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Abstract
This paper investigates the asymptotic behavior of solutions of the mixed type
neutral differential equation with impulsive perturbations
[x(t) + C(t)x(t – τ ) – D(t)x(αt)]′ + P(t)f (x(t – δ)) + Q(t)

t x(βt) = 0, 0 < t0 ≤ t, t �= tk ,

x(tk) = bkx(t–k ) + (1 – bk)(
∫ tk
tk–δ

P(s + δ)f (x(s))ds +
∫ tk
βtk

Q(s/β)
s x(s)ds), k = 1, 2, 3, . . . . Sufficient

conditions are obtained to guarantee that every solution tends to a constant as
t → ∞. Examples illustrating the abstract results are also presented.
MSC: 34K25; 34K45

Keywords: asymptotic behavior; nonlinear neutral delay differential equation;
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1 Introduction
The main purpose of this paper is to investigate the asymptotic behavior of solutions of
the following mixed type neutral differential equation with impulsive perturbations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
[x(t) +C(t)x(t – τ ) –D(t)x(αt)]′ + P(t)f (x(t – δ)) + Q(t)

t x(βt) = ,
 < t ≤ t, t �= tk ,

x(tk) = bkx(t–k ) + ( – bk)(
∫ tk
tk–δ

P(s + δ)f (x(s))ds +
∫ tk
βtk

Q(s/β)
s x(s)ds),

k = , , , . . . ,

(.)

where τ , δ > ,  < α,β < , C(t),D(t) ∈ PC([t,∞),R), P(t),Q(t) ∈ PC([t,∞),R+
), f ∈

C(R,R),  < tk < tk+ with limk→∞ tk = ∞ and bk , k = , , , . . . , are given constants. For
J ⊂ R, PC(J ,R) denotes the set of all functions h : J → R such that h is continuous for
tk ≤ t < tk+ and limt→t–k h(t) = h(t–k ) exists for all k = , , . . . .
The theory of impulsive differential equations appears as a natural description of several

real processes subject to certain perturbations whose duration is negligible in comparison
with the duration of the process. Differential equations involving impulse effects occurs
in many applications: physics, population dynamics, ecology, biological systems, biotech-
nology, industrial robotic, pharmacokinetics, optimal control, etc. The reader may refer,
for instance, to the monographs by Bainov and Simeonov [], Lakshmikantham et al. [],
Samoilenko and Perestyuk [], and Benchohra et al. []. In recent years, there has been
increasing interest in the oscillation, asymptotic behavior, and stability theory of impul-
sive delay differential equations and many results have been obtained (see [–] and the
references cited therein).
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Let us mention some papers from which are motivation for our work. By the construc-
tion of Lyapunov functionals, the authors in [] studied the asymptotic behavior of solu-
tions of the nonlinear neutral delay differential equation under impulsive perturbations,

{
[x(t) +C(t)x(t – τ )]′ + P(t)f (x(t – δ)) = ,  < t ≤ t, t �= tk ,
x(tk) = bkx(t–k ) + ( – bk)

∫ tk
tk–δ

P(s + δ)f (x(s))ds, k = , , , . . . .
(.)

A similar method was used in [] by considering an impulsive Euler type neutral delay
differential equation with similar impulsive perturbations

{
[x(t) –D(t)x(αt)]′ + Q(t)

t x(βt) = ,  < t ≤ t, t �= tk ,
x(tk) = bkx(t–k ) + ( – bk)

∫ tk
βtk

Q(s/β)
s x(s)ds, k = , , , . . . .

(.)

In this paper we combine the two papers [, ] and we study the mixed type impulsive
neutral differential equation problem (.). By using a similar method with the help of four
Lyapunov functionals, sufficient conditions are obtained to guarantee that every solution
of (.) tends to a constant as t → ∞. We note that problems (.) and (.) can be derived
from the problem (.) as special cases, i.e., if D(t) ≡  and Q(t) ≡ , then (.) reduces to
(.) while if C(t) ≡  and P(t) ≡ , then (.) reduces to (.). Therefore, themixed type of
nonlinear delay with an Euler form of impulsive neutral differential equations gives more
general results than the previous one.
Setting η =max{τ , δ}, η =min{α,β}, and η =min{t –η,ηt}, we define an initial func-

tion as

x(t) = ϕ(t), t ∈ [η, t], (.)

where ϕ ∈ PC([η, t],R) = {ϕ : [η, t] → R|ϕ is continuous everywhere except at a finite
number of point s, and ϕ(s–) and ϕ(s+) = lims→s+ ϕ(s) exist with ϕ(s+) = ϕ(s)}.
A function x(t) is said to be a solution of (.) satisfying the initial condition (.) if
(i) x(t) = ϕ(t) for η ≤ t ≤ t, x(t) is continuous for t ≥ t and t �= tk , k = , , , . . . ;
(ii) x(t) +C(t)x(t – τ ) –D(t)x(αt) is continuously differentiable for t > t, t �= tk ,

k = , , , . . . , and satisfies the first equation of system (.);
(iii) x(t+k ) and x(t–k ) exist with x(t+k ) = x(tk) and satisfy the second equation of system

(.).
A solution of (.) is said to be nonoscillatory if it is eventually positive or eventually

negative. Otherwise, it is said to be oscillatory.

