axis, then xp =  at the position of λ = μ = . Hence,
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we have

yp = –
ȧ
hθ̇

.

Therefore, there is a relation between the pole lines of the fixed plane and the pole lines
of a moving plane as follows:

ȳp = hyp.

Now, we investigate the sliding velocity –→Vf = (ẏ, ẏ) of any points B(x, y) at the position
of λ = μ = . Equation (.) is derived with respect to t and with the position of λ = μ = ,
we have

ẏ = ḣx + hθ̇y + ȧ,

ẏ = ḣy + hθ̇x + ḃ.
(.)

Thus, the sliding velocity is obtained as follows:

–→Vf = (ḣx + hθ̇y + ȧ, ḣy + hθ̇x + ḃ). (.)

Theorem. In Lorentzian homothetic motionsMI obtained from Lorentzian homothetic
motions MII , let y-axis be the pole axis at the position of λ = μ = . Then, the relation
between the pole ray going from the pole point P(xp, yp) to the point B(x, y) and the sliding
velocity –→Vf of the point B(x, y) is

〈–→Vf ,
–→PB〉L = ḣ

(
x – y

)
– ḃy –

ȧḃ
hθ̇

. (.)

Proof By reason of the fact that the pole axis is an y-axis, we have (xp, yp) = (,– ȧ
hθ̇ ) and–→PB = (x, y + ȧ

hθ̇ ) from equation (.). Then it is seen that

〈–→Vf ,
–→PB〉L =

〈
(ḣx + hθ̇y + ȧ, ḣy + hθ̇x + ḃ),

(
x, y +

ȧ
hθ̇

)〉
L

= ḣ
(
x – y

)
– ḃy –

ȧḃ
hθ̇

. �

Corollary . If h(λ,μ) is a constant never vanishing and the pole axis is the y-axis, then
the pole ray and the sliding velocity –→Vf are perpendicular [].

Theorem . The length of the sliding velocity vector of Lorentzian homothetic motions
MI obtained from Lorentzian homothetic motion MII is

‖–→Vf ‖L =
√∣∣ḣ – hθ̇

∣∣‖–→PB‖L (.)

at the position of each (λ,μ).
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Proof Substituting the differentiation of C given in equation (.) into –→Vf , we get

–→Vf =

(
(ḣ ch θ + hθ̇ sh θ )(x – xp) + (ḣ sh θ + hθ̇ ch θ )(y – yp)
(ḣ sh θ + hθ̇ ch θ )(x – xp) + (ḣ ch θ + hθ̇ sh θ )(y – yp)

)
.

Then, the length of the sliding velocity vector –→Vf is obtained. �

Corollary . If h(λ,μ) = , then we obtain ‖–→Vf ‖L = |θ̇ |‖–→PB‖L [].

Theorem . For all Lorentzian homothetic motions MI obtained from Lorentzian homo-
thetic motions MII , let ψ be angle between the pole ray going from the pole point P to the
point B and the sliding velocity vector –→Vf . Then we have the relation

chψ(λ,μ) = –
ḣ ch θ + hθ̇ sh θ√

|ḣ – hθ̇|
(.)

at the position of each (λ,μ).

Proof There is the following relation between the pole ray –→PB = (x – xp, y – yp) and sliding
velocity vector –→Vf :

〈–→PB, –→Vf 〉L = (ḣ ch θ + hθ̇ sh θ )‖–→PB‖L.

On the other hand,

〈–→PB, –→Vf 〉L = –‖–→Vf ‖L‖–→PB‖L chψ(λ,μ).

From the equality of the last two equations, we obtain equation (.). �

Corollary . If h(λ,μ) �=  is constant, then we obtain

ψ(λ,μ) =
π


+ θ (λ,μ), θ = kπ (k = , , . . .) [].

Definition . When the sliding velocity vectors of a fixed point are carried to the initial
point, without changing the directions, then the locus of the end points of these vectors
is a curve called a hodograph.

