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Abstract
This paper is devoted to the study of reproduction of asymptotic boundedness in the
second moment and small moments of stochastic differential equations by the
stochastic theta method. In addition, we illustrate that the asymptotic moment
boundedness of the numerical solution stand-alone plays a key role in the study of
numerical stationary distribution.
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1 Introduction
The numerical reproduction of asymptotic properties of stochastic differential equations
(SDEs) studies that given the underlying SDE has certain asymptotic property how one
chooses a proper numerical method such that the corresponding discrete numerical so-
lution can reproduce the same property. Among different types of asymptotic properties,
stability has been attracting a lot of attention in recent years. Many papers are devoted to
the numerical reproduction of stability of SDEs in different senses, such as mean square
stability [–], almost sure stability [–], stability in small moment [], we just mention
some of them here. Another asymptotic property, asymptotic boundedness, was studied
rarely, but has its own interest. Not like the stability that requires the solution to tend to
the trivial solution as time becomes large, the boundedness only needs the solution to be
bounded above by somepositive constant.On the one hand, the stability could be regarded
as a specific situation of the boundedness.More importantly, the asymptotic boundedness
plays an important role in the study of stationary distribution of SDEs. In the series pa-
pers ofMao, Yuan, Yin, etc. [–], the stationary distributions of numerical solutions were
used to approximate the stationary distribution of underlying equations. One of the key
components in proving the existence and uniqueness of the numerical stationary distribu-
tion is the moment boundedness of numerical solutions. We will give more details about
it in Section .
In this paper, we investigate the asymptoticmoment boundedness of the stochastic theta

method (STM). As the parameter theta is employed to control the implicitness of the
method, the STM is regarded a generalisation of the Euler-Maruyama (EM) method and
the backward Euler-Maruyama (BEM) method. The stabilities in different senses of the
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STM have been studied by many authors [–]. But, to our best knowledge, few pa-
pers have discussed the asymptotic moment boundedness of the STM for SDEs. Recently,
in [], the authors studied the moment boundedness for the EM method and the BEM
method. The results presented in this paper can be seen as a generalisation of those in
[]. In addition, different choices of the θ will lead to distinguishing conditions on the
drift and diffusion coefficients. We will study the asymptotic boundedness in the second
moment and pth moments for p much less than one. The study of the second moment is
typical as it can be related tomany concepts in engineering such as energy function.While
the small moments may have no obvious physical meanings, but they can be connected
to the boundedness in probability which is crucial to the proof of the numerical station-
ary distribution. Besides, for the small moments, the conditions required for the drift and
diffusion coefficients are weaker than those for the second moment.
We construct this paper as follows. In Section , some mathematical preliminaries are

stated. The main results and proofs are presented in Section . The application of the
moment boundedness in the study of numerical stationary distribution is discussed in
Section .

2 Mathematical preliminary
Throughout this paper, we let (�,F , {Ft}t≥,P) be a complete probability space with a
filtration {Ft}t≥ which is increasing and right continuous, with F containing all P-null
sets. Let B(t) be a scalar Brownian motion defined on the probability space. The results in
this paper could be extended to the case of multi-dimensional Brownian motion. But to
keep the simplicity of the notation, we only consider the case of scalar Brownian motion.
Let | · | denote the Euclidean norm in R

n. The inner product of x, y in R
n is denoted by

〈x, y〉. In this paper, we consider the n-dimensional Itô SDE

dx(t) = f
(
x(t)

)
dt + g

(
x(t)

)
dB(t), t ≥ ,x() ∈R

n. (.)