2 Main results
We are now in a position to establish our main results.

Theorem . Assume that:

(H) There exists a constantM >  such that

|x| ≤ ∣∣f (x)∣∣ ≤M|x|, x ∈R,xf (x) > , for x �= . (.)

http://www.advancesindifferenceequations.com/content/2014/1/327


Tariboon et al. Advances in Difference Equations 2014, 2014:327 Page 3 of 16
http://www.advancesindifferenceequations.com/content/2014/1/327

(H) The functions C, D satisfy

lim
t→∞

∣∣C(t)∣∣ = μ < , lim
t→∞

∣∣D(t)∣∣ = γ <  with μ + γ < , (.)

and

C(tk) = bkC
(
t–k

)
, D(tk) = bkD

(
t–k

)
. (.)

(H) tk – τ and αtk are not impulsive points,  < bk ≤ , k = , , . . . , and
∑∞

k=( – bk) < ∞.
(H) The functions P, Q satisfy

{
lim supt→∞[

∫ t+δ

t–δ
P(s + δ)ds +

∫ t+δ

βt
Q(s/β)

s ds
+μ( + P(t+τ+δ)

P(t+δ) ) + γ ( + P((t/α)+δ)
αP(t+δ) )] <


M

(.)

and {
lim supt→∞[

∫ t/β
t–δ

P(s + δ)ds +
∫ t/β
βt

Q(s/β)
s ds

+μ( + tQ((t+τ )/β)
(t+τ )Q(t/β) ) + γ ( + Q(t/(αβ))

Q(t/β) )] < .
(.)

Then every solution of (.) tends to a constant as t → ∞.

Proof Let x(t) be any solution of system (.).We will prove that the limt→∞ x(t) exists and
is finite. Indeed, the system (.) can be written as

[
x(t) +C(t)x(t – τ ) –D(t)x(αt) –

∫ t

t–δ

P(s + δ)f
(
x(s)

)
ds –

∫ t

βt

Q(s/β)
s

x(s)ds
]′

+ P(t + δ)f
(
x(t)

)
+
Q(t/β)

t
x(t) = , t ≥ t, t �= tk , (.)

x(tk) = bkx
(
t–k

)
+ ( – bk)

(∫ tk

tk–δ

P(s + δ)f
(
x(s)

)
ds

+
∫ tk

βtk

Q(s/β)
s

x(s)ds
)
, k = , , . . . . (.)

From (H) and (H), we choose constants ε,λ,υ,ρ >  sufficiently small such that μ+ ε < 
and γ + λ <  and T > t sufficiently large, for t ≥ T ,

[∫ t+δ

t–δ

P(s + δ)ds +
∫ t+δ

βt

Q(s/β)
s

ds + (μ + ε)
(
 +

P(t + τ + δ)
P(t + δ)

)

+ (γ + λ)
(
 +

P((t/α) + δ)
αP(t + δ)

)]
≤ 

M
– υ, (.)

[∫ t/β

t–δ

P(s + δ)ds +
∫ t/β

βt

Q(s/β)
s

ds + (μ + ε)
(
 +

tQ((t + τ )/β)
(t + τ )Q(t/β)

)

+ (γ + λ)
(
 +

Q(t/(αβ))
Q(t/β)

)]
≤  – ρ, (.)

and, for t ≥ T ,

∣∣C(t)∣∣ ≤ μ + ε,
∣∣D(t)∣∣ ≤ γ + λ. (.)

http://www.advancesindifferenceequations.com/content/2014/1/327
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From (.), (.), we have

|C(t)|
μ + ε

≤ ≤ f (x(t – τ ))
x(t – τ )

,
|D(t)|
γ + λ

≤ ≤ f (x(αt))
x(αt)

, t ≥ T ,

which lead to

∣∣C(t)∣∣x(t – τ ) ≤ (μ + ε)f 
(
x(t – τ )

)
,∣∣D(t)∣∣x(αt)≤ (γ + λ)f 

(
x(αt)

)
, t ≥ T .

(.)

In the following, for convenience, the expressions of functional equalities and inequali-
tieswill bewrittenwithout its domain. Thismeans that the relations hold for all sufficiently
large t.
Let V (t) = V(t) +V(t) +V(t) +V(t), where

V(t) =
[
x(t) +C(t)x(t – τ ) –D(t)x(αt) –

∫ t

t–δ

P(s + δ)f
(
x(s)

)
ds –

∫ t

βt

Q(s/β)
s

x(s)ds
]

,

V(t) =
∫ t

t–δ

P(s + δ)
∫ t

s
P(u + δ)f 

(
x(u)

)
duds

+
∫ t

βt

P((s + βδ)/β)
β

∫ t

s

Q(u/β)
u

x(u)duds,

V(t) =
∫ t

t–δ

Q((s + δ)/β)
s + δ

∫ t

s
P(u + δ)f 

(
x(u)

)
duds

+
∫ t

βt

Q(s/β)
s

∫ t

s

Q(u/β)
u

x(u)duds,

and

V(t) = (μ + ε)
∫ t

t–τ

P(s + τ + δ)f 
(
x(s)

)
ds + (μ + ε)

∫ t

t–τ

Q((s + τ )/β)
s + τ

x(s)ds

+ (γ + λ)
∫ t

αt

Q(s/(αβ))
s

x(s)ds +
γ + λ

α

∫ t

αt
P
(
(s/α) + δ

)
f 

(
x(s)

)
ds.