Now we investigate any (x, y) points of the locus of the hodographs in all Lorentzian
homothetic motions MI obtained from Lorentzian homothetic motion MII , according to
the position of λ̇ and μ̇. For this let μ̇ – λ̇ = . By taking the derivatives with respect to t
of equation (.), we have

ẏ = (hλx ch θ + hλy sh θ + hθλx sh θ + hθλy ch θ + aλ)λ̇

+ (hμx ch θ + hμy sh θ + hθμx sh θ + hθμy ch θ + aμ)μ̇,

ẏ = (hλx sh θ + hλy ch θ + hθλx ch θ + hθλy sh θ + bλ)λ̇

+ (hμx sh θ + hμy ch θ + hθμx ch θ + hθμy sh θ + bμ)μ̇.

(.)
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Let us investigate the solution of the last equation system by taking (λ,μ) = (, ) for sim-
plicity. From equation (.), we find

det� = h
(
x – y

)
(hλθμ – hμθλ) + hx(aλθμ – aμθλ) – hy(bλθμ – bμθλ)

+ x(hλbμ – hμbλ) – y(hλaμ – hμaλ) + aλbμ – aμbλ,

that is,

[
hx

(
θ
λ – θ

μ

)
+ y

(
hλ – hμ

)
+ hxy(hλθλ – hμθμ) + hx(bλθλ – bμθμ)

+ y(hλbλ – hμbμ) +
(
bλ – bμ

)]
ẏ +

[
x

(
hλ – hμ

)
+ hy

(
θ
λ – θ

μ

)
+ hxy(hλθλ – hμθμ) + x(hλaλ – hμaμ) + hy(aλθλ – aμθμ) +

(
aλ – aμ

)]
ẏ

– 
[
h
(
x + y

)
(hλθλ – hμθμ) + xy

(
hλ – hμ + h

(
θ
λ – θ

μ

))
+ hx(aλθλ – aμθμ)

+ hy(bλθλ – bμθμ) + x(hλbλ – hμbμ) + y(hλaλ – hμaμ)+aλbλ – aμbμ

]
ẏẏ

= (det�). (.)

Finally, if we find the values of λ̇ and μ̇ and substitute these values into the equation μ̇ –
λ̇ = , and the following theorem is found.

Theorem . In all Lorentzian homothetic motions MI obtained from Lorentzian homo-
thetic motions MII , the locus of the hodograph is a hyperbola at the position of λ = μ = .

Proof Setting λ = μ =  in equation (.) and taking into consideration the general conic
form, we can say that

Ax + Bxy +Cy + Dx + Ey + F = 

and

det

∣∣∣∣∣A B
B C

∣∣∣∣∣ =
(
h(x + y)(hλθλ – hμθμ) + hx(aλθμ – aμθλ) + hy(bλθμ – bμθλ)
– y(hλaμ – hμaλ) + x(hλbμ – hμbλ) + (aλbμ – aμbλ)

)

< .

That is, the locus of the hodograph is a hyperbola. �

3 The acceleration pole of the homothetic motions
Now we will investigate the locus of the points which have zero sliding acceleration. So,
we need to solve the equation (ḧA + hÄ + ḣȦ)X + C̈ = . The solution of this equation
gives the coordinates of the acceleration pole points. From this we get

xip =
ä(–ḧ ch θ – hθ̇ ch θ – hθ̈ sh θ – ḣθ̇ sh θ ) + b̈(ḧ sh θ + hθ̇ sh θ + hθ̈ ch θ + ḣθ̇ ch θ )

(ḧ + hθ̇) – (ḣθ̇ + hθ̈ )
,

yip =
ä(ḧ sh θ + hθ̇ sh θ + hθ̈ ch θ + ḣθ̇ ch θ ) + b̈(–ḧ ch θ – hθ̇ ch θ – hθ̈ sh θ – ḣθ̇ sh θ )

(ḧ + hθ̇) – (ḣθ̇ + hθ̈ )
.

(.)

Thus, for λ = μ = , the acceleration pole points are given by

P(xip, yip) =
(
ḣb̈θ̇ – ḧä + h(b̈θ̈ – äθ̇)
(ḧ + hθ̇) – (ḣθ̇ + hθ̈ )

,
ḣäθ̇ – ḧb̈ + h(äθ̈ – b̈θ̇)
(ḧ + hθ̇) – (ḣθ̇ + hθ̈ )

)
. (.)
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Theorem . The equation of the acceleration poles of the Lorentzian homothetic motions
MI obtained from Lorentzian homothetic motions MII on the moving plane is

(häθ̈ – ḧb̈)xip – (hb̈θ̈ – ḧä)yip =  (.)

at position λ = μ = λ̇ = μ̇ =  and when |ḧ + hθ̇| �= |ḣθ̇ + hθ̈ |.

