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Abstract
In this paper, we establish the existence of nonoscillatory solutions to third-order
nonlinear neutral dynamic equations on time scales of the form
(r1(t)(r2(t)(x(t) + p(t)x(g(t)))Δ)Δ)Δ + f (t, x(h(t))) = 0 by employing Kranoselskii’s fixed
point theorem. Three examples are included to illustrate the significance of the
conclusions.
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1 Introduction
In this paper, we study third-order nonlinear neutral dynamic equations of the form

(
r(t)

(
r(t)

(
x(t) + p(t)x

(
g(t)

))Δ)Δ)Δ + f
(
t,x

(
h(t)

))
=  ()

on a time scale T satisfying infT = t and supT =∞.
Throughout this paper we shall assume that:
(C) r, r ∈ Crd(T, (,∞)) such that

∫ ∞

t


r(t)

Δt =∞,
∫ ∞

t


r(t)

Δt =∞.

(C) p ∈ Crd(T,R) and there exists a constant p with |p| <  such that

lim
t→∞p(t) = p.

(C) g,h ∈ Crd(T,T), g(t)≤ t, limt→∞ g(t) = limt→∞ h(t) = ∞, and

lim
t→∞

Rλ(g(t))
Rλ(t)

= ηλ ∈ (, ], λ = , ,

where

R(t) =  +
∫ t

t


r(s)

Δs, R(t) =  +
∫ t

t

∫ s

t


r(u)r(s)

ΔuΔs.

If p ∈ (–, ], there exists a sequence {ck}k≥ such that limk→∞ ck =∞ and g(ck+) = ck .
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(C) f ∈ C(T×R,R), f (t,x) is nondecreasing in x and xf (t,x) >  for t ∈ T and x �= .
Hilger introduced the theory of time scales in his Ph.D. thesis [] in ; see also [].

More details of time scale calculus can be found in [–] and omitted here. In the last few
years, there has been some research achievement as regards the existence of nonoscilla-
tory solutions to neutral dynamic equations on time scales; see the papers [–] and the
references therein.

Definition . By a solution of () we mean a continuous function x(t) which is defined
on T and satisfies () for t ≥ t. A solution x(t) of () is said to be eventually positive (or
eventually negative) if there exists c ∈ T such that x(t) >  (or x(t) < ) for all t ≥ c in T.
A solution x of () is said to be nonoscillatory if it is either eventually positive or eventually
negative; otherwise, it is oscillatory.

In s, some significative results for existence of nonoscillatory solutions to neutral
functional differential equations were given in [, ]. In , Zhu and Wang [] dis-
cussed the existence of nonoscillatory solutions to first-order nonlinear neutral dynamic
equations

[
x(t) + p(t)x

(
g(t)

)]Δ + f
(
t,x

(
h(t)

))
= 

on a time scale T. In , Gao and Wang [] considered the second-order nonlinear
neutral dynamic equations

[
r(t)

(
x(t) + p(t)x

(
g(t)

))Δ]Δ + f
(
t,x

(
h(t)

))
=  ()

under the condition
∫ ∞
t


r(s)Δs < ∞, and established the existence of nonoscillatory solu-

tions to () on a time scale. In , Deng and Wang [] studied the same problem of ()
under the condition

∫ ∞
t


r(s)Δs =∞.

In this paper, we shall establish the existence of nonoscillatory solutions to () by employ-
ing Kranoselskii’s fixed point theorem, and we give three examples to show the versatility
of the results.
For simplicity, throughout this paper, we denote (a,b)∩T = (a,b)T, where a,b ∈ R, and

[a,b]T, [a,b)T, (a,b]T are denoted similarly.

2 Preliminary results
Let C( [T,∞)T ,R) denote all continuous functions mapping [T,∞)T into R, and
R(t) ≡ , t ∈ [T,∞)T. For λ = , , , we define

BCλ [T,∞)T =
{
x : x ∈ C

(
[T,∞)T ,R

)
and sup

t∈ [T,∞) T

∣∣∣∣ x(t)
R

λ(t)

∣∣∣∣ < ∞
}
. ()

Endowing BCλ [T,∞)T with the norm ‖x‖λ = supt∈ [T,∞) T | x(t)
Rλ(t)

|, (BCλ [T,∞)T ,‖·‖λ)
is a Banach space. LetX ⊆ BCλ [T,∞)T, we say thatX is uniformlyCauchy if for any given
ε > , there exists a T ∈ [T,∞)T such that, for any x ∈ X,

∣∣∣∣ x(t)
R

λ(t)
–

x(t)
R

λ(t)

∣∣∣∣ < ε for all t, t ∈ [T,∞)T .
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X is said to be equi-continuous on [a,b]T if, for any given ε > , there exists a δ >  such
that, for any x ∈ X and t, t ∈ [a,b]T with |t – t| < δ,

∣∣∣∣ x(t)
R

λ(t)
–

x(t)
R

λ(t)

∣∣∣∣ < ε.

We have the following lemma, which is an analog of the Arzela-Ascoli theorem on time
scales.

Lemma . ([, Lemma ]) Suppose that X ⊆ BCλ [T,∞)T is bounded and uniformly
Cauchy. Further, suppose that X is equi-continuous on [T,T]T for any T ∈ [T,∞)T.
Then X is relatively compact.

In this section, our approach to the existence of nonoscillatory solutions to () is based
largely on the application of Kranoselskii’s fixed point theorem (see []). For the sake of
convenience, we state here this theorem as follows.

Lemma . (Kranoselskii’s fixed point theorem) Suppose that X is a Banach space and Ω

is a bounded, convex, and closed subset of X. Suppose further that there exist two operators
U ,S :Ω → X such that

(i) Ux + Sy ∈ Ω for all x, y ∈ Ω ;
(ii) U is a contraction mapping;
(iii) S is completely continuous.

Then U + S has a fixed point in Ω .

If x(t) is an eventually negative solution of (), then y(t) = –x(t) will satisfy

(
r(t)

(
r(t)

(
y(t) + p(t)y

(
g(t)

))Δ)Δ)Δ – f
(
t, –y

(
h(t)

))
= .

We may note that f (t,u) := –f (t, –u) is nondecreasing in u and uf (t,u) >  for t ∈ T and
u �= . Therefore, we will restrict our attention to eventually positive solutions of () in the
following.
In the sequel, we use the notation

z(t) := x(t) + p(t)x
(
g(t)

)
()

and have the following lemma.

Lemma . ([, Lemma .]) Suppose that x(t) is an eventually positive solution of () and
limt→∞ z(t)

Riλ(t)
= a for λ = ,  and i = , . Then we have:

(i) If a is finite, then

lim
t→∞

x(t)
Ri

λ(t)
=

a
 + pηi

λ

.

(ii) If a is infinite, then x(t)
Riλ(t)

is unbounded, or

lim sup
t→∞

x(t)
Ri

λ(t)
= +∞.
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Let S+ denote the set of all eventually positive solutions of () and

A(α,β ,γ ) =
{
x ∈ S+ : lim

t→∞x(t) = α, lim
t→∞

x(t)
R(t)

= β , lim
t→∞

x(t)
R(t)

= γ

}
.

Now, we give the first theorem for a classification scheme of eventually positive solutions
to ().

Theorem . If x(t) is an eventually positive solution of (), then x(t) belongs to A(, , ),
A(b, , ), A(∞,b, ), A(∞,∞,b) for some positive b, or A(∞,∞, ).