We assume that f , g : Rn → R
n are smooth enough for SDE (.) to have a unique global

solution on [,∞).
Let us recall the stochastic θ numericalmethodswewill use below. The reader is referred

to [–] formore details on the numerical methods. The stochastic thetamethod (STM)
applied to (.) is defined by

xk+ = xk + ( – θ )f (xk)�t + θ f (xk+)�t + g(xk)�Bk , x = x(), (.)

for k = , , . . . , where �t is the time step and �Bk = B((k + )�t) –B(k�t) is the Brownian
motion increment.
Since the STM is semi-implicit when θ �= , to ensure that this method is well defined,

let us impose the one-sided Lipschitz condition on the drift coefficient f : there exists a
constant b such that for any x, y ∈R

n,

〈
x – y, f (x) – f (y)

〉 ≤ b|x – y|.

This, together with θb� < , ensures that (.) is well defined, that is, STM (.) can be
solved uniquely for the next step xk+ (see, for example, []).
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3 Main results
Our main results and their proofs are presented in this section. We start off with the sec-
ond moment in Section ., two cases of the θ are discussed. Then the same structure is
used for Section . to investigate the small moments.

3.1 The secondmoment
First we discuss the situation for θ ∈ [, /), which has the linear growth condition on
both drift and diffusion coefficients. Secondwe relax the constraint on the drift coefficient
when θ ∈ [/, ].
The boundedness of the underlying SDE is well known. We state the following theorem

and refer the readers to Chapter  of [] for the proof.

Theorem . Assume that f and g satisfy the local Lipschitz condition. Assume that there
exists a negative constant μ and positive constants σ , a, a such that for any x ∈R

n,

〈
x, f (x)

〉 ≤ μ|x| + a (.)

and

∣∣g(x)∣∣ ≤ σ |x| + a. (.)

If

μ + σ < , (.)

then the underlying solution of SDE (.) is asymptotically bounded in the second moment

lim sup
t→∞

E
(∣∣x(t)∣∣) ≤ a + a

–(μ + σ )
, ∀x() ∈R

n. (.)

Now we consider reproducing this boundedness property by the STM.

.. θ ∈ [, /)
Theorem . Let (.), (.) and (.) hold; furthermore, if f satisfies the linear growth
condition

∣∣f (x)∣∣ ≤ κ|x| + a, (.)

where κ and a are positive, then for �t < –(μ+σ )
κ

, the STM solution (.) satisfies

lim sup
k→∞

E
(|xk|) ≤ a + a + ( – θ )a�t

–(μ + σ ) – ( – θ )κ�t
, ∀x ∈ R

n.

Moreover, let the stepsize �t → , then

lim
�t→

lim sup
k→∞

E|xk| ≤ a + a
–(μ + σ )

, ∀x ∈R
n. (.)
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Proof Due to (.), (.), (.) and (.), we obtain

|xk+| =
〈
xk+,xk + ( – θ )f (xk)�t + g(xk)�Bk

〉
+

〈
xk+, θ f (xk+)�t

〉

≤ 

|xk+| + 


∣∣xk + ( – θ )f (xk)�t + g(xk)�Bk

∣∣
+

(
μ|xk+| + a

)
θ�t

≤ 

|xk+| + 


[|xk| + ( – θ )�t

(
κ|xk| + a

)
+

(
σ |xk| + a

)
�t

+ ( – θ )�t
(
μ|xk| + a

)
+mk

]
+

(
μ|xk+| + a

)
θ�t

≤  + ( – θ )κ�t + σ�t + ( – θ )μ�t
 – μθ�t

|xk|

+
( – θ )a�t + a�t + a�t +mk

 – μθ�t
,

wheremk = [|g(xk)|(�B
k –�t) + 〈xk + ( – θ )f (xk)�t, g(xk)�Bk〉]. Taking expectation on

both sides, noting that E(mk) = , yields

E|xk+| ≤ cE|xk| + c

≤ ck+ E|x| + c( – ck+ )
 – c

, (.)

where

c =
 + ( – θ )κ�t + σ�t + ( – θ )μ�t

 + μθ�t

and

c =
( – θ )a�t + a�t + a�t

 + μθ�t
.

Then, for �t < –(μ+σ )
κ

, we have c < . From (.), we deduce

lim sup
k→∞

E|xk| ≤ c
 – c

≤ a + a + ( – θ )a�t
–(μ + σ ) – ( – θ )κ�t

.