Proof Setting λ = μ = λ̇ = μ̇ =  in equation (.) gives us the desired equation. Therefore,
we can give the following corollaries at the position of (λ,μ) = (, ). �

Corollary . The acceleration pole points on the moving plane lie on the line given by
equation (.) if θ (λ,μ) is constant.

Corollary . The acceleration pole points on the moving plane lie on the line given by
equation (.) if h(λ,μ) �=  is constant.

Corollary . The acceleration pole points on the moving plane lie on the line given by
equation (.) if h(λ,μ) = , [].

Corollary . If h(λ,μ) �=  is constant, the pole line on the moving planes obtained from
Corollary . and the acceleration pole line on the moving planes obtained from Corol-
lary . are congruent [].

Theorem . The equation of the acceleration pole points of the Lorentzian homothetic
motions MI obtained from Lorentzian homothetic motions MII on the fixed plane is

(häθ̈ – ḧb̈)x̄ip – (hb̈θ̈ – ḧä)ȳip =  (.)

at position λ = μ = λ̇ = μ̇ =  and when |ḧ + hθ̇| �= |ḣθ̇ + hθ̈ |.

Proof If we substitute the acceleration pole points into equation (.), we find

P̄(x̄ip, ȳip) =
(
h
ḣb̈θ̇ – ḧä + h(b̈θ̈ – äθ̇)
(ḧ + hθ̇) – (ḣθ̇ + hθ̈ )

+ a,h
ḣäθ̇ – ḧb̈ + h(äθ̈ – b̈θ̇)
(ḧ + hθ̇) – (ḣθ̇ + hθ̈ )

+ b
)
. (.)

If we take λ = μ = λ̇ = μ̇ =  in the last equation, we have equation (.).
So, we can give the following corollaries at the position of λ = μ = λ̇ = μ̇ = . �

Corollary . The acceleration pole points on the fixed plane lie on the line given by equa-
tion (.) if θ (λ,μ) is constant.

Corollary . As a special case, if h(λ,μ) =  and θ (λ,μ) is constant, the acceleration
pole points on the moving plane and the acceleration pole points on the fixed plane are
congruent.

Corollary . The acceleration pole points on the fixed plane lie on the line given by equa-
tion (.) if h(λ,μ) �=  is constant.

http://www.advancesindifferenceequations.com/content/2014/1/42


Çelik et al. Advances in Difference Equations 2014, 2014:42 Page 8 of 20
http://www.advancesindifferenceequations.com/content/2014/1/42

Corollary . If h(λ,μ) =  the acceleration pole line of a moving plane obtained from
Corollary . and the acceleration pole line of a fixed plane obtained from Corollary .
are congruent.

Corollary . As is seen fromCorollaries ., . and ., ., the pole line of a fixed plane
and the acceleration pole line of a fixed plane are congruent.

4 Two-parameter homothetic motion along a curve in Lorentzian space
In this section, we define two-parameter homothetic motion along a curve in a Lorentzian
space and obtain the characterization of the same trajectory surface.
Let L be a Lorentz -space endowed with a Lorentzian inner product 〈 , 〉L of signa-

ture (–,+,+). A vector 
x = (x,x,x) of L is said to be timelike if 〈
x, 
x〉L < , spacelike if
〈
x, 
x〉L >  and lightlike (or null) if 〈
x, 
x〉L = . The set of all vectors 
x such that 〈
x, 
x〉L = 
is called the lightlike (or null) cone and is denoted by �. The norm of a vector 
x is defined
to be ‖
x‖ =√|〈
x, 
x〉L|. The Lorentz vector product of the vector 
x and 
y is defined by


x∧L 
y = (xy – xy,xy – xy,xy – xy). (.)