Computing dV/dt along the solution of (.) and using the inequality ab≤ a + b, we
have

dV

dt
= –

[
x(t) +C(t)x(t – τ ) –D(t)x(αt)

–
∫ t

t–δ

P(s + δ)f
(
x(s)

)
ds –

∫ t

βt

Q(s/β)
s

x(s)ds
]

×
(
P(t + δ)f

(
x(t)

)
+
Q(t/β)

t
x(t)

)

≤ –P(t + δ)
[
x(t)f

(
x(t)

)
–

∣∣C(t)∣∣x(t – τ ) –
∣∣C(t)∣∣f (x(t)) – ∣∣D(t)∣∣x(αt)

–
∣∣D(t)∣∣f (x(t)) – ∫ t

t–δ

P(s + δ)f 
(
x(s)

)
ds – f 

(
x(t)

)∫ t

t–δ

P(s + δ)ds

http://www.advancesindifferenceequations.com/content/2014/1/327
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–
∫ t

βt

Q(s/β)
s

x(s)ds – f 
(
x(t)

)∫ t

βt

Q(s/β)
s

ds
]

–
Q(t/β)

t

[
x(t) –

∣∣C(t)∣∣x(t) – ∣∣C(t)∣∣x(t – τ ) –
∣∣D(t)∣∣x(t)

–
∣∣D(t)∣∣x(αt) – ∫ t

t–δ

P(s + δ)f 
(
x(s)

)
ds – x(t)

∫ t

t–δ

P(s + δ)ds

–
∫ t

βt

Q(s/β)
s

x(s)ds – x(t)
∫ t

βt

Q(s/β)
s

ds
]
.

Calculating directly for dVi/dt, i = , , , t �= tk , we have

dV

dt
= P(t + δ)f 

(
x(t)

)∫ t

t–δ

P(s + δ)ds – P(t + δ)
∫ t

t–δ

P(s + δ)f 
(
x(s)

)
ds

+
Q(t/β)

βt
x(t)

∫ t

βt
P
(
(s + βδ)/β

)
ds – P(t + δ)

∫ t

βt

Q(s/β)
s

x(s)ds,

dV

dt
= P(t + δ)f 

(
x(t)

)∫ t

t–δ

Q((s + δ)/β)
s + δ

ds –
Q(t/β)

t

∫ t

t–δ

P(s + δ)f 
(
x(s)

)
ds

+
Q(t/β)

t
x(t)

∫ t

βt

Q(s/β)
s

ds –
Q(t/β)

t

∫ t

βt

Q(s/β)
s

x(s)ds,

and

dV

dt
= (μ + ε)P(t + τ + δ)f 

(
x(t)

)
– (μ + ε)P(t + δ)f 

(
x(t – τ )

)
+
(μ + ε)
(t + τ )

Q
(
(t + τ )/β

)
x(t) –

(μ + ε)
t

Q(t/β)x(t – τ )

+ (γ + λ)
Q(t/(αβ))

t
x(t) – (γ + λ)

Q(t/β)
t

x(αt)

+
(γ + λ)

α
P
(
(t/α) + δ

)
f 

(
x(t)

)
– (γ + λ)P(t + δ)f 

(
x(αt)

)
.

Summing for dVi/dt, i = , , , we obtain

dV

dt
+
dV

dt
+
dV

dt

≤ –P(t + δ)
[
x(t)f

(
x(t)

)
–

∣∣C(t)∣∣x(t – τ ) –
∣∣C(t)∣∣f (x(t)) – ∣∣D(t)∣∣x(αt)

–
∣∣D(t)∣∣f (x(t)) – f 

(
x(t)

)∫ t

t–δ

P(s + δ)ds – f 
(
x(t)

)∫ t

βt

Q(s/β)
s

ds

– f 
(
x(t)

)∫ t

t–δ

P(s + δ)ds – f 
(
x(t)

)∫ t

t–δ

Q((s + δ)/β)
s + δ

ds
]

–
Q(t/β)

t

[
x(t) –

∣∣C(t)∣∣x(t) – ∣∣C(t)∣∣x(t – τ ) –
∣∣D(t)∣∣x(t)

–
∣∣D(t)∣∣x(αt) – x(t)

∫ t

t–δ

P(s + δ)ds – x(t)
∫ t

βt

Q(s/β)
s

ds

–
x(t)
β

∫ t

βt
P
(
(s + βδ)/β

)
ds – x(t)

∫ t

βt

Q(s/β)
s

ds
]
.
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Since
∫ t

t–δ

P(s + δ)ds =
∫ t+δ

t
P(s + δ)ds,

∫ t

βt

Q(s/β)
s

ds =
∫ t/β

t

Q(s/β)
s

ds,

∫ t

t–δ

Q((s + δ)/β)
s + δ

ds =
∫ t+δ

t

Q(s/β)
s

ds,

β

∫ t

βt
P
(
(s + βδ)/β

)
ds =

∫ t/β

t
P(s + δ)ds,

it follows that

dV

dt
+
dV

dt
+
dV

dt

≤ –P(t + δ)
[
x(t)f

(
x(t)