Let �t → , then assertion (.) holds. �

This theorem shows that the STM can reproduce the upper bound of true solution (.)
for the case of θ ∈ [, /). The result of the EM boundedness, Theorem . in [], is
reproduced perfectly as a special case.

.. θ ∈ [/, ]
We try to release the constraint on the drift coefficient when θ ∈ [/, ] and reproduce the
boundedness property in STM as well. To show the theorem of this case, we first present
the following lemma.
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Lemma . Let conditions (.) and (.) hold, then for any A,B ∈ R with A ≥ B ≥ , we
have the inequality

∣∣x – Bf (x)�t
∣∣ + Ba ≤ C

(∣∣x –Af (x)�t
∣∣ + Aa

)
,

where C = –Bμ�t
–Aμ�t .

Proof

|x| – B
〈
x, f (x)�t

〉
+ B∣∣f (x)�t

∣∣ + Ba

–C
(|x| – A

〈
x, f (x)�t

〉
+A∣∣f (x)�t

∣∣ + Aa
)

≤ ( –C)|x| + (CA – B)μ�t|x| + (
B –CA)∣∣f (x)�t

∣∣ ≤ . �

For the theorem below, we denote

A = B + λ, B =  – θ , λ = (θ – )∧
(
 +

σ

μ

)(
 – μ�t( – θ )

 + μ�t( – θ ) + σ�t

)
.

Theorem . Let (.), (.) and (.) hold. If θ ∈ [/, ], then for any �t >  STM (.)
satisfies

lim sup
k→∞

E
(|xk|) ≤ (a + a)( – μ�tA)

–μλ
, ∀x ∈ R

n.

Moreover, let the stepsize �t → , then

lim
�t→

lim sup
k→∞

E
(|xk|) ≤ a + a

–μ( – θ )∧ –(μ + σ )
, ∀x ∈R

n. (.)

Especially, when θ = , thus

lim
�t→

lim sup
k→∞

E
(|xk|) ≤ a + a

–(μ + σ )
, ∀x ∈R

n. (.)

Proof Using Lemma . with B = , we have

|xk| ≤ ∣∣xk –Af (xk)�t
∣∣ + Aa�t.

By conditions (.)-(.) and Lemma ., we have

E|xk+| ≤ E
∣∣xk+ –Af (xk+)�t

∣∣ + Aa�t

≤ E
∣∣xk+ – θ f (xk+)�t + (θ –A)f (xk+)�t

∣∣ + Aa�t

≤ E
[∣∣xk+ – θ f (xk+)�t

∣∣ + (θ –A)
〈
xk+, f (xk+)

〉
�t

+
(
A – θ)∣∣f (xk+)�t

∣∣] + Aa�t

≤ E
[∣∣xk – ( – θ )f (xk)�t

∣∣ + ( – θ )
〈
xk , f (xk)

〉
�t

]
+E

∣∣g(xk)�Bk
∣∣

+ (θ –A)
(
μE|xk+| + a

)
�t + Aa�t
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≤ [
E

∣∣xk – ( – θ )f (xk)�t
∣∣ + Ba�t

]
+

[
( – θ )μ�t + σ�t

]
+ (θ –A)μE|xk+|�t +

[
(B –A + )a + a

]
�t

+ Aa�t – Ba�t

≤ C
[
E

∣∣xk –Af (xk)�t
∣∣ + Aa�t

]
+

[
( – θ )μ�t + σ�t

]
+ (θ –A)μE|xk+|�t + (a + a)�t

≤ Ck+[
E

∣∣x –Af (x)�t
∣∣ + Aa�t + μ(θ –A)E|x|�t

]

+ φλ�t
k∑
i=

(
Ck–i

E|xi|
)
+ (θ –A)μE|xk+|�t

+ (a + a)�t
 –Ck

 –C
,

where C < , E|x – Af (x)�t| + Aa�t + μ(θ – A)E|x|�t ≥ , (θ – A)μE|xk+| ×
�t ≤ . Noting that