This yields


e ∧L 
e = –
e, 
e ∧L 
e = 
e, 
e ∧L 
e = –
e,

where 
e, 
e, 
e are the basis of the space L []. Semi-orthogonal matrices provide a rota-
tion by the angle (hyperbolic) t around the vector 
w. The shape of the matrix depends on
the type of the vector 
w as seen in [].
Let 
w(s) = (w(s),w(s),w(s)) be spacelike (or timelike) vector which is a differentiable

function with respect to s ∈R, a vector-valued function. Accordingly, there is a unique �

semi-skew symmetric matrix

�(, ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

� ∈ R

, �T = –ε�ε, � =

⎡
⎢⎣

 w –w

w  –w

–w w 

⎤
⎥⎦

wi ∈R, ε =

⎡
⎢⎣
–  
  
  

⎤
⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

for all ∀s ∈ I ⊂R satisfying the following equality:

�(s)P(s) = 
w(s)∧L 
p(s) (.)

for 
w(s) and 
p ∈ L, where 
p(s) and P indicate the position vector and the matrix form of
the point.

i. If 
w(s) is a spacelike vector

A(s, t) = I + (sh t)� + (– + ch t)�. (.)

http://www.advancesindifferenceequations.com/content/2014/1/42
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ii. If 
w(s) is a timelike vector

A(s, t) = I + (sin t)� + ( – cos t)� (.)

is the orthogonal matrix defined via the semi-skew symmetric matrices �(s)
corresponding to the vector 
w(s) = (w(s),w(s),w(s)) [].

Therefore, from equations (.) and (.), we get

A(s, t)
p = A(s, t)P =
[
I + (sh t)� + (– + ch t)�]P (.)

and

A(s, t)
p = A(s, t)P =
[
I + (sin t)� + ( – cos t)�]P. (.)

Also, since �P = 
w ∧L 
p and 
w ∧L (
w∧L 
p) = 〈
w, 
p〉L 
w – 〈
w, 
w〉L
p by using equations (.)
and (.), we obtain

A(s, t)
p = 
p ch t + 〈
w, 
p〉L 
w( – ch t) + (
w∧L 
p) sh t (.)

and

A(s, t)
p = 
p cos t – 〈
w, 
p〉L 
w( – cos t) + (
w∧L 
p) sin t. (.)

Definition . The two-parameter homothetic motion in a Lorenzian space along the
curve α(s) is defined by

ϕ(s, t) = h(s, t)A,(s, t)
p + α(s).

Let { 
T , 
N , 
B} be the Frenet frame of the curve α of the point p. The trajectory ϕ(s, t)(p) of
the point p is a surface. The equation of this surface is as follows.

i. If 
w(s) is a spacelike vector, then from equations (.) and (.), we have

ϕ(s, t)(p) = h(s, t)
[
p ch t + 〈 
T , 
p〉L 
T( – ch t) + ( 
T ∧L 
p) sh t] + α(s). (.)

ii. If 
w(s) is a timelike vector, then from equations (.) and (.), we have

ϕ(s, t)(p) = h(s, t)
[
p cos t – 〈 
T , 
p〉L 
T( – cos t) + ( 
T ∧L 
p) sin t] + α(s). (.)

If we calculate the normals of these surfaces, there are two states depending on whether
we have the timelike and spacelike cases.
. If α(s) is a spacelike curve, then the tangent 
T is a spacelike and we have the following

cases.
(a) 
N is a timelike and 
B is spacelike. Since the Frenet formulas are


T ′ = k 
N , 
N ′ = k 
T + k
B, 
B′ = k 
N

http://www.advancesindifferenceequations.com/content/2014/1/42
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then from equation (.) we get

ϕt(s, t) = ht(s, t)
[
p ch t + 〈 
T , 
p〉L 
T( – ch t) + ( 
T ∧L 
p) sh t]

+ h(s, t)
[
sh t
p + ch t( 
T ∧L 
p) – sh t〈 
T , 
p〉L 
T]

and

ϕs(s, t) = hs(s, t)
[
p ch t + 〈 
T , 
p〉L 
T( – ch t) + ( 
T ∧L 
p) sh t]

+ h(s, t)
[
sh tk( 
N ∧L 
p) + ( – ch t)k〈 
N , 
p〉L 
T + ( – ch t)〈 
T , 
p〉Lk 
N]

+ 
T .

If we take 
p = λ 
N , then

ϕt(s, t) = (htλ ch t + hλ sh t) 
N + (htλ sh t + hλ ch t)
B,
ϕs(s, t) =

[
–hkλ( – ch t) + 

] 
T + hsλ ch t 
N + hsλ sh t
B.