)
–

∣∣C(t)∣∣x(t – τ ) –
∣∣C(t)∣∣f (x(t)) – ∣∣D(t)∣∣x(αt)

–
∣∣D(t)∣∣f (x(t)) – f 

(
x(t)

)∫ t+δ

t–δ

P(s + δ)ds – f 
(
x(t)

)∫ t+δ

βt

Q(s/β)
s

ds
]

–
Q(t/β)

t

[
x(t) –

∣∣C(t)∣∣x(t) – ∣∣C(t)∣∣x(t – τ ) –
∣∣D(t)∣∣x(t)

–
∣∣D(t)∣∣x(αt) – x(t)

∫ t/β

t–δ

P(s + δ)ds – x(t)
∫ t/β

βt

Q(s/β)
s

ds
]
.

Adding the above inequality with dV/dt and using condition (.), we have

dV

dt
+
dV

dt
+
dV

dt
+
dV

dt

≤ –P(t + δ)
[
x(t)f

(
x(t)

)
–

∣∣C(t)∣∣f (x(t)) – ∣∣D(t)∣∣f (x(t))

– f 
(
x(t)

)∫ t+δ

t–δ

P(s + δ)ds – f 
(
x(t)

)∫ t+δ

βt

Q(s/β)
s

ds
]

–
Q(t/β)

t

[
x(t) –

∣∣C(t)∣∣x(t) – ∣∣D(t)∣∣x(t)
– x(t)

∫ t/β

t–δ

P(s + δ)ds – x(t)
∫ t/β

βt

Q(s/β)
s

ds
]

+ (μ + ε)P(t + τ + δ)f 
(
x(t)

)
+
(μ + ε)
t + τ

Q
(
(t + τ )/β

)
x(t)

+ (γ + λ)
Q(t/(αβ))

t
x(t) +

(γ + λ)
α

P
(
(t/α) + δ

)
f 

(
x(t)

)
.

Applying (.), (.), and (.), it follows that

dV
dt

=
dV

dt
+
dV

dt
+
dV

dt
+
dV

dt

≤ –P(t + δ)f 
(
x(t)

)[ x(t)
f (x(t))

–
∣∣C(t)∣∣ – ∣∣D(t)∣∣ – ∫ t+δ

t–δ

P(s + δ)ds

–
∫ t+δ

βt

Q(s/β)
s

ds – (μ + ε)
P(t + τ + δ)
P(t + δ)

–
(γ + λ)

α

P((t/α) + δ)
P(t + δ)

]

–
Q(t/β)

t
x(t)

[
 –

∣∣C(t)∣∣ – ∣∣D(t)∣∣ – ∫ t/β

t–δ

P(s + δ)ds

http://www.advancesindifferenceequations.com/content/2014/1/327
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–
∫ t/β

βt

Q(s/β)
s

ds –
(μ + ε)t
t + τ

Q((t + τ )/β)
Q(t/β)

– (γ + λ)
Q(t/(αβ))
Q(t/β)

]

≤ –P(t + δ)f 
(
x(t)

)[ 
M

–
∫ t+δ

t–δ

P(s + δ)ds –
∫ t+δ

βt

Q(s/β)
s

ds

– (μ + ε)
(
 +

P(t + τ + δ)
P(t + δ)

)
– (γ + λ)

(
 +

P((t/α) + δ)
αP(t + δ)

)]

–
Q(t/β)

t
x(t)

[
 –

∫ t/β

t–δ

P(s + δ)ds –
∫ t/β

βt

Q(s/β)
s

ds

– (μ + ε)
(
 +

t
t + τ

Q((t + τ )/β)
Q(t/β)

)
– (γ + λ)

(
 +

Q(t/(αβ))
Q(t/β)

)]

≤ –P(t + δ)f 
(
x(t)

)
υ –

Q(t/β)
t

x(t)ρ. (.)

For t = tk , we have

V(tk) =
[
x(tk) +C(tk)x(tk – τ ) –D(tk)x(αtk)

–
∫ tk

tk–δ

P(s + δ)f
(
x(s)

)
ds –

∫ tk

βtk

Q(s/β)
s

x(s)ds
]

=
[
bkx

(
t–k

)
+ bkC

(
t–k

)
x
(
t–k – τ

)
– bkD

(
t–k

)
x
(
αt–k

)

– bk
(∫ tk

tk–δ

P(s + δ)f
(
x(s)

)
ds +

∫ tk

βtk

Q(s/β)
s

x(s)ds
)]

= bkV
(
t–k

)
.

It is easy to see that V(tk) = V(t–k ), V(tk) = V(t–k ), and V(tk) = V(t–k ).
Therefore,

V (tk) = V(tk) +V(tk) +V(tk) +V(tk)

= bkV
(
t–k

)
+V

(
t–k

)
+V

(
t–k

)
+V

(
t–k

)
≤ V

(
t–k

)
+V

(
t–k

)
+V

(
t–k

)
+V

(
t–k

)
= V

(
t–k

)
. (.)