φλ = ( – θ )μ + σ + Cμ(θ –  – λ)

when θ ≤  + σ /μ, thus λ = θ – , we have φλ ≤  easily; when θ >  + σ /μ, thus λ =
( + σ

μ )(
–μ�t(–θ )

+μ�t(–θ )+σ�t ), we still have φλ ≤ .
Let k → ∞, we have

lim sup
k→∞

E
(|xk|) ≤ (a + a)�t

 –C

≤ (a + a)( – μ�tA)
–μλ

, ∀x ∈R
n.

Let �t → , assertion (.) and the special case θ =  hold. �

Without the linear growth condition on the drift coefficient, this theorem shows that
the STM can still reproduce the boundedness property of true solution (.). The result
of the BEM boundedness, Theorem . in [], is recovered perfectly as a special case
when θ = .

3.2 The small moment
In this section, we discuss the asymptotic boundedness of STM in the pth moment for
small p. First we discuss the situation for θ ∈ [, /), which has a linear growth condi-
tion on both drift and diffusion coefficients. Second we release the constraint on the drift
coefficient when θ ∈ [/, ].

.. θ ∈ [, /)
We begin by imposing the linear growth condition on both drift and diffusion coefficients
of SDE (.):

∣∣f (x)∣∣ ∨ ∣∣g(x)∣∣ ≤ κ|x| + a, ∀x ∈ R
n, (.)

where κ and a are positive constants. We first present the theorem on the asymptotic
boundedness in small moment of the solution of (.).

http://www.advancesindifferenceequations.com/content/2014/1/310


Qiu et al. Advances in Difference Equations 2014, 2014:310 Page 7 of 14
http://www.advancesindifferenceequations.com/content/2014/1/310

Theorem . Let (.) hold. If there exists a positive constant D such that for any x ∈R
n,

〈x, f (x)〉 + 
 |g(x)|

D + |x| –
〈x, g(x)〉
(D + |x|) ≤ –λ +

P(|x|)
(D + |x|) , (.)

where λ is a positive constant and Pi(|x|) is a polynomial of |x| with degree i, then there
exists p∗ ∈ (, ) such that for all  < p < p∗ the solution of (.) obeys

lim sup
t→∞

E
(∣∣x(t)∣∣p) ≤ C, ∀x() ∈R

n, (.)

where C is a positive constant dependent on κ , a, p, D, but independent of x().

Following the same technique as the one used in Theorem . in [], by choosing the
Lyapunov function V = (D + |x(t)|)p/, it is straightforward to prove this theorem. So we
omit it here. Now we give the result for the STM solution.

Theorem. Let (.) and (.) hold, and λ > θ (+κ).Then, for any ε ∈ (,λ–θ (+κ)),
there exists a pair of constants p∗ ∈ (, ) and �t∗ ∈ (, ) such that for ∀p ∈ (,p∗) and
∀�t ∈ (,�t∗), the STM solution (.) satisfies

lim sup
k→∞

E|xk|p ≤ C′


p(λ – θ ( + κ) – ε)
, ∀x ∈R

n, (.)

where C′
 is a constant dependent on κ , a, p and D, but independent of x and �t.

Especially, when θ = ,

lim sup
k→∞

E|xk|p ≤ C′


p(λ – ε)
, ∀x ∈R

n.

Proof From (.), for �t < 
θ (+κ) we have

|xk+| =
〈
xk+,xk + ( – θ )f (xk)�t + g(xk)�Bk

〉
+

〈
xk+, θ f (xk+)�t

〉

≤
(


+


θ�t +



θκ�t

)
|xk+|

+


θa�t +



∣∣xk + ( – θ )f (xk)�t + g(xk)�Bk

∣∣

≤ 
 – θ ( + κ)�t

(|xk| + 
〈
xk , ( – θ )f (xk)�t + g(xk)�Bk

〉

+
∣∣( – θ )f (xk)�t + g(xk)�Bk

∣∣ + θa�t
)
.