Proof Suppose that x(t) is an eventually positive solution of (). From (C) and (C), there
exist t ∈ [t,∞)T and |p| < p <  such that x(t) > , x(g(t)) > , x(h(t)) > , and |p(t)| ≤ p
for t ∈ [t,∞)T. By () and (C), it follows that, for t ∈ [t,∞)T,

(
r(t)

(
r(t)zΔ(t)

)Δ)Δ = –f
(
t,x

(
h(t)

))
< .

Hence, r(t)(r(t)zΔ(t))Δ is strictly decreasing on [t,∞)T. We claim that

r(t)
(
r(t)zΔ(t)

)Δ > , t ∈ [t,∞)T . ()

Assume not; then there exists t ∈ [t,∞)T such that r(t)(r(t)zΔ(t))Δ <  for t ∈ [t,∞)T.
So there exist a constant c <  and t ∈ [t,∞)T such that r(t)(r(t)zΔ(t))Δ ≤ c for t ∈
[t,∞)T, which means that

(
r(t)zΔ(t)

)Δ ≤ c
r(t)

, t ∈ [t,∞)T . ()

Integrating () from t to t ∈ [σ (t),∞)T, we obtain

r(t)zΔ(t)≤ r(t)zΔ(t) + c
∫ t

t

Δs
r(s)

.

Letting t → ∞, by (C) we have r(t)zΔ(t) → –∞. Then there exists t ∈ [t,∞)T such
that r(t)zΔ(t) ≤ r(t)zΔ(t) <  for t ∈ [t,∞)T, which implies that

zΔ(t)≤ r(t)zΔ(t) · 
r(t)

. ()

Integrating () from t to t ∈ [σ (t),∞)T, we obtain

z(t) – z(t) ≤ r(t)zΔ(t)
∫ t

t

Δs
r(s)

.

Letting t → ∞, by (C) we have z(t) → –∞. From (), it follows that p ∈ (–, ], then
there exists t ∈ [t,∞)T such that z(t) <  or

x(t) < –p(t)x
(
g(t)

)
< px

(
g(t)

)
, t ∈ [t,∞)T .
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By (C), we can choose some positive integer k such that ck ∈ [t,∞)T for all k ≥ k.
Then for any k ≥ k + , we have

x(ck) < px
(
g(ck)

)
= px(ck–) < px

(
g(ck–)

)
= px(ck–) < · · ·

< pk–k x
(
g(ck+)

)
= pk–k x(ck ).

The inequality above implies that limk→∞ x(ck) = . It follows from () that limk→∞ z(ck) =
 and then contradicts limt→∞ z(t) = –∞. So () holds, and

lim
t→∞ r(t)

(
r(t)zΔ(t)

)Δ = L, ()

where  ≤ L < +∞.
From (), we have (r(t)zΔ(t))Δ >  for t ∈ [t,∞)T, whichmeans that r(t)zΔ(t) is strictly

increasing on [t,∞)T. Hence, r(t)zΔ(t) is either eventually positive or eventually nega-
tive. When r(t)zΔ(t) is eventually negative, we have limt→∞ r(t)zΔ(t) ≤ . Assume that
there exists a constant d <  such that

lim
t→∞ r(t)zΔ(t) = d,

which means that

zΔ(t)≤ d
r(t)

, t ∈ [t,∞)T . ()

Integrating () from t to t ∈ [σ (t),∞)T, we obtain

z(t) ≤ z(t) + d
∫ t

t

Δs
r(s)

.

Letting t → ∞, by (C) we have z(t) → –∞. Similarly, it will cause the contradiction
as before. Hence, limt→∞ r(t)zΔ(t) = . When r(t)zΔ(t) is eventually positive, we have
limt→∞ r(t)zΔ(t) = b for some positive b or limt→∞ r(t)zΔ(t) = +∞. Therefore,

lim
t→∞ r(t)zΔ(t) = L, ()

where  ≤ L ≤ +∞.
When r(t)zΔ(t) is eventually negative, which means that zΔ(t) is eventually negative,

then there exists t ∈ [t,∞)T such that zΔ(t) <  for t ∈ [t,∞)T. It follows that z(t) is
strictly decreasing on [t,∞)T. Hence, z(t) is either eventually positive or eventually neg-
ative. If z(t) is eventually negative, we have limt→∞ z(t) = –∞ or limt→∞ z(t) < . Similarly,
it will cause the contradiction as before. Therefore, z(t) is eventually positive, whichmeans
that limt→∞ z(t) = b for some positive b or limt→∞ z(t) = .
When r(t)zΔ(t) is eventually positive, it implies that zΔ(t) is eventually positive. If z(t)

is eventually negative, we have limt→∞ z(t) ≤ . Assume that limt→∞ z(t) < . It will cause
a similar contradiction to the one before. So limt→∞ z(t) = . If z(t) is eventually positive,
we have limt→∞ z(t) = b for some positive b or limt→∞ z(t) = +∞.

http://www.advancesindifferenceequations.com/content/2014/1/309
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Therefore,

lim
t→∞ z(t) = L,

where  ≤ L ≤ +∞.
It follows from L’Hôpital’s rule (see [, Theorem .]) and (), () that

lim
t→∞ r(t)zΔ(t) = lim

t→∞
z(t)
R(t)

= L

and

lim
t→∞ r(t)

(
r(t)zΔ(t)

)Δ = lim
t→∞

z(t)
R(t)

= L.

When L =  or L = b for some positive b, we have L = L = . When L = +∞, it
implies that zΔ(t) is eventually positive, which means that r(t)zΔ(t) is eventually positive.
It follows that L = b for some positive b or L = +∞. We have L =  if L = b for some
positive b, and L =  or L = b for some positive b if L = +∞. Then by Lemma ., we see
that x(t) must belong to A(, , ), A(b, , ), A(∞,b, ), A(∞,∞,b) for some positive b, or
A(∞,∞, ). The proof is complete. �

3 Main results
In this section, by employing Kranoselskii’s fixed point theorem, we establish the existence
criteria for each type of eventually positive solutions to ().

Theorem . Equation () has an eventually positive solution in A(∞,∞,b) for some pos-
itive b if and only if there exists some constant K >  such that

∫ ∞

t
f
(
t,KR

(
h(t)

))
Δt < ∞. ()

Proof Suppose that x(t) is an eventually positive solution of () in A(∞,∞,b), i.e.,

lim
t→∞x(t) =∞, lim

t→∞
x(t)
R(t)

= ∞, lim
t→∞

x(t)
R(t)

= b. ()

Assume that limt→∞ z(t) <∞ (or limt→∞ z(t)
R(t)

< ∞). By Lemma . we have limt→∞ x(t) <
∞ (or limt→∞ x(t)

R(t)
< ∞), which contradicts (). Then we have

lim
t→∞ z(t) = ∞, lim

t→∞
z(t)
R(t)

=∞,

lim
t→∞ r(t)

(
r(t)zΔ(t)

)Δ = lim
t→∞

z(t)
R(t)

= ( + pη)b

and there exists T ∈ [t,∞)T such that x(t) > , x(g(t)) > , x(h(t)) ≥ b
R(h(t)) for t ∈

[T,∞)T. Integrating () from T to s ∈ [σ (T),∞)T, we obtain

r(s)
(
r(s)zΔ(s)

)Δ – r(T)
(
r(T)zΔ(T)

)Δ = –
∫ s

T
f
(
u,x

(
h(u)

))
Δu.
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Letting s → ∞, we have

∫ ∞

T
f
(
u,x

(
h(u)

))
Δu < ∞.