From (.) and (.), we conclude that V (t) is decreasing. In view of the fact that
V (t) ≥ , we have limt→∞ V (t) = ψ exist and ψ ≥ .
By using (.), (.), (.), and (.), we have

υ

∫ ∞

T
P(t + δ)f 

(
x(t)

)
dt + ρ

∫ ∞

T

Q(t/β)
t

x(t)dt ≤ V (T),

which yields

P(t + δ)f 
(
x(t)

)
,
Q(t/β)

t
x(t) ∈ L(t,∞).
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Hence, for any φ >  and ξ ∈ (, ), we get

lim
t→∞

∫ t

t–φ

P(s + δ)f 
(
x(s)

)
ds = , lim

t→∞

∫ t

ξ t

Q(s/β)
s

x(s)ds = .

Thus, it follows from (.) and (.) that

∫ t

t–δ

P(s + δ)
∫ t

s
P(u + δ)f 

(
x(u)

)
duds

+
∫ t

βt

P((s + βδ)/β)
β

∫ t

s

Q(u/β)
u

x(u)duds

≤
∫ t+δ

t–δ

P(s + δ)ds
∫ t

t–δ

P(u + δ)f 
(
x(u)

)
du

+
∫ t/β

t–δ

P(s + δ)ds
∫ t

βt

Q(u/β)
u

x(u)du

≤ 
M

∫ t

t–δ

P(u + δ)f 
(
x(u)

)
duds

+

M

∫ t

βt

Q(u/β)
u

x(u)du→ , as t → ∞,

∫ t

t–δ

Q((s + δ)/β)
s + δ

∫ t

s
P(u + δ)f 

(
x(u)

)
duds

+
∫ t

βt

Q(s/β)
s

∫ t

s

Q(u/β)
u

x(u)duds

≤
∫ t+δ

βt

Q(s/β)
s

ds
∫ t

t–δ

P(u + δ)f 
(
x(u)

)
du

+
∫ t/β

βt

Q(s/β)
s

ds
∫ t

βt

Q(u/β)
u

x(u)du

≤ 
M

∫ t

t–δ

P(u + δ)f 
(
x(u)

)
du

+ 
∫ t

βt

Q(u/β)
u

x(u)du → , as t → ∞,

and

(μ + ε)
∫ t

t–τ

P(s + τ + δ)f 
(
x(s)

)
ds + (μ + ε)

∫ t

t–τ

Q((s + τ )/β)
s + τ

x(s)ds

+ (γ + λ)
∫ t

αt

Q(s/(αβ))
s

x(s)ds +
γ + λ

α

∫ t

αt
P
(
(s/α) + δ

)
f 

(
x(s)

)
ds

= (μ + ε)
∫ t

t–τ

P(s + τ + δ)
P(s + δ)

P(s + δ)f 
(
x(s)

)
ds

+ (μ + ε)
∫ t

t–τ

sQ((s + τ )/β)
Q(s/β)(s + τ )

· Q(s/β)
s

x(s)ds

+ (γ + λ)
∫ t

αt

Q(s/(αβ))
Q(s/β)

· Q(s/β)
s

x(s)ds
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+
γ + λ

α

∫ t

αt

P((s/α) + δ)
P(s + δ)

P(s + δ)f 
(
x(s)

)
ds

≤ 
M

∫ t

t–τ

P(s + δ)f 
(
x(s)

)
ds + 

∫ t

t–τ

Q(s/β)
s

x(s)ds

+ 
∫ t

αt

Q(s/β)
s

x(s)ds +

M

∫ t

αt
P(s + δ)f 

(
x(s)

)
ds → , as t → ∞.

Therefore, from the above estimations, we have limt→∞ V(t) = , limt→∞ V(t) = , and
limt→∞ V(t) = , respectively.
Thus, limt→∞ V(t) = limt→∞ V (t) = ψ , that is,

lim
t→∞

[
x(t) +C(t)x(t – τ ) –D(t)x(αt)

–
∫ t

t–δ

P(s + δ)f
(
x(s)

)
ds –

∫ t

βt

Q(s/β)
s

x(s)ds
]

=ψ . (.)

Now, we will prove that the limit

lim
t→∞

[
x(t) +C(t)x(t – τ ) –D(t)x(αt)

–
∫ t

t–δ

P(s + δ)f
(
x(s)

)
ds –

∫ t

βt

Q(s/β)
s

x(s)ds
]

(.)

exists and is finite. Setting

y(t) = x(t) +C(t)x(t – τ ) –D(t)x(αt)

–
∫ t

t–δ

P(s + δ)f
(
x(s)

)
ds –

∫ t

βt

Q(s/β)
s

x(s)ds, (.)

and using (.) and condition (H), we have

y(tk) = x(tk) +C(tk)x(tk – τ ) –D(tk)x(αtk)

–
∫ tk

tk–δ

P(s + δ)f
(
x(s)

)
ds –

∫ tk

βtk

Q(s/β)
s

x(s)ds

= bk
[
x
(
t–k

)
+C

(
t–k

)
x
(
t–k – τ

)
–D

(
t–k

)
x
(
αt–k

)

–
∫ tk

tk–δ

P(s + δ)f
(
x(s)

)
ds –

∫ tk

βtk

Q(s/β)
s

x(s)ds
]

= bky
(
t–k

)
. (.)