For the constant D in (.), we have

D + |xk+| ≤ D
 – θ ( + κ)�t

+ |xk+|

≤ D + |xk|
 – θ ( + κ)�t

( + ξk),

http://www.advancesindifferenceequations.com/content/2014/1/310
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where

ξk =


D + |xk|
(

〈
xk , (– θ )f (xk)�t+ g(xk)�Bk

〉
+

∣∣(– θ )f (xk)�t + g(xk)�Bk
∣∣ + θa�t

)
.

For any p ∈ (, ) we have

∣∣D + |xk+|
∣∣p/ ≤

(
D + |xk|

 – θ ( + κ)�t

)p/

( + ξk)p/.

Clearly ξk > –, recalling the fundamental inequality

( + u)p/ ≤  +
p

u +

p(p – )


u +
p(p – )(p – )

 × !
u, u > –, (.)

we have

∣∣D + |xk+|
∣∣p/ ≤

(
D + |xk|

 – θ ( + κ)�t

)p/(
 +

p

ξk +

p(p – )


ξ 
k +

p(p – )(p – )
 × !

ξ 
k

)
.

Hence the conditional expectation

E
(∣∣D + |xk+|

∣∣p/|Fk�t
)

≤
(

D + |xk|
 – θ ( + κ)�t

)p/

E

(
 +

p

ξk +

p(p – )


ξ 
k +

p(p – )(p – )
 × !

ξ 
k

∣∣∣Fk�t

)
. (.)

Since �Bk is independent of Fk�t , we have E(�Bk|Fk�t) = E(�Bk) = , E((�Bk)|Fk�t) =
E((�Bk)) = �t. By (.) we can get

E(ξk|Fk�t)

= E

(


D + |xk|
[

〈
xk , ( – θ )f (xk)�t + g(xk)�Bk

〉
+

∣∣( – θ )f (xk)�t + g(xk)�Bk
∣∣

+ θa�t
]∣∣∣Fk�t

)

≤ 
D + |xk|

[

〈
xk , f (xk)

〉
+

∣∣g(xk)∣∣]�t + θ ( + κ)�t +C�t +
C

D + |xk| �t. (.)

Similarly, we can show that

E
(
ξ 
k |Fk�t

) ≥ 
(D + |xk|)

〈
xk , g(xk)

〉
�t –C�t –

C

(D + |xk|) �t (.)

and

E
(
ξ 
k |Fk�t

) ≤ C�t +
C

(D + |xk|) �t, (.)

where C is a positive constant dependent on κ , and C is a positive constant dependent
on a. C and C may change from line to line. Now consider the following fraction:

(D + |xk|)p/P(|xk|)
(D + |xk|) . (.)

http://www.advancesindifferenceequations.com/content/2014/1/310
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For  < p < , it is obvious that the fraction has an upper bound. Substituting (.), (.)
and (.) into (.), then using (.), (.) and the argument for (.), we have that

E
((
D + |xk+|

)p/|Fk�t
)

≤
(

D + |xk|
 – θ ( + κ)�t

)p/[
 +

p
(D + |xk+|)

(

〈
xk , f (xk)

〉
+

∣∣g(xk)∣∣)�t

+
p(p – )

(D + |xk|)
〈
xk , g(xk)

〉
�t +

p

θ ( + κ)�t +C′

�t
]
+C′

�t

≤
(

D + |xk|
 – θ ( + κ)�t

)p/[
 + p�t

( 〈xk , f (xk)〉 + 
 |g(xk)|

D + |xk| –
〈xk , g(xk)〉
(D + |xk|)

)

+
p�t〈xk , g(xk)〉
(D + |xk|) +

p

θ ( + κ)�t +C′

�t
]
+C′

�t

≤
(

D + |xk|
 – θ ( + κ)�t

)p/(
 + p

(
θ ( + κ)


– λ

)
�t +

pκ�t


+C′
�t

)
+C′

�t,

where C′
 is a positive constant dependent on κ and p, C′

 is a positive constant dependent
on κ , a, p and D, and both of them may change from line to line. Taking expectations on
both sides, we obtain

E
((
D + |xk+|

)p/)

≤  + p[ θ ( + κ) – λ]�t + 
p

κ�t +C′
�t

( – θ ( + κ)�t)p/
E

((
D + |xk|

)p/) +C′
�t. (.)