In view of (C), it follows that

f
(
u,

b

R

(
h(u)

)) ≤ f
(
u,x

(
h(u)

))
, u ∈ [T,∞)T ,

and
∫ ∞

T
f
(
u,

b

R

(
h(u)

))
Δu≤

∫ ∞

T
f
(
u,x

(
h(u)

))
Δu < ∞,

which means that () holds. The necessary condition is proved.
Conversely, suppose that there exists some constant K >  such that () holds. There

will be two cases to be considered:  ≤ p <  and – < p < .
Case :  ≤ p < . Take p such that p < p < ( + p)/ < , then p > (p – )/.
When p > , since limt→∞ p(t) = p and () hold, we can choose a sufficiently large

T ∈ [t,∞)T such that p(t) >  for t ∈ [T,∞)T, and

p – 


≤ p(t) ≤ p < , p(t)
R(g(t))
R(t)

≥ p – 


η, t ∈ [T,∞)T , ()
∫ ∞

T
f
(
t,KR

(
h(t)

))
Δt ≤ ( – pη)K


. ()

When p = , we can choose  < p ≤ / and the above T such that

∣∣p(t)∣∣ ≤ p, t ∈ [T,∞)T . ()

Furthermore, from (C) there exists T ∈ (T,∞)T such that g(t) ≥ T and h(t) ≥ T for
t ∈ [T,∞)T.
Define the Banach space BC [T,∞)T as in () with λ = , and let

Ω =
{
x(t) ∈ BC [T,∞)T :

K

R(t)≤ x(t)≤ KR(t)

}
. ()

It is easy to prove that Ω is a bounded, convex, and closed subset of BC [T,∞)T. By
(C), we have, for any x ∈ Ω,

f
(
t,x

(
h(t)

)) ≤ f
(
t,KR

(
h(t)

))
, t ∈ [T,∞)T .

Now we define two operators U and S: Ω → BC [T,∞)T as follows

(Ux)(t) =

{

KpηR(t) – p(T)x(g(T))

R(T)
R(t), t ∈ [T,T)T ,


KpηR(t) – p(t)x(g(t)), t ∈ [T,∞)T ,

(Sx)(t) =

{

KR(t), t ∈ [T,T)T ,

KR(t) +

∫ t
T

∫ v
T

∫ ∞
s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv, t ∈ [T,∞)T .
()
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Next, we will prove that U and S satisfy the conditions in Lemma ..
(i) We prove that Ux + Sy ∈ Ω for any x, y ∈ Ω. Note that, for any x, y ∈ Ω, K

 R(t) ≤
x(t)≤ KR(t) and K

 R(t) ≤ y(t) ≤ KR(t). For any x, y ∈ Ω and t ∈ [T,∞)T, by (), (),
and () we obtain

(Ux)(t) + (Sy)(t)

=
( + pη)


KR(t) – p(t)x

(
g(t)

)
+

∫ t

T

∫ v

T

∫ ∞

s

f (u, y(h(u)))
r(s)r(v)

ΔuΔsΔv

≥ ( + pη)


KR(t) – pηKR(t) =
 – pη


KR(t) >

K

R(t).

On the other hand, for t ∈ [T,∞)T and p(t) ≥ , we have

(Ux)(t) + (Sy)(t)

≤ ( + pη)


KR(t) –
K

p(t)R

(
g(t)

)
+
 – pη


KR(t)

≤ ( + pη)


KR(t) –
K

p – 


ηR(t) +

 – pη


KR(t)

=
 + η


KR(t) ≤ KR(t).

For t ∈ [T,∞)T, p(t) < , and p = , we have  < p ≤ / and (), and

(Ux)(t) + (Sy)(t)

≤ ( + pη)


KR(t) –Kp(t)R
(
g(t)

)
+
 – pη


KR(t)

≤ ( + pη)


KR(t) + pKR(t) +
 – pη


KR(t)

=
 + p + pη


KR(t)≤  + p


KR(t)≤ KR(t).

Similarly, we can prove that (Ux)(t) + (Sy)(t) ≥ KR(t)/ for any x, y ∈ Ω and t ∈
[T,T]T. Thenwe prove that (Ux)(t)+(Sy)(t)≤ KR(t) for any x, y ∈ Ω and t ∈ [T,T]T.
In fact, for t ∈ [T,T]T and p(t) ≥ , we have

(Ux)(t) + (Sy)(t)

=
( + pη)


KR(t) –

p(T)x(g(T))
R(T)

R(t)

≤ ( + pη)


KR(t) –
K

p – 


ηR(t) =

 + pη + η


KR(t) < KR(t).

For t ∈ [T,T]T, p(t) < , and p = , we have  < p ≤ / and (), and

(Ux)(t) + (Sy)(t)≤ ( + pη)


KR(t) + pKR(t)

=
 + pη + p


KR(t) < KR(t).

Therefore, we obtain Ux + Sy ∈ Ω for any x, y ∈ Ω.

http://www.advancesindifferenceequations.com/content/2014/1/309
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(ii) We prove thatU is a contraction mapping. In fact, noting that g(t) ≤ t and R(t) ≥ 
for t ∈ [T,∞)T, for x, y ∈ Ω we have

∣∣∣∣ (Ux)(t)
R
(t)

–
(Uy)(t)
R
(t)

∣∣∣∣ =
∣∣∣∣p(T)

R
(g(T))

R(t)R(T)
x(g(T)) – y(g(T))

R
(g(T))

∣∣∣∣
≤ p sup

t∈ [T,∞) T

∣∣∣∣ x(t)
R
(t)

–
y(t)
R
(t)

∣∣∣∣
for t ∈ [T,T]T, and

∣∣∣∣ (Ux)(t)
R
(t)

–
(Uy)(t)
R
(t)

∣∣∣∣ =
∣∣∣∣p(t)R

(g(t))
R
(t)

x(g(t)) – y(g(t))
R
(g(t))

∣∣∣∣
≤ p sup

t∈ [T,∞) T

∣∣∣∣ x(t)
R
(t)

–
y(t)
R
(t)

∣∣∣∣
for t ∈ [T,∞)T. It follows that

‖Ux –Uy‖ ≤ p‖x – y‖

for any x, y ∈ Ω. Therefore, U is a contraction mapping.
(iii) We prove that S is a completely continuous mapping.
Firstly, for t ∈ [T,∞)T, we have

(Sx)(t)≥ 

KR(t) >

K

R(t)

and

(Sx)(t)≤ 

KR(t) +

 – pη


KR(t) =
 – pη


KR(t) < KR(t).

That is, S maps Ω into Ω.
Secondly, we prove the continuity of S. For x ∈ Ω and t ∈ [T,∞)T, letting xn ∈ Ω

and ‖xn – x‖ →  as n→ ∞, we have

∣∣f (t,xn(h(t))) – f
(
t,x

(
h(t)

))∣∣ →  ()

and

∣∣f (t,xn(h(t))) – f
(
t,x

(
h(t)

))∣∣ ≤ f
(
t,KR

(
h(t)

))
as n→ ∞. For t ∈ [T,∞)T, we have∣∣∣∣ (Sxn)(t)R

(t)
–
(Sx)(t)
R
(t)

∣∣∣∣
≤ 

R
(t)

∫ t

T

∫ v

T

∫ ∞

s

|f (u,xn(h(u))) – f (u,x(h(u)))|
r(s)r(v)

ΔuΔsΔv

≤ 
R(t)

∫ ∞

T

∣∣f (u,xn(h(u))) – f
(
u,x

(
h(u)

))∣∣Δu.
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For t ∈ [T,T]T, we have (Sxn)(t) – (Sx)(t) = . Then we obtain

‖Sxn – Sx‖ ≤ sup
t∈ [t,∞) T


R(t)

∫ ∞

T

∣∣f (u,xn(h(u))) – f
(
u,x

(
h(u)

))∣∣Δu.