In view of (.), it follows that

lim
t→∞ y(t) =ψ .

In addition, from (.) and (.), system (.)-(.) can be written as
{
y′(t) + P(t + δ)f (x(t)) + Q(t/β)

t x(t) = ,  < t ≤ t, t �= tk ,
y(tk) = bky(t–k ), k = , , , . . . .

(.)

http://www.advancesindifferenceequations.com/content/2014/1/327


Tariboon et al. Advances in Difference Equations 2014, 2014:327 Page 10 of 16
http://www.advancesindifferenceequations.com/content/2014/1/327

If ψ = , then limt→∞ y(t) = . If ψ > , then there exists a sufficiently large T∗ such
that y(t) �=  for any t > T∗. Otherwise, there is a sequence {ak} with limk→∞ ak = ∞ such
that y(ak) = , and so y(ak) →  as k → ∞. This contradicts ψ > . Therefore, for any
tk > T∗, and t ∈ [tk , tk+), we have y(t) >  or y(t) <  from the continuity of y on [tk , tk+).
Without loss of generality, we assume that y(t) >  on [tk , tk+). It follows from (H) that
y(tk+) = bky(t–k+) > , and thus y(t) >  on [tk+, tk+). By using mathematical induction, we
deduce that y(t) >  on [tk ,∞). Therefore, from (.), we have

lim
t→∞ y(t) = lim

t→∞

[
x(t) +C(t)x(t – τ ) –D(t)x(αt)

–
∫ t

t–δ

P(s + δ)f
(
x(s)

)
ds –

∫ t

βt

Q(s/β)
s

x(s)ds
]
= κ , (.)

where κ =
√

ψ and is finite. In view of (.), for sufficient large t, we have

∫ t

βt–δ

P(s + δ)f
(
x(s)

)
ds +

∫ t

βt–δ

Q(s/β)
s

x(s)ds

= y(βt – δ) – y(t) –
∑

βt–δ<tk<t

[
y(tk) – y

(
t–k

)]

= y(βt – δ) – y(t) –
∑

βt–δ<tk<t

( – bk)y
(
t–k

)
.

Taking t → ∞ and using (H), we have

lim
t→∞

[∫ t

βt–δ

P(s + δ)f
(
x(s)

)
ds +

∫ t

βt–δ

Q(s/β)
s

x(s)ds
]
= ,

which leads to

lim
t→∞

∫ t

t–δ

P(s + δ)f
(
x(s)

)
ds =  and lim

t→∞

∫ t

βt

Q(s/β)
s

x(s)ds = .

This implies that

lim
t→∞

[
x(t) +C(t)x(t – τ ) –D(t)x(αt)

]
= κ . (.)

Next, we shall prove that

lim
t→∞x(t) exists and is finite. (.)

Further, we first show that |x(t)| is bounded. Actually, if |x(t)| is unbounded, then there
exists a sequence {zn} such that zn → ∞, |x(z–n )| → ∞, as n→ ∞ and

∣∣x(z–n)∣∣ = sup
t≤t≤zn

∣∣x(t)∣∣, (.)
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where, if zn is not an impulsive point, then x(z–n ) = x(zn). Thus, we have

∣∣x(z–n) +C
(
z–n

)
x
(
z–n – τ

)
–D

(
z–n

)
x
(
αz–n

)∣∣
≥ ∣∣x(z–n)∣∣ – ∣∣C(

z–n
)∣∣∣∣x(z–n – τ

)∣∣ – ∣∣D(
z–n

)∣∣∣∣x(αz–n)∣∣
≥ ∣∣x(z–n)∣∣[ –μ – ε – γ – λ]→ ∞,

as n→ ∞, which contradicts (.). Therefore, |x(t)| is bounded.
If μ =  and γ = , then limt→∞ x(t) = κ , which implies that (.) holds. If  < μ <  and

 < γ < , then we deduce that C(t) andD(t) are eventually positive or eventually negative.
Otherwise, there are two sequences {wk} and {w∗

j } with limk→∞ wk = ∞ and limj→∞ w∗
j =

∞ such that C(wk) =  and D(w∗
j ) = . Therefore, C(wk) →  and D(w∗

j ) →  as k, j → ∞.
It is a contradiction to μ >  and γ > .
Now, we will show that (.) holds. By condition (H), we can find a sufficiently large

T such that for t > T, |C(t)| + |D(t)| < . Set

ω = lim inf
t→∞ x(t), θ = lim sup

t→∞
x(t).

Then we can choose two sequences {un} and {vn} such that un → ∞, vn → ∞ as n → ∞,
and

lim
n→∞x(un) = ω, lim

n→∞x(vn) = θ .

For t > T, we consider the following eight possible cases.
Case . When limt→∞ C(t) =  and – <D(t) <  for t > T, we have

κ = lim
n→∞

[
x(un) –D(un)x(αun)

] ≤ ω + γ θ ,

and

κ = lim
n→∞

[
x(vn) –D(vn)x(αvn)

] ≥ θ + γω.