For any ε ∈ (,λ – θ ( + κ)), by choosing p∗ sufficiently small such that p∗κ ≤ /(ε) and
sufficiently small �t∗, for p < p∗ and �t <�t∗, we have

(
 – θ ( + κ)�t

)p/ ≥  –


pθ ( + κ)�t –C�t > , (.)

where C >  is a constant dependent on θ , κ and p. Then further reducing �t∗ gives that
for �t < �t∗,

C′
�t <



pε, C�t <



pε,

∣∣∣∣p
(


θ ( + κ) +




ε

)
�t

∣∣∣∣ < 

.

Using these three inequalities together with (.), we have from (.) that

E
((
D + |xk+|

)p/)

≤  + p( θ ( + κ) – λ + 
ε)�t

 – p( θ ( + κ) + 
ε)�t

E
((
D + |xk|

)p/) +C′
�t. (.)

Since for any h ∈ [–., .],

( – h)– =  + h + h
∞∑
i=

hi ≤  + h + h
∞∑
i=

.i =  + h + h,

http://www.advancesindifferenceequations.com/content/2014/1/310
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then by further reducing �t∗ such that for any �t < �t∗, we obtain

p
(


θ ( + κ) +




ε

)

�t +
(


θ ( + κ) – λ +




ε

)

×
[
p
(


θ ( + κ) +




ε

)
�t + 

(
p
(


θ ( + κ) +




ε

)
�t

)]
<

ε


.

Together with (.), we arrive at

E
((
D + |xk+|

)p/) ≤
[
 + p

(


θ ( + κ) – λ +




ε

)
�t

][
 + p

(


θ ( + κ) +




ε

)
�t

+ 
(
p
(


θ ( + κ) +




ε

)
�t

)]
E

((
D + |xk|

)p/) +C′
�t

≤ [
 + p

(
θ ( + κ) – λ + ε

)
�t

]
E

((
D + |xk|

)p/) +C′
�t.

Due to θ ( + κ) – λ + ε < , we have  + p(θ ( + κ) – λ + ε)�t < . Then, by iteration and
letting k → ∞, we have

lim sup
k→∞

E
(|xk+|p) ≤ lim sup

k→∞
E

((
D + |xk+|

)p/) ≤ C′


p(λ – θ ( + κ) – ε)
. �

The theorem shows that the STM can reproduce the boundedness property of true so-
lution (.). The result of the EM boundedness, Theorem . in [], is recovered as a
special case when θ = .

.. θ ∈ [/, ]
In this part, we consider the case θ ∈ [/, ]. One may notice from the next theorem that
in this case the parameter θ exists in the conditions, therefore the boundedness of the
underlying equation may not be fully reproduced under the same conditions. However,
as we stated in Section  that the asymptotic moment boundedness of the numerical as a
stand-alone result is a key component in the study of numerical stationary distribution.
Thus we still keep the next theorem and the problem that if one could construct some θ

independent sufficient conditions for this case remains open.