Similar to Chen [], by () and employing Lebesgue’s dominated convergence theorem
[, Chapter ], we conclude that

‖Sxn – Sx‖ → 

as n→ ∞. That is, S is continuous.
Thirdly, we prove that SΩ is relatively compact. According to Lemma ., it suffices

to show that SΩ is bounded, uniformly Cauchy and equi-continuous. It is obvious that
SΩ is bounded. Since

∫ ∞
t

f (t,KR(h(t)))Δt < ∞ and R(t) → ∞ as t → ∞, for any
given ε >  there exists a sufficiently large T ∈ [T,∞)T such that R(T) > K/ε and


R(T)

∫ ∞
T

f (t,KR(h(t)))Δt < ε/. Then, for any x ∈ Ω and t, t ∈ [T,∞)T, we have

∣∣∣∣ (Sx)(t)R
(t)

–
(Sx)(t)
R
(t)

∣∣∣∣
≤

∣∣∣∣ 
R
(t)

∫ t

T

∫ v

T

∫ ∞

s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv

–


R
(t)

∫ t

T

∫ v

T

∫ ∞

s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv
∣∣∣∣ + 


K

∣∣∣∣ 
R(t)

–


R(t)

∣∣∣∣
≤ 

R
(t)

∫ t

T

∫ v

T

∫ ∞

s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv

+


R
(t)

∫ t

T

∫ v

T

∫ ∞

s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv +


K

(


R(t)
+


R(t)

)

≤ 
R(T)

∫ ∞

T
f
(
u,x

(
h(u)

))
Δu +


R(T)

∫ ∞

T
f
(
u,x

(
h(u)

))
Δu +

K
R(T)

<
ε


+

ε


+

ε


= ε.

Hence, SΩ is uniformly Cauchy.
Then, for x ∈ Ω, if t, t ∈ T with T ≤ t < t < T + , we have

∣∣∣∣ (Sx)(t)R
(t)

–
(Sx)(t)
R
(t)

∣∣∣∣
≤

∣∣∣∣ 
R
(t)

∫ t

T

∫ v

T

∫ ∞

s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv

–


R
(t)

∫ t

T

∫ v

T

∫ ∞

s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv
∣∣∣∣ + 


K

∣∣∣∣ 
R(t)

–


R(t)

∣∣∣∣
≤ 

R
(T)

∫ t

t

∫ v

T

∫ ∞

s

f (u,KR(h(u)))
r(s)r(v)

ΔuΔsΔv +


K

∣∣∣∣ 
R(t)

–


R(t)

∣∣∣∣.
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If t, t ∈ T with t < T ≤ t < T + , we have
∣∣∣∣ (Sx)(t)R

(t)
–
(Sx)(t)
R
(t)

∣∣∣∣
≤ 

R
(t)

∫ t

T

∫ v

T

∫ ∞

s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv +


K

∣∣∣∣ 
R(t)

–


R(t)

∣∣∣∣
≤ 

R
(T)

∫ t

T

∫ v

T

∫ ∞

s

f (u,KR(h(u)))
r(s)r(v)

ΔuΔsΔv +


K

∣∣∣∣ 
R(t)

–


R(t)

∣∣∣∣.
If t, t ∈ [T,T]T, we always have

∣∣∣∣ (Sx)(t)R
(t)

–
(Sx)(t)
R
(t)

∣∣∣∣ = 

K

∣∣∣∣ 
R(t)

–


R(t)

∣∣∣∣.
Therefore, there exists  < δ <  such that

∣∣∣∣ (Sx)(t)R
(t)

–
(Sx)(t)
R
(t)

∣∣∣∣ < ε

whenever t, t ∈ [T,T + ]T and |t – t| < δ. That is, SΩ is equi-continuous.
It follows from Lemma . that SΩ is relatively compact, and then S is completely

continuous.
By Lemma ., there exists x ∈ Ω such that (U + S)x = x, which implies that x(t) is a

solution of (). In particular, for t ∈ [T,∞)T we have

x(t) =
( + pη)K


R(t) – p(t)x

(
g(t)

)
+

∫ t

T

∫ v

T

∫ ∞

s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv.

Since
∫ t

T

∫ v

T

∫ ∞

s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv≤
∫ t

T

∫ v

T

∫ ∞

s

f (u,KR(h(u)))
r(s)r(v)

ΔuΔsΔv

for t ∈ [T,∞)T and

lim
t→∞


R(t)

∫ t

T

∫ v

T

∫ ∞

s

f (u,KR(h(u)))
r(s)r(v)

ΔuΔsΔv

= lim
t→∞

∫ ∞

t
f
(
u,KR

(
h(u)

))
Δu = ,

we have

lim
t→∞

z(t)
R(t)

=
( + pη)K


and lim

t→∞
x(t)
R(t)

=
( + pη)K
( + pη)

> .

It is obvious that

lim
t→∞x(t) =∞, lim

t→∞
x(t)
R(t)

= ∞.

The sufficiency holds when ≤ p < .
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Case : – < p < . Take p so that –p < p < ( – p)/ < , then p < ( – p)/. Since
limt→∞ p(t) = p and () hold, we can choose a sufficiently large T ∈ [t,∞)T such that

p – 


≤ –p(t) ≤ p < , t ∈ [T,∞)T . ()

From (C) there exists T ∈ (T,∞)T such that g(t) ≥ T and h(t) ≥ T for t ∈ [T,∞)T.
Similarly, we introduce the Banach space BC [T,∞)T and its subsetΩ as in (). Define
the operator S as in () and the operator U ′

 on Ω as follows:

(
U ′

x
)
(t) =

{
–

KpηR(t) – p(T)x(g(T))
R(T)

R(t), t ∈ [T,T)T ,
– 

KpηR(t) – p(t)x(g(t)), t ∈ [T,∞)T .

Next, we prove that U ′
x + Sy ∈ Ω for any x, y ∈ Ω. In fact, for any x, y ∈ Ω and t ∈

[T,∞)T, by () and () we obtain

(
U ′

x
)
(t) + (Sy)(t)

=
( – pη)


KR(t) – p(t)x

(
g(t)

)
+

∫ t

T

∫ v

T

∫ ∞

s

f (u, y(h(u)))
r(s)r(v)

ΔuΔsΔv

≥ ( – pη)


KR(t) +
K

p – 


ηR(t)

=
 – pη – η


KR(t) >

K

R(t)

and

(
U ′

x
)
(t) + (Sy)(t) ≤ ( – pη)


KR(t) + pηKR(t) +

 – pη


KR(t)

=
 + pη


KR(t) < KR(t).

That is, U ′
x + Sy ∈ Ω for any x, y ∈ Ω.

The remainder of the proof is similar to the case  ≤ p <  and we omit it here. By
Lemma ., there exists x ∈ Ω such that (U ′

 +S)x = x, which implies that x(t) is a solution
of (). In particular, for t ∈ [T,∞)T we have

x(t) =
( – pη)K


R(t) – p(t)x

(
g(t)

)
+

∫ t

T

∫ v

T

∫ ∞

s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv.

Letting t → ∞, we have

lim
t→∞

z(t)
R(t)

=
( – pη)K


and lim

t→∞
x(t)
R(t)

=
( – pη)K
( + pη)

> .