Thus, we obtain

ω + γ θ ≥ θ + γω,

that is,

ω( – γ ) ≥ θ ( – γ ).

Since  < γ <  and θ ≥ ω, it follows that θ = ω. By (.), we obtain

θ = ω =
κ

 – γ
,

which shows that (.) holds.
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Case . When limt→∞ D(t) =  and – < C(t) <  for t > T, we get

κ = lim
n→∞

[
x(un) +C(un)x(un – τ )

] ≤ ω –μω

and

κ = lim
n→∞

[
x(vn) +C(vn)x(vn – τ )

] ≥ θ –μθ ,

which leads to

ω( –μ)≥ θ ( –μ).

Since  < μ <  and θ ≥ ω, we conclude that

θ = ω =
κ

 –μ
,

which implies that (.) holds.
Case . limt→∞ C(t) = ,  < D(t) <  for t > T. The method of proof is similar to the

above two cases. Therefore, we omit it.
Case . limt→∞ D(t) = ,  < C(t) <  for t > T. The method of proof is similar to the

above two first cases. Therefore, we omit it.
Case . When – <D(t) <  and  < C(t) <  for t > T, we have

κ = lim
n→∞

[
x(un) +C(un)x(un – τ ) –D(un)x(αun)

] ≤ ω +μθ + γ θ

and

κ = lim
n→∞

[
x(vn) +C(vn)x(vn – τ ) –D(vn)x(αvn)

] ≥ θ +μω + γω,

which yields

ω( –μ – γ ) ≥ θ ( –μ – γ ).

Since  < μ + γ <  and θ ≥ ω, we have θ = ω. Thus

θ = ω =
κ

 –μ – γ
,

and so (.) holds.
Using similar arguments, we can prove that (.) also holds for the following cases:
Case . – < C(t) < ,  <D(t) < .
Case . – < C(t) < , – <D(t) < .
Case .  < C(t) < ,  <D(t) < .
Summarizing the above investigation, we conclude that (.) holds and so the proof is

completed. �

Theorem . Let conditions (H)-(H) of Theorem . hold. Then every oscillatory solu-
tion of (.) tends to zero as t → ∞.
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Corollary . Assume that (H) holds and

lim sup
t→∞

[∫ t+δ

t–δ

P(s + δ)ds +
∫ t+δ

βt

Q(s/β)
s

ds
]
<  (.)

and

lim sup
t→∞

[∫ t/β

t–δ

P(s + δ)ds +
∫ t/β

βt

Q(s/β)
s

ds
]
< . (.)

Then every solution of the equation

⎧⎪⎨
⎪⎩
x′(t) + P(t)x(t – δ) + Q(t)

t x(βt) = ,  < t ≤ t, t �= tk ,
x(tk) = bkx(t–k ) + ( – bk)(

∫ tk
tk–δ

P(s + δ)x(s)ds
+

∫ tk
βtk

Q(s/β)
s x(s)ds), k = , , , . . . ,

(.)

tends to a constant as t → ∞.

Corollary . The conditions (.) and (.) imply that every solution of the equation

x′(t) + P(t)x(t – δ) +
Q(t)
t

x(βt) = ,  < t ≤ t, (.)

tends to a constant as t → ∞.

Theorem . The conditions (H)-(H) of Theorem . together with

∫ ∞

t
P(s + δ)ds =∞,

∫ ∞

t

Q(s/β)
s

ds =∞, (.)

imply that every solution of (.) tends to zero as t → ∞.

Proof FromTheorem ., we only have to prove that every nonoscillatory solution of (.)
tends to zero as t → ∞. Without loss of generality, we assume that x(t) is an eventually
positive solution of (.). As in the proof of Theorem ., (.) can be written as in the form
(.). Integrating from t to t both sides of the first equation of (.), one has

∫ t

t
P(s + δ)f

(
x(s)

)
ds +

∫ t

t

Q(s/β)
s

x(s)ds = y(t) – y(t) –
∑

t<tk<t
( – bk)y

(
t–k

)
.

Applying (.) and (H), we have

∫ ∞

t
P(s + δ)f

(
x(s)

)
ds < ∞ and

∫ ∞

t

Q(s/β)
s

x(s)ds <∞.

This, together with (.), implies that lim inft→∞ f (x(t)) =  and lim inft→∞ x(t) = . By
Theorem ., limt→∞ x(t) = . This completes the proof. �
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Corollary . Assume that (.), (.), (.), (.), and (.) hold. Then every solution of
the equation

[
x(t) +C(t)x(t – τ ) –D(t)x(αt)

]′ + P(t)f
(
x(t – δ)

)
+
Q(t)
t

x(βt) = , (.)

 < t ≤ t, tends to zero as t → ∞.