Hence, the normal of the surface drawn by the trajectory of the points p is

ϕs ∧L ϕt =

∣∣∣∣∣∣∣

T – 
N 
B

–hkλ( – ch t) +  hsλ ch t hsλ sh t
 htλ ch t + hλ sh t htλ sh t + hλ ch t

∣∣∣∣∣∣∣
i.e.,

ϕs ∧L ϕt =
[
–hshλ] 
T +

[
hkλ(ht sh t + h ch t)(ch t – ) + htλ sh t + hλ ch t

] 
N
+

[
hkλ(ht ch t + h sh t)(ch t – ) + htλ ch t + hλ sh t

]
B.
If h(s, t) is a constant that is never vanishing, then the normal of this surface is in a normal
plane which is perpendicular to the tangent vector field of the curve α(s).

Corollary . If the principal normal vector of the curve is timelike at two-parameter mo-
tion which is obtained by A(s, t) in L,

〈ϕs ∧L ϕt ,ϕs ∧L ϕt〉L
= λ[hs hλ + ht

(
 + hkλ(ch t – )

) – h
(
 + hkλ(ch t – )

)],
in this expression, if h(s, t) is a constant other than zero,

〈ϕs ∧L ϕt ,ϕs ∧L ϕt〉L = –hλ( + hkλ(ch t – )
) < ,

and the geometric position of the selected point p which is over a principal normal vector
of the α spacelike curve is a spacelike surface.

(b) 
N is spacelike and 
B is timelike. Since the Frenet formulas are


T ′ = k 
N , 
N ′ = –k 
T + k
B, 
B′ = k 
N

http://www.advancesindifferenceequations.com/content/2014/1/42
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then from equation (.) we get

ϕt(s, t) = ht(s, t)
[
p ch t + 〈 
T , 
p〉L 
T( – ch t) + ( 
T ∧L 
p) sh t]

+ h(s, t)
[
sh t
p + ch t( 
T ∧L 
p) – sh t〈 
T , 
p〉L 
T]

and

ϕs(s, t) = hs(s, t)
[
p ch t + 〈 
T , 
p〉L 
T( – ch t) + ( 
T ∧L 
p) sh t]

+ h(s, t)
[
sh tk( 
N ∧L 
p) + ( – ch t)k〈 
N , 
p〉L 
T + ( – ch t)〈 
T , 
p〉Lk 
N]

+ 
T .

If we take 
p = λ 
N , then

ϕt(s, t) = (htλ ch t + hλ sh t) 
N – (htλ sh t + hλ ch t)
B,
ϕs(s, t) =

[
hkλ( – ch t) + 

] 
T + hsλ ch t 
N – hsλ sh t
B.

Hence, the normal of the surface drawn by the trajectory of the points p is

ϕs ∧L ϕt =

∣∣∣∣∣∣∣

T 
N –
B

hkλ( – ch t) +  hsλ ch t –hsλ sh t
 htλ ch t + hλ sh t –htλ sh t – hλ ch t

∣∣∣∣∣∣∣
i.e.,

ϕs ∧L ϕt =
[
–hshλ] 
T +

[
hkλ(ht sh t + h ch t)( – ch t) + htλ sh t + hλ ch t

] 
N
–

[
hkλ(ht ch t + h sh t)( – ch t) + htλ ch t + hλ sh t

]
B.
Corollary . If a binormal vector of the curve is timelike a two-parameter motion is ob-
tained by A(s, t) in L,

〈ϕs ∧L ϕt ,ϕs ∧L ϕt〉L
= λ[hs hλ – ht

(
 + hkλ( – ch t)

) + h
(
 + hkλ( – ch t)

)],
in this expression, if h(s, t) is a constant other than zero,

〈ϕs ∧L ϕt ,ϕs ∧L ϕt〉L = hλ( + hkλ(ch t – )
) > ,

the geometric position of the selected point p which is over a principal binormal vector of
the α spacelike curve is a timelike surface.

. If α(s) is a timelike curve, then the tangent 
T is timelike and we have the following
case.