It is obvious that

lim
t→∞x(t) =∞, lim

t→∞
x(t)
R(t)

= ∞.

The sufficiency holds when – < p < .
The proof is complete. �
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Theorem . Equation () has an eventually positive solution in A(∞,b, ) for some pos-
itive b if and only if there exists some constant K >  such that

∫ ∞

t

∫ ∞

s

f (u,KR(h(u)))
r(s)

ΔuΔs < ∞. ()

Proof Suppose that x(t) is an eventually positive solution of () in A(∞,b, ), i.e.,

lim
t→∞x(t) =∞, lim

t→∞
x(t)
R(t)

= b, lim
t→∞

x(t)
R(t)

= .

Similarly, we have

lim
t→∞ z(t) = ∞,

lim
t→∞ r(t)zΔ(t) = lim

t→∞
z(t)
R(t)

= ( + pη)b,

lim
t→∞ r(t)

(
r(t)zΔ(t)

)Δ = lim
t→∞

z(t)
R(t)

= 

and there exists T ∈ [t,∞)T such that x(t) ≥ bR(t)/, x(g(t)) ≥ bR(g(t))/, x(h(t)) ≥
bR(h(t))/ for t ∈ [T,∞)T. Integrating () from s ∈ [T,∞)T to v ∈ [σ (s),∞)T, we obtain

r(v)
(
r(v)zΔ(v)

)Δ – r(s)
(
r(s)zΔ(s)

)Δ = –
∫ v

s
f
(
u,x

(
h(u)

))
Δu.

Letting v → ∞, we have

r(s)
(
r(s)zΔ(s)

)Δ =
∫ ∞

s
f
(
u,x

(
h(u)

))
Δu,

or

(
r(s)zΔ(s)

)Δ =
∫ ∞
s f (u,x(h(u)))Δu

r(s)
. ()

Integrating () from T to t ∈ [σ (T),∞)T, we have

r(t)zΔ(t) – r(T)zΔ(T) =
∫ t

T

∫ ∞

s

f (u,x(h(u)))
r(s)

ΔuΔs.

Letting t → ∞, we have

∫ ∞

T

∫ ∞

s

f (u,x(h(u)))
r(s)

ΔuΔs < ∞.

In view of (C), it follows that

f
(
u,

b

R

(
h(u)

)) ≤ f
(
u,x

(
h(u)

))
, u ∈ [T,∞)T ,
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and
∫ ∞

T

∫ ∞

s

f (u,bR(h(u))/)
r(s)

ΔuΔs≤
∫ ∞

T

∫ ∞

s

f (u,x(h(u)))
r(s)

ΔuΔs < ∞,

which means that () holds. The necessary condition is proved.
Conversely, suppose that there exists some constant K >  such that () holds. There

will be two cases to be considered:  ≤ p <  and – < p < .
Case :  ≤ p < . Take p such that p < p < ( + p)/ < , then p > (p – )/.
When p > , since limt→∞ p(t) = p and () hold, we can choose a sufficiently large

T ∈ [t,∞)T such that p(t) >  for t ∈ [T,∞)T, and

p – 


≤ p(t) ≤ p < , p(t)
R(g(t))
R(t)

≥ p – 


η, t ∈ [T,∞)T ,∫ ∞

T

∫ ∞

s

f (u,KR(h(u)))
r(s)

ΔuΔs≤ ( – pη)K


.

When p = , we can choose  < p ≤ / and the above T such that

∣∣p(t)∣∣ ≤ p, t ∈ [T,∞)T .

Furthermore, from (C) there exists T ∈ (T,∞)T such that g(t) ≥ T and h(t) ≥ T for
t ∈ [T,∞)T.
Define the Banach space BC [T,∞)T as in () with λ = , and let

Ω =
{
x(t) ∈ BC [T,∞)T :

K

R(t) ≤ x(t)≤ KR(t)

}
. ()

It is easy to prove that Ω is a bounded, convex, and closed subset of BC [T,∞)T. By
(C), we have, for any x ∈ Ω,

f
(
t,x

(
h(t)

)) ≤ f
(
t,KR

(
h(t)

))
, t ∈ [T,∞)T .

Now we define two operators U and S : Ω → BC [T,∞)T as follows:

(Ux)(t) =

{

KpηR(t) – p(T)x(g(T))

R(T)
R(t), t ∈ [T,T)T ,


KpηR(t) – p(t)x(g(t)), t ∈ [T,∞)T ,

(Sx)(t) =

{

KR(t), t ∈ [T,T)T ,

KR(t) +

∫ ∞
t

∫ ∞
v

∫ ∞
s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv, t ∈ [T,∞)T .
()

Next, we can prove that U and S satisfy the conditions in Lemma .. The proof is
similar to the case ≤ p <  of Theorem . and omitted here.
By Lemma ., there exists x ∈ Ω such that (U + S)x = x, which implies that x(t) is a

solution of (). In particular, for t ∈ [T,∞)T we have

x(t) =
( + pη)K


R(t) – p(t)x

(
g(t)

)
+

∫ ∞

t

∫ ∞

v

∫ ∞

s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv.
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Since

∫ ∞

t

∫ ∞

v

∫ ∞

s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv≤
∫ ∞

t

∫ ∞

v

∫ ∞

s

f (u,KR(h(u)))
r(s)r(v)

ΔuΔsΔv

for t ∈ [T,∞)T and

lim
t→∞


R(t)

∫ ∞

t

∫ ∞

v

∫ ∞

s

f (u,KR(h(u)))
r(s)r(v)

ΔuΔsΔv

= – lim
t→∞

∫ ∞

t

∫ ∞

s

f (u,KR(h(u)))
r(s)

ΔuΔs = ,

we have

lim
t→∞

z(t)
R(t)

=
( + pη)K


and lim

t→∞
x(t)
R(t)

=
( + pη)K
( + pη)

> ,

which implies that

lim
t→∞x(t) =∞, lim

t→∞
x(t)
R(t)

= .

The sufficiency holds when ≤ p < .
Case : – < p < . We introduce the Banach space BC [T,∞)T and its subset Ω as

in (). Define the operator S as in () and the operator U ′
 on Ω as follows:

(
U ′

x
)
(t) =

{
–

KpηR(t) – p(T)x(g(T))
R(T)

R(t), t ∈ [T,T)T ,
– 

KpηR(t) – p(t)x(g(t)), t ∈ [T,∞)T .

The following proof is similar to the case – < p <  in Theorem . and we omit it
here. By Lemma ., there exists x ∈ Ω such that (U ′

 + S)x = x, which implies that x(t) is
a solution of (). In particular, for t ∈ [T,∞)T we have

x(t) =
( – pη)K


R(t) – p(t)x

(
g(t)

)
+

∫ ∞

t

∫ ∞

v

∫ ∞

s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv.

Similarly, we have

lim
t→∞

z(t)
R(t)

=
( – pη)K


and lim

t→∞
x(t)
R(t)

=
( – pη)K
( + pη)

> ,

which implies that

lim
t→∞x(t) =∞, lim

t→∞
x(t)
R(t)

= .

The sufficiency holds when – < p < .
The proof is complete. �
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Theorem. Equation ()has an eventually positive solution inA(b, , ) for some positive
b if and only if there exists some constant K >  such that

∫ ∞

t

∫ ∞

v

∫ ∞

s

f (u,K )
r(s)r(v)

ΔuΔsΔv < ∞. ()

Proof Suppose that x(t) is an eventually positive solution of () in A(b, , ), i.e.,

lim
t→∞x(t) = b, lim

t→∞
x(t)
R(t)

= , lim
t→∞

x(t)
R(t)

= .