Theorem . Assume that the drift coefficient satisfies (.) and the diffusion coefficient
satisfies (.) if the following holds for some positive constant λ:

〈x, f (x)〉 + 
 |g(x)|

D + |F(x)| –
〈x, g(x)〉

(D + |F(x)|) ≤ –λ +
P(|x|)

(D + |x|) ,

where F(x) = x – θ�f (x) and D is some positive constant larger than aθ�t. Then

lim sup
k→∞

E
(|xk|p) ≤ c′

p[λ + p–
 ( + κ)(/θ + κ) – ε]

,

where  < ε < λ + p–
 ( + κ)(/θ + κ) and c′ is a positive constant dependent on κ , a, p

and D.
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Proof We start off with

D +
∣∣F(xk)∣∣ ≥ (D – aθ�t) + ( – μθ�t)|xk| + θ∣∣f (xk)∣∣�t > ( – μθ�t)|xk| > ,

where D > aθ�t,  < �t < 
θ (μ∨ε) . Then we have

∣∣F(xk+)∣∣
=

∣∣F(xk)∣∣ + (

〈
xk , f (xk)

〉
+

∣∣g(xk)∣∣)�t + ( – θ )
∣∣f (xk)∣∣�t

+ 
〈
xk + ( – θ )f (xk)�t, g(xk)�Bk

〉
+

∣∣g(xk)∣∣(�B
k –�t

)
≤ ∣∣F(xk)∣∣ + (


〈
xk , f (xk)

〉
+

∣∣g(xk)∣∣)�t

+ 
〈
xk + ( – θ )f (xk)�t, g(xk)�Bk

〉
+

∣∣g(xk)∣∣(�B
k –�t

)
.

Using (.), we have

E
([
D +

∣∣F(xk+)∣∣]p/|Fk�t
)

≤ [
D +

∣∣F(xk)∣∣]p/E
(
 +

p

ξk +

p(p – )


ξ 
k +

p(p – )(p – )
 × !

ξ 
k

∣∣∣Fk�t

)
, (.)

where

ξk =


D + |F(xk)|
[(

〈
xk , f (xk)

〉
+

∣∣g(xk)∣∣)�t

+ 
〈
xk + ( – θ )f (xk)�t, g(xk)�Bk

〉
+

∣∣g(xk)∣∣(�B
k –�t

)]
.

Similar to the proof of Theorem ., we compute that

E(ξk|Fk�t) =


D + |F(xk)|
(

〈
xk , f (xk)

〉
+

∣∣g(xk)∣∣)�t,

E
(
ξ 
k |Fk�t

) ≥ 〈xk , g(xk)〉�t
(D + |F(xk)|) –

[
( + κ)

(
/θ + κ

)
�t + c′�t

]

and

E
(
ξ 
k |Fk�t

) ≤ c′�t +
c�t

(D + |F(xk)|) .

Substituting these three estimates into (.), we get

E
((
D +

∣∣F(xk+)∣∣)p/|Fk�t
)

≤ [
D +

∣∣F(xk)∣∣]p/
[
 +

p
(D + |F(xk)|)

(

〈
xk , f (xk)

〉
+

∣∣g(xk)∣∣)�t

+
p(p – )

(D + |F(xk)|)
〈
xk , g(xk)

〉
�t –

p(p – )


( + κ)
(
/θ + κ

)
�t + c′�t

]
+ c′�t

≤ [
D +

∣∣F(xk)∣∣]p/
[
 + p�t

( 〈xk , f (xk)〉 + 
 |g(xk)|

D + |F(xk)| –
〈xk , g(xk)〉

(D + |F(xk)|)
)
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+
p�t〈xk , g(xk)〉
(D + |F(xk)|) –

p(p – )


( + κ)
(
/θ + κ

)
�t + c′�t

]
+ c′�t

≤ [
D +

∣∣F(xk)∣∣]p/
[
 – p�t

[
λ +

p – 


( + κ)
(
/θ + κ

)]
+

pκ�t
( – μθ�t)

+ c′�t
]

+ c′�t,

where c′ is a positive constant dependent on κ and p, c′ is a positive constant dependent
on κ , a, p and D, and both of them may change from line to line. Taking expectations on
both sides, we obtain

E
((
D +

∣∣F(xk+)∣∣)p/)

≤
[
 – p�t

[
λ +

p – 


( + κ)
(
/θ + κ

)]
+

pκ�t
( – μθ�t)

+ c′�t
]

×E
([
D +

∣∣F(xk)∣∣]p/) + c′�t.