N and 
B are both spacelike. Since the Frenet formulas are


T ′ = k 
N , 
N ′ = k 
T + k
B, 
B′ = –k 
N

http://www.advancesindifferenceequations.com/content/2014/1/42
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then from equation (.) we get

ϕt(s, t) = ht(s, t)
[
p cos t + 〈 
T , 
p〉L 
T( – cos t) + ( 
T ∧L 
p) sin t]

+ h(s, t)
[
–
p sin t – 〈 
T , 
p〉L 
T sin t + ( 
T ∧L 
p) cos t]

and

ϕs(s, t) = hs(s, t)
[
p cos t + 〈 
T , 
p〉L 
T( – cos t) + ( 
T ∧L 
p) sin t]

+ h(s, t)
[
k sin t( 
N ∧L 
p) – ( – cos t)k〈 
N , 
p〉L 
T – ( – cos t)〈 
T , 
p〉Lk 
N]

+ 
T .

If we take 
p = λ 
N , then

ϕt(s, t) = (htλ cos t – hλ sin t) 
N + (htλ sin t + hλ cos t)
B,
ϕs(s, t) =

[
 – hkλ( – cos t)

] 
T + hsλ cos t 
N + hsλ sin t
B.

Hence, the normal of the surface drawn by the trajectory of the points p is

ϕs ∧L ϕt =

∣∣∣∣∣∣∣
– 
T 
N 
B

 + hkλ(cos t – ) hsλ cos t hsλ sin t
 htλ cos t – hλ sin t htλ sin t + hλ cos t

∣∣∣∣∣∣∣
i.e.,

ϕs ∧L ϕt =
[
hshλ] 
T –

[
hkλ(ht sin t + h cos t)(cos t – ) + htλ sin t + hλ cos t

] 
N
+

[
hkλ(ht cos t – h sin t)(cos t – ) + htλ cos t – hλ sin t

]
B.
Corollary . A two-parameter motion is obtained by A(s, t) in L,

〈ϕs ∧L ϕt ,ϕs ∧L ϕt〉L
= λ[–hs hλ + ht

(
 + hkλ(cos t – )

) + h
(
 + hkλ(cos t – )

)],
in this expression, if h(s, t) is a constant other than zero,

〈ϕs ∧L ϕt ,ϕs ∧L ϕt〉L = λh
(
 + hkλ(cos t – )

) > ,

the geometric position of the selected point p which is over a principal binormal vector of
the α timelike curve is a timelike surface.

5 Parametrizations of trajectory surfaces
In this section, we find some parametrizations of the trajectory surfaces obtained from
two-parameter motions in a Lorentzian space.

http://www.advancesindifferenceequations.com/content/2014/1/42
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Figure 1 Spacelike homothetic cylinder.

5.1 Cylinder surface
.. α(s) is spacelike
Assume that α(s) = (, , s) and p = (p,p,p) ∈ L. Substituting these into equation (.),
we get

ϕ(s, t)(p) = (hp ch t + hp sh t,hp ch t + hp sh t,hp + s).

As a special case, if p = (p,p, ), we obtain

ϕ(s, t)(p) = (hp ch t + hp sh t,hp ch t + hp sh t, s).

For p = r sh θ and p = r ch θ , we get

ϕ(s, t)(p) = (hr sh θ ch t + hr ch θ sh t,hr ch θ ch t + hr sh θ sh t, s),

that is,

ϕ(s, t)(p) =
(
hr sh(θ + t),hr ch(θ + t), s

)
. (.)

Example . Let – < s < , –π < t, θ < π and h(s, t) = s + sin t cos t in equation (.),
then we can obtain the homothetic cylinder surface given in Figure .

Example . If we take h(s, t) =  in equation (.) the spacelike cylinder surface is ob-
tained as given in Figure .

.. α(s) is timelike
Assume that α(s) = (s, , ) and p = (p,p,p) ∈ L. Substituting these into the equa-
tion (.), we get

ϕ(s, t)(p) = (–hp + s,hp cos t – hp sin t,hp cos t + hp sin t).

http://www.advancesindifferenceequations.com/content/2014/1/42
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Figure 2 Spacelike cylinder.

As a special case, if p = (,p,p), we obtain

ϕ(s, t)(p) = (s,hp cos t – hp sin t,hp cos t + hp sin t).

For p = r cos θ and p = r sin θ , we get

ϕ(s, t)(p) = (s,hr cos θ cos t – hr sin θ sin t,hr sin θ cos t + hr cos θ sin t),

that is

ϕ(s, t)(p) =
(
s,hr cos(θ + t),hr sin(θ + t)

)
. (.)

Example . Let – < s < ,  < t, θ < π and h(s, t) = s+ sin t cos t in the equation (.), then
we can obtain the homothetic cylinder surface given in Figure .