Then

lim
t→∞ z(t) = ( + p)b,

lim
t→∞ r(t)zΔ(t) = lim

t→∞
z(t)
R(t)

= ,

lim
t→∞ r(t)

(
r(t)zΔ(t)

)Δ = lim
t→∞

z(t)
R(t)

= ,

and there exists T ∈ [t,∞)T such that x(t) ≥ b/, x(g(t)) ≥ b/, x(h(t)) ≥ b/ for t ∈
[T,∞)T. Integrating () from s ∈ [T,∞)T to v ∈ [σ (s),∞)T, we obtain

r(v)
(
r(v)zΔ(v)

)Δ – r(s)
(
r(s)zΔ(s)

)Δ = –
∫ v

s
f
(
u,x

(
h(u)

))
Δu.

Letting v → ∞, we have

r(s)
(
r(s)zΔ(s)

)Δ =
∫ ∞

s
f
(
u,x

(
h(u)

))
Δu,

or

(
r(s)zΔ(s)

)Δ =
∫ ∞
s f (u,x(h(u)))Δu

r(s)
. ()

Integrating () from v ∈ [T,∞)T to w ∈ [σ (v),∞)T, we have

r(w)zΔ(w) – r(v)zΔ(v) =
∫ w

v

∫ ∞

s

f (u,x(h(u)))
r(s)

ΔuΔs.

Letting w → ∞, we have

r(v)zΔ(v) = –
∫ ∞

v

∫ ∞

s

f (u,x(h(u)))
r(s)

ΔuΔs,

or

zΔ(v) = –
∫ ∞

v

∫ ∞

s

f (u,x(h(u)))
r(s)r(v)

ΔuΔs. ()

Integrating () from T to t ∈ [σ (T),∞)T, we have

z(t) – z(T) = –
∫ t

T

∫ ∞

v

∫ ∞

s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv.
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Letting t → ∞, we have

∫ ∞

T

∫ ∞

v

∫ ∞

s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv <∞.

In view of (C), it follows that

f
(
u,

b


)
≤ f

(
u,x

(
h(u)

))
, u ∈ [T,∞)T ,

and
∫ ∞

T

∫ ∞

v

∫ ∞

s

f (u,b/)
r(s)r(v)

ΔuΔsΔv≤
∫ ∞

T

∫ ∞

v

∫ ∞

s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv <∞,

which means that () holds. The necessary condition is proved.
Conversely, suppose that there exists some constant K >  such that () holds. There

will be two cases to be considered:  ≤ p <  and – < p < .
Case :  ≤ p < . Take p such that p < p < ( + p)/ < , then p > (p – )/.
When p > , since limt→∞ p(t) = p and () hold, we can choose a sufficiently large

T ∈ [t,∞)T such that p(t) >  for t ∈ [T,∞)T, and

p – 


≤ p(t) ≤ p < , t ∈ [T,∞)T ,∫ ∞

T

∫ ∞

v

∫ ∞

s

f (u,K )
r(s)r(v)

ΔuΔsΔv≤ ( – p)K


.

When p = , we can choose  < p ≤ / and the above T such that

∣∣p(t)∣∣ ≤ p, t ∈ [T,∞)T .

Furthermore, from (C) there exists T ∈ (T,∞)T such that g(t) ≥ T and h(t) ≥ T for
t ∈ [T,∞)T.
Define the Banach space BC [T,∞)T as in () with λ = , and let

Ω =
{
x(t) ∈ BC [T,∞)T :

K


≤ x(t)≤ K
}
. ()

It is easy to prove that Ω is a bounded, convex, and closed subset of BC [T,∞)T. By
(C), we have, for any x ∈ Ω,

f
(
t,x

(
h(t)

)) ≤ f (t,K ), t ∈ [T,∞)T .

Now we define two operators U and S :Ω → BC [T,∞)T as follows:

(Ux)(t) =

{

Kp – p(t)x(g(t)), t ∈ [T,∞)T ,
(Ux)(T), t ∈ [T,T)T ,

(Sx)(t) =

{

K +

∫ ∞
t

∫ ∞
v

∫ ∞
s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv, t ∈ [T,∞)T ,
(Sx)(T), t ∈ [T,T)T .

()
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Next, we can prove that U and S satisfy the conditions in Lemma .. The proof is
similar to the case ≤ p <  of Theorem . and omitted here.
By Lemma ., there exists x ∈ Ω such that (U + S)x = x, which implies that x(t) is a

solution of (). In particular, for t ∈ [T,∞)T we have

x(t) =
( + p)K


– p(t)x

(
g(t)

)
+

∫ ∞

t

∫ ∞

v

∫ ∞

s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv.

Letting t → ∞, we have

lim
t→∞ z(t) =

( + p)K


and lim
t→∞x(t) =

( + p)K
( + p)

> ,

which implies that

lim
t→∞

x(t)
R(t)

= lim
t→∞

x(t)
R(t)

= .

The sufficiency holds when ≤ p < .
Case : – < p < . We introduce the Banach space BC [T,∞)T and its subset Ω as

in (). Define the operator S as in () and the operator U ′
 on Ω as follows:

(
U ′

x
)
(t) =

{
–

Kp – p(t)x(g(t)), t ∈ [T,∞)T ,
(U ′

x)(T), t ∈ [T,T)T .

The following proof is similar to the case – < p <  in Theorem . and we omit it
here. By Lemma ., there exists x ∈ Ω such that (U ′

 + S)x = x, which implies that x(t) is
a solution of (). In particular, for t ∈ [T,∞)T we have

x(t) =
( – p)K


– p(t)x

(
g(t)

)
+

∫ ∞

t

∫ ∞

v

∫ ∞

s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv.

Similarly, we have

lim
t→∞ z(t) =

( – p)K


and lim
t→∞x(t) =

( – p)K
( + p)

> ,

which implies that

lim
t→∞

x(t)
R(t)

= lim
t→∞

x(t)
R(t)

= .

The sufficiency holds when – < p < .
The proof is complete. �

Theorem . Equation () has an eventually positive solution in A(∞,∞, ), then

∫ ∞

t
f
(
u,



R

(
h(u)

))
Δu < ∞,

∫ ∞

t

∫ ∞

s

f (u,R(h(u)))
r(s)

ΔuΔs = ∞. ()
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Conversely, if there exists a nonnegative constant M such that |p(t)R(t)| ≤ M and

∫ ∞

t
f
(
u,R

(
h(u)

))
Δu < ∞,

∫ ∞

t

∫ ∞

s

f (u, (M + /)R(h(u)))
r(s)

ΔuΔs =∞, ()

then () has an eventually positive solution in A(∞,∞, ).

Proof Suppose that x(t) is an eventually positive solution of () in A(∞,∞, ), i.e.,

lim
t→∞x(t) =∞, lim

t→∞
x(t)
R(t)

= ∞, lim
t→∞

x(t)
R(t)

= .

Similarly, we have

lim
t→∞ z(t) = ∞,

lim
t→∞ r(t)zΔ(t) = lim

t→∞
z(t)
R(t)

=∞,

lim
t→∞ r(t)

(
r(t)zΔ(t)

)Δ = lim
t→∞

z(t)
R(t)

= ,

and there exists T ∈ [t,∞)T such that R(t)/ ≤ x(t) ≤ R(t) for t ∈ [T,∞)T. From
(C) there exists T ∈ (T,∞)T such that g(t) ≥ T and h(t) ≥ T for t ∈ [T,∞)T. Inte-
grating () from T to s ∈ [σ (T),∞)T, we obtain

r(s)
(
r(s)zΔ(s)

)Δ – r(T)
(
r(T)zΔ(T)

)Δ = –
∫ s

T
f
(
u,x

(
h(u)

))
Δu.