For any ε ∈ (,λ + p–
 ( + κ)(/θ + κ)), by choosing p∗ sufficiently small such that

p∗κ

(–μθ�t) ≤ ε, then choose�t∗ ∈ (, ) sufficiently small for p∗�t∗[λ+ p–
 (+κ)(/θ+κ)] ≤

 and c′�t∗ ≤ 
p

∗ε. For any p ∈ (,p∗) and any �t ∈ (,�t∗), we have

E
((
D +

∣∣F(xk+)∣∣)p/)

≤
[
 – p�t

[
λ +

p – 


( + κ)
(
/θ + κ

)
– ε

]]
E

([
D +

∣∣F(xk)∣∣]p/) + c′�t.

Then, by iteration and letting k → ∞, we have

lim sup
k→∞

E
((
D +

∣∣F(xk)∣∣)p/) ≤ c′
p[λ + p–

 ( + κ)(/θ + κ) – ε]
.

Then

lim sup
k→∞

E
(|xk|p)

≤ lim sup
k→∞

E((D + |F(xk)|)p/)
 – μθ�t

≤ c′
p[λ + p–

 ( + κ)(/θ + κ) – ε]
.

The proof is complete. �

4 Application and further research
In this section, we illustrate the application of the results in the last section to the study of
numerical stationary distribution.
Recalling Theorem . in [], the authors proved that for any given one-step numerical

method if the following three assumptions hold and the numerical solution is a homo-
geneous Markov process with a proper transition probability kernel, then the numerical
solution has a unique stationary distribution as time tends to infinity.
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Assumption . For any ε >  and x ∈ R
d , there exists a constant R = R(ε,x) >  such

that

P
(∣∣xxk ∣∣ ≥ R

)
< ε for any k ≥ .

Assumption . For any ε >  and any compact subset K of Rd , there exists a positive
integer k∗ = k∗(ε,K ) such that

P
(∣∣xxk – xyk

∣∣ < ε
) ≥  – ε for any k ≥ k∗ and any (x, y) ∈ K ×K .

Assumption . For any ε > , n ≥  and any compact subset K of Rd , there exists R =
R(ε,n,K ) >  such that

P

(
sup

≤k≤n

∣∣xxk ∣∣ ≤ R
)
>  – ε for any x ∈ K .

It is clear that Assumption . is satisfied by the results in Section  and the Chebyshev
inequality. Furthermore, it is not hard to see that one can adapt the proofs in the previous
section to show that for p =  and some small enough p, E|xxk – xyk |p tends to  as time
becomes large. Then Assumption . follows. Due to the page limit, we omit the proof
here. Assumption . can be obtained from the finite time moment boundedness of the
STM; see, for example, []. In addition, it is easy to adapt the proof of Theorem . in []
to show that the numerical solution derived from STM is a homogeneousMarkov process
with a proper transition probability kernel.
Therefore, one can see that there exists a unique stationary distribution for the numer-

ical solution generated by the STM. As stated in [–], the reason to study the numeri-
cal stationary distribution is to approximate the stationary distribution of the underlying
equations by avoiding solving the nontrivial Kolmogorov-Fokker-Planck partial differen-
tial equation. Amore interesting open problem to us is if the numerical stationary distribu-
tion could be used as numerical solutions to certain type of partial differential equations.
One may see that those three assumptions are given in the sense of probability, but the

existing sufficient conditions for Assumptions . and . are all in moment. The small
moments as illustrated in this paper need weaker conditions than the second moment,
but those conditions are still much stronger than those for underlying SDEs [, ] in
which the sufficient conditions are given in the format of Lyapunov V functions. Thus,
another interesting open problem is if one can construct some sufficient conditions in the
format of Lyapunov V so that the assumptions can be satisfied directly without via the
moment results.
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