Example . If we take h(s, t) =  in equation (.) the timelike cylinder surface is obtained
as given in Figure .

5.2 Hyperboloid surface
.. α(s) is spacelike
Let α(s) = (, , s) and p(s) = (, s, ); substituting these into equation (.), we get

ϕ(s, t)(p) = (h ch t – hs sh t,hs ch t + h sh t, s). (.)

Example . In equation (.) if – < s < , –π < t < π and h(s, t) = s+ sin t cos t are given,
then a spacelike homothetic hyperboloid surface is obtained as given in Figure .

Example . In equation (.) if h(s, t) =  is taken, then a spacelike hyperboloid surface
is obtained as given by Figure .

http://www.advancesindifferenceequations.com/content/2014/1/42
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Figure 3 Timelike homothetic cylinder.

Figure 4 Timelike cylinder.

Figure 5 Spacelike homothetic hyperboloid.
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Figure 6 Spacelike hyperboloid.

Figure 7 Timelike homothetic hyperboloid.

.. α(s) is timelike
Let α(s) = (, , s) and p(s) = (, s, ); substituting these into equation (.), we get

ϕ(s, t)(p) = (h + s,hs cos t,hs sin t). (.)

Example . In equation (.) if – < s < , –π < t < π and h(s, t) = s+ sin t cos t are given,
then a timelike homothetic hyperboloid surface is obtained as given in Figure .

Example . In equation (.) if h(s, t) =  is taken, then a timelike hyperboloid surface is
obtained as given in Figure .

5.3 Tor surface
.. α(s) is spacelike
Let 
T be spacelike, 
N timelike and 
B spacelike. Let the curve α(s) = (r sin θ , r cos θ , ) be a
Lorentz circle with radius r on the xy-plane. Then the Frenet frame of the curve α(s) at

http://www.advancesindifferenceequations.com/content/2014/1/42
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Figure 8 Timelike hyperboloid.

Figure 9 Spacelike homothetic tor surface.

the point p is


T = (sh s, ch s, ), 
N = (ch s, sh s, ), 
B = (, ,–)

and for 
p = λ 
N , substituting these equations into equation (.), we obtain an equation of
the tor surface as follows:

ϕ(s, t)(p) =
(
ch s[r + hλ ch t], sh s[r + hλ ch t], –hλ sh t

)
. (.)

Example . In equation (.) if –π < s, t < π and h(s, t) = s + sin t cos t are given, then a
spacelike homothetic tor surface is obtained as drawn in Figure .

Example . In equation (.) if h(s, t) =  is taken, then a spacelike tor surface is ob-
tained as drawn in Figure .
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Figure 10 Spacelike tor surface.

Figure 11 Timelike homothetic tor surface.

.. α(s) is timelike
Let the curve α(s) = (r sin θ , r cos θ , ) be a Lorentz circle with radius r on the xy-plane.
Then, the Frenet frame of the curve α(s) at the point p is


T = (ch s, sh s, ), 
N = (sh s, ch s, ), 
B = (, , )

and for 
p = λ 
N , substituting these equations into equation (.), we obtain an equation
of the tor surface as follows:

ϕ(s, t)(p) =
(
sh s[r + hλ cos t], ch s[r + hλ cos t],hλ sin t

)
. (.)

Example . In equation (.) if –π < s, t < π and h(s, t) = s + sin t cos t are given, then a
timelike homothetic tor surface is obtained as drawn in Figure .

http://www.advancesindifferenceequations.com/content/2014/1/42
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Figure 12 Timelike tor surface.

Example . In equation (.) if h(s, t) =  is taken, then a timelike tor surface is obtained
as drawn in Figure .

6 Conclusion
The resultswe have presented dealwith Lorentzian homotheticmotions inwhich the posi-
tion of the moving object depends on two parameters. The hodographs of two-parameter
Lorentzian homotheticmotions were obtained. A hodograph is the locus of the end points
of the velocity of a particle and it is the solution of the first order equation which is New-
ton’s Law. The locus of the hodograph of a Lorentzian homothetic motion was found as a
hyperbola in this study.
Also this paper deals with trajectory surfaces (cylinder, hyperboloid and tor surfaces)

generated by a point, the moving body, and figures of these surfaces were drawn by using
MATLAB software.
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