Letting s → ∞, we have

r(T)
(
r(T)zΔ(T)

)Δ =
∫ ∞

T
f
(
u,x

(
h(u)

))
Δu, ()

which implies that

∫ ∞

T
f
(
u,



R

(
h(u)

))
Δu < ∞

by the monotonicity of f and R(h(t))/ ≤ x(h(t)) for t ∈ [T,∞)T. Substituting s for T

in (), we have

(
r(s)zΔ(s)

)Δ =
∫ ∞
s f (u,x(h(u)))Δu

r(s)
. ()

Integrating () from T to t ∈ [σ (T),∞)T, we have

r(t)zΔ(t) – r(T)zΔ(T) =
∫ t

T

∫ ∞

s

f (u,x(h(u)))
r(s)

ΔuΔs.

Letting t → ∞, we have

∫ ∞

T

∫ ∞

s

f (u,x(h(u)))
r(s)

ΔuΔs =∞.
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By the monotonicity of f and x(h(t))≤ R(h(t)) for t ∈ [T,∞)T, it follows that

f
(
u,x

(
h(u)

)) ≤ f
(
u,R

(
h(u)

))
, u ∈ [T,∞)T ,

and
∫ ∞

T

∫ ∞

s

f (u,R(h(u)))
r(s)

ΔuΔs≥
∫ ∞

T

∫ ∞

s

f (u,x(h(u)))
r(s)

ΔuΔs =∞,

which means that () holds. The necessary condition is proved.
Conversely, if there exists a positive constantM such that |p(t)R(t)| ≤ M and () hold,

then limt→∞ p(t) =  and we can choose a sufficiently large T ∈ [t,∞)T such that

∣∣p(t)∣∣ ≤ p < ,
∣∣p(t)R(t)

∣∣ ≤M,
(
M +




)
R(t) ≤ 


R(t), t ∈ [T,∞)T ,

∫ ∞

T
f
(
u,R

(
h(u)

))
Δu≤  – p


.

From (C) there exists T ∈ (T,∞)T such that g(t)≥ T and h(t)≥ T for t ∈ [T,∞)T.
Define the Banach space BC [T,∞)T as in () with λ = , and let

Ω =
{
x(t) ∈ BC [T,∞)T :

(
M +




)
R(t) ≤ x(t)≤ R(t)

}
.

It is easy to prove that Ω is a bounded, convex, and closed subset of BC [T,∞)T. Ac-
cording to (C) and (C), we have, for any x ∈ Ω,

x
(
h(t)

) ≥
(
M +




)
R

(
h(t)

)
, f

(
t,x

(
h(t)

)) ≤ f
(
t,R

(
h(t)

))
, t ∈ [T,∞)T .

Now we define two operators U and S :Ω → BC [T,∞)T as follows:

(Ux)(t) =

{
(M + 

 )R(t) – p(T)x(g(T))
R(T)

R(t), t ∈ [T,T)T ,
(M + 

 )R(t) – p(t)x(g(t)), t ∈ [T,∞)T ,

(Sx)(t) =

{
(M + 

 )R(t), t ∈ [T,T)T ,
(M + 

 )R(t) +
∫ t
T

∫ v
T

∫ ∞
s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv, t ∈ [T,∞)T .

Next, we can prove that U and S satisfy the conditions in Lemma .. The proof is
similar to Theorem . and omitted here. By Lemma ., there exists x ∈ Ω such that
(U + S)x = x, which implies that x(t) is a solution of (). In particular, for t ∈ [T,∞)T we
have

x(t) =
(
M +




)
R(t) – p(t)x

(
g(t)

)
+

∫ t

T

∫ v

T

∫ ∞

s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv.

Since x(h(t))≥ (M + /)R(h(t)) and

∫ t

T

∫ v

T

∫ ∞

s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv≤
∫ t

T

∫ v

T

∫ ∞

s

f (u,R(h(u)))
r(s)r(v)

ΔuΔsΔv
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for t ∈ [T,∞)T, we have

lim
t→∞

R(t)
R(t)

= lim
t→∞

 +
∫ t
t


r(s)

Δs

 +
∫ t
t

∫ s
t


r(u)r(s)

ΔuΔs
= lim

t→∞
∫ t

t


r(u)
Δu

= ,

lim
t→∞


R(t)

∫ t

T

∫ v

T

∫ ∞

s

f (u,R(h(u)))
r(s)r(v)

ΔuΔsΔv

= lim
t→∞

∫ ∞

t
f
(
u,R

(
h(u)

))
Δu = ,

lim
t→∞


R(t)

∫ t

T

∫ v

T

∫ ∞

s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv

= lim
t→∞

∫ t

T

∫ ∞

s

f (u,x(h(u)))
r(s)

ΔuΔs

≥ lim
t→∞

∫ t

T

∫ ∞

s

f (u, (M + /)R(h(u)))
r(s)

ΔuΔs =∞.

It follows that

lim
t→∞ z(t) = ∞, lim

t→∞
z(t)
R(t)

=∞, lim
t→∞

z(t)
R(t)

= .

Since |p(t)x(g(t))| ≤ |p(t)R(t)| ≤ M, by Lemma . we have

lim
t→∞x(t) =∞, lim

t→∞
x(t)
R(t)

= ∞, lim
t→∞

x(t)
R(t)

= .

The proof is complete. �

When p(t) ≥  eventually, we have the following theorem.

Theorem . If there exist a constant K >  and T ∈ [t,∞)T with T >  such that, for
t ∈ [T,∞)T,

 ≤ p(t) ≤ Kg(t)e–t , ()∫ ∞

t

∫ ∞

v

∫ ∞

s

f (u, e–h(u))
r(s)r(v)

ΔuΔsΔv≥ (K + )e–t ()

and ∫ ∞

t

∫ ∞

v

∫ ∞

s

f (u, /h(u))
r(s)r(v)

ΔuΔsΔv≤ 
t
, ()

then () has an eventually positive solution in A(, , ).

Proof From (C) there exists T ∈ (T,∞)T such that g(t) ≥ T and h(t) ≥ T for t ∈
[T,∞)T. Define the Banach space BC [T,∞)T as in () with λ = , and let

Ω =
{
x(t) ∈ BC [T,∞)T : x(t) ∈ [

e–t , /t
]
for t ∈ [T,∞)T and

x(t) ∈ [
e–T , /t

]
for t ∈ [T,T]T

}
.

http://www.advancesindifferenceequations.com/content/2014/1/309


Qiu Advances in Difference Equations 2014, 2014:309 Page 22 of 25
http://www.advancesindifferenceequations.com/content/2014/1/309

It is easy to prove thatΩ is a bounded, convex, and closed subset of BC [T,∞)T. Define
an operator S on Ω as follows:

(Sx)(t) =

{
–p(t)x(g(t)) +

∫ ∞
t

∫ ∞
v

∫ ∞
s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv, t ∈ [T,∞)T ,
(Sx)(T), t ∈ [T,T)T .