3 Examples
In this section, we present two examples to illustrate our results.

Example . Consider the followingmixed type neutral differential equation with impul-
sive perturbations:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[x(t) + (k+)t�
k+k–x(t –


 ) –

(k+)t�
k+k–x(

t
e )]

′

+ (+tt )( +

 cos

 x(t – π ))x(t – π ) + 
t(ln t+)x(

t
e ) = , t ≥ ,

x(k) = k+k+
(k+) x(k–) + ( – k+k+

(k+) )(
∫ tk
tk–π

+s+π

(s+π )

× ( + 
 cos

 x(s))x(s)ds +
∫ tk

tk
e


s(ln(es)+)x(s)ds), k = , , , . . . .

(.)

Here C(t) = ((k + )t�)/(k + k – ), D(t) = ((k + )t�)/(k + k – ), P(t) = ( +
t)/(t), Q(t) = /(ln t + ), t ∈ [k – ,k), bk = (k + k + )/((k + )), t = , k = , , , . . . ,
f (x) = x( + ((/)(cos x))), τ = /, δ = π , α = /e, and β = /e. We can find that

(i) |x| ≤ |( + 
 cos

 x)x| ≤ 
 |x|, x ∈R, ( + 

 cos
 x)x >  for x �= ;

(ii) limt→∞ |C(t)| = 
 = μ < , limt→∞ |D(t)| = 

 = γ <  with μ + γ = 
 < , and

C(k) = k+k+
(k+) C(k–), D(k) = k+k+

(k+) D(k–);
(iii) tk – (/) and (/e)tk are not impulsive points,  < (k + k + )/((k + ))≤  for

k = , , . . . , and

∞∑
k=

(
 –

k + k + 
(k + )

)
=

∞∑
k=


(k + )

< ∞;

(iv)

{
lim supt→∞[

∫ t+δ

t–δ
P(s + δ)ds +

∫ t+δ

βt
Q(s/β)

s ds
+μ( + P(t+τ+δ)

P(t+δ) ) + γ ( + P((t/α)+δ)
αP(t+δ) )] =


 <




and

{
lim supt→∞[

∫ t/β
t–δ

P(s + δ)ds +
∫ t/β
βt

Q(s/β)
s ds

+μ( + tQ((t+τ )/β)
(t+τ )Q(t/β) ) + γ ( + Q(t/(αβ))

Q(t/β) )] = 
 < .

Hence, by (i)-(iv) all assumptions of Theorem . are satisfied. Therefore, we conclude that
every solution of (.) tends to a constant as t → ∞.

http://www.advancesindifferenceequations.com/content/2014/1/327


Tariboon et al. Advances in Difference Equations 2014, 2014:327 Page 15 of 16
http://www.advancesindifferenceequations.com/content/2014/1/327

Example . Consider the followingmixed type neutral differential equationwith impul-
sive perturbations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[x(t) + (k+)t�
k+k–x(t –


 ) –

(k+)t�
k+k–x(

t
e )]

′

+ ( t+
(t+) )( +


 sin

 x(t – π
 ))x(t –

π
 ) +


t( ln t+)x(

t
e ) = , t ≥ ,

x(k) = k+k+
k+k+x(k

–) + ( – k+k+
k+k+ )(

∫ tk
tk– π



s++π

(s++π )

× ( + 
 sin

 x(s))x(s)ds +
∫ tk
tk
e


s( ln(es)+)x(s)ds), k = , , , . . . .

(.)

Here C(t) = ((k + )t�)/(k + k – ), D(t) = ((k + )t�)/(k + k – ),
P(t) = (t + )/((t + )), Q(t) = /( ln t + ), t ∈ [k – ,k), bk = (k + k + )/(k +
k + ), t = , k = , , , . . . , f (x) = x( + ((/) sin x)), τ = /, δ = π/, α = /(e), and
β = /(e). We can show that

(i) |x| ≤ |( + 
 sin

 x)x| ≤ 
 |x|, x ∈R, ( + 

 sin
 x)x >  for x �= ;

(ii) limt→∞ |C(t)| = 
 = μ < , limt→∞ |D(t)| = 

 = γ <  with μ + γ = 
 < , and

C(k) = k+k+
k+k+C(k

–), D(k) = k+k+
k+k+D(k

–);
(iii) tk – (/) and (/(e))tk are not impulsive points,

 < (k + k + )/(k + k + ) ≤  for k = , , . . . , and

∞∑
k=

(
 –

k + k + 
k + k + 

)
=

∞∑
k=


k + k + 

< ∞;

(iv)

{
lim supt→∞[

∫ t+δ

t–δ
P(s + δ)ds +

∫ t+δ

βt
Q(s/β)

s ds
+μ( + P(t+τ+δ)

P(t+δ) ) + γ ( + P((t/α)+δ)
αP(t+δ) )] =


 <




and

{
lim supt→∞[

∫ t/β
t–δ

P(s + δ)ds +
∫ t/β
βt

Q(s/β)
s ds

+μ( + tQ((t+τ )/β)
(t+τ )Q(t/β) ) + γ ( + Q(t/(αβ))

Q(t/β) )] = . < ;

(v)

∫ ∞


P(s + δ)ds =

∫ ∞



s +  + π

(s +  + π )
ds =∞

and
∫ ∞



Q(s/β)
s

ds =
∫ ∞




s( ln(es) + )

ds =∞.

Hence, all assumptions of Theorem . are satisfied and therefore every solution of (.)
tends to zero as t → ∞.
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