We prove that Sx ∈ Ω for any x ∈ Ω. In fact, from ()-(), for t ∈ [T,∞)T we have

(Sx)(t) = –p(t)x
(
g(t)

)
+

∫ ∞

t

∫ ∞

v

∫ ∞

s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv

≤
∫ ∞

t

∫ ∞

v

∫ ∞

s

f (u, /h(u))
r(s)r(v)

ΔuΔsΔv≤ 
t

and

(Sx)(t) ≥ –
p(t)
g(t)

+
∫ ∞

t

∫ ∞

v

∫ ∞

s

f (u, e–h(u))
r(s)r(v)

ΔuΔsΔv

≥ –Ke–t + (K + )e–t = e–t .

It follows that e–T ≤ (Sx)(t)≤ /t for t ∈ [T,T]T. Hence, Sx ∈ Ω for any x ∈ Ω. Simi-
larly, we can prove that the operatorsU =  and S satisfy all the conditions in Lemma ..
The rest of the proof is similar to that of Theorem . and omitted here. By Lemma .,
there exists x ∈ Ω such that Sx = x, which implies that x(t) is a solution of (). In partic-
ular, for t ∈ [T,∞)T we have

x(t) = –p(t)x
(
g(t)

)
+

∫ ∞

t

∫ ∞

v

∫ ∞

s

f (u,x(h(u)))
r(s)r(v)

ΔuΔsΔv.

In view of (C), for any x ∈ Ω we have

f
(
t,x

(
h(t)

)) ≤ f
(
t, /h(t)

)
, t ∈ [T,∞)T .

Letting t → ∞, we obtain

lim
t→∞ z(t) =  and lim

t→∞x(t) = ,

which implies that

lim
t→∞

x(t)
R(t)

= lim
t→∞

x(t)
R(t)

= .

The proof is complete. �

While p(t) is eventually negative, we have another result. The proof is similar to that of
Theorem . and hence we omit it here.

Theorem . If there exists T ∈ [t,∞)T with T >  such that, for t ∈ [T,∞)T,

p(t)e–g(t) ≤ –e–t
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and
∫ ∞

t

∫ ∞

v

∫ ∞

s

f (u, /h(u))
r(s)r(v)

ΔuΔsΔv≤ 
t
+
p(t)
g(t)

,

then () has an eventually positive solution in A(, , ).

4 Examples
In this section, the application of our results will be shown in three examples. The first
example is given to demonstrate Theorems .-..

Example . Let c ≥  and T =
⋃∞

n=[(n – )c, nc]. Consider the equation

(
t
(
t
(
x(t) –

t + 
t

x(t – c)
)Δ)Δ)Δ

+
(t + σ (t))x(t)

t(σ (t))( + t)
= , ()

where r(t) = r(t) = t, p(t) = –(t+)/t, p = –/, g(t) = t–c, h(t) = t, f (t,x) = (t+σ (t))x(t)
t(σ (t))(+t) ,

t = c.
It is obvious that the coefficients of () satisfy (C)-(C), and by (C) we have

R(t) =  +
∫ t

c


s
Δs≤  +


c
(t – c) =

t
c
<  + t,

R(t) =  +
∫ t

c

∫ s

c


u · sΔuΔs≤  +


c

∫ t

c
sΔs≤  +

t – c

c
<  + t.

Therefore,

∫ ∞

c
f
(
t,R

(
h(t)

))
Δt =

∫ ∞

c

(t + σ (t))R(t)
t(σ (t))( + t)

Δt <
∫ ∞

c

t + σ (t)
t(σ (t))

Δt =

c

< ∞,

∫ ∞

c

∫ ∞

s

f (u,R(h(u)))
r(s)

ΔuΔs =
∫ ∞

c

∫ ∞

s

(u + σ (u))R(u)
u(σ (u))( + u)s

ΔuΔs

<
∫ ∞

c

∫ ∞

s

u + σ (u)
u(σ (u))s

ΔuΔs =
∫ ∞

c


s

Δs < ∞,

∫ ∞

c

∫ ∞

v

∫ ∞

s

f (u, )
r(s)r(v)

ΔuΔsΔv

<
∫ ∞

c

∫ ∞

v

∫ ∞

s

u + σ (u)
u(σ (u))s · vΔuΔsΔv

=
∫ ∞

c

∫ ∞

v


vs

ΔsΔv =
∫ ∞

c

∫ σ (s)

c


vs

ΔvΔs <

c

∫ ∞

c


s

Δs < ∞,

∫ ∞

c

∫ ∞

s

f (u,R(h(u)))
r(s)

ΔuΔs <
∫ ∞

c

∫ ∞

s

u + σ (u)
u(σ (u))s

ΔuΔs =
∫ ∞

c


s

Δs < ∞.

By Theorems .-., we see that () has eventually positive solutions x(t) ∈ A(∞,
∞,b), x(t) ∈ A(∞,b, ), x(t) ∈ A(b, , ), but it has no eventually positive solution in
A(∞,∞, ).

Then we give the second example to demonstrate Theorem ..
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Example . For any given time scale T, let t ≥ . Consider the equation

((((
 +


t

)
x(t)

)Δ)Δ)Δ

+

t
x
( √t

)
= , ()

where r(t) = r(t) = , p(t) = /t, p = , g(t) = t, h(t) = √t, f (t,x) = x/t.
It is obvious that the coefficients of () satisfy (C)-(C), and by (C) we have

R(t) =  +
∫ t

t
Δs =  + t – t ≤ t ≤ t,

R(t) =  +
∫ t

t

∫ s

t
ΔuΔs =  +

∫ t

t
(s – t)Δs

<  +



∫ t

t

(
s + σ (s)

)
Δs =  +



(
t – t

) ≤ t.

Therefore,

∣∣p(t)R(t)
∣∣ ≤ ,∫ ∞

t
f
(
u,R

(
h(u)

))
Δu≤

∫ ∞

t

u/

u
Δu =

∫ ∞

t


u/

Δu < ∞,

∫ ∞

t

∫ ∞

s

f (u, (M + /)R(h(u)))
r(s)

ΔuΔs

>
∫ ∞

t

∫ ∞

s
f (u,M + /)ΔuΔs =

(
M +




)∫ ∞

t

∫ ∞

s


u

ΔuΔs

≥
(
M +




)∫ ∞

t


s
Δs =∞.

It follows that () has an eventually positive solution x(t) ∈ A(∞,∞, ) in terms of The-
orem ..

The third example illustrates Theorem ..

Example . Let T = [,∞). Consider the equation

(
e–

t

(
e–

t

(
x(t) + (t – )e–tx(t – )

)Δ)Δ)Δ + e–tx
(
t


)
= , ()

where r(t) = e–t/, r(t) = e–t/, p(t) = (t – )e–t , p = , g(t) = t – , h(t) = t/, f (t,x) = e–tx.
It is obvious that the coefficients of () satisfy (C)-(C), and we have

∫ ∞

t

∫ ∞

v

∫ ∞

s

f (u, e–h(u))
r(s)r(v)

ΔuΔsΔv

=
∫ ∞

t

∫ ∞

v

∫ ∞

s

e–u/

e–s/ · e–v/ dudsdv

=



e–

 t ,
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∫ ∞

t

∫ ∞

v

∫ ∞

s

f (u, /h(u))
r(s)r(v)

ΔuΔsΔv

=
∫ ∞

t

∫ ∞

v

∫ ∞

s

/u · e–u
e–s/ · e–v/ dudsdv

≤
∫ ∞

t

∫ ∞

v

∫ ∞

s

e–u

e–s/ · e–v/ dudsdv

=


e–


 t .

Take K = , and there exists a sufficiently large T ∈ [,∞) such that, for t ∈ [T,∞), the
conditions ()-() hold. By Theorem ., we see that () has an eventually positive
solution x(t) ∈ A(, , ).
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