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Abstract
This paper studies the existence of the random attractor for a
Klein-Gordon-Schödinger system under a small ε-random perturbation on a high
dimensional infinite lattice. Firstly, we prove the asymptotic compactness of the
random dynamical system and obtain the random attractor. Then, by comparing to
the case without random perturbation (ε = 0), we show the upper semicontinuity of
the attractors.
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1 Introduction
In this paper, we consider the discrete Klein-Gordon-Schrödinger system with a small
random perturbation,

i
(
duj
dt

+ αuj
)
– (Au)j + ujvj = fj(t) + εajuj

dw
j

dt
,

dvj
dt

+ (Av)j +μ
dvj
dt

+ vj – |uj| = gj(t) + εbj
dw

j

dt
,

(.)

with initial conditions

uj() = uj, vj() = vj, v̇j() = vj,

where j ∈ Z
n, n ≤ , t > , Z is the integer set, α, μ, and ε are positive constants, i = –,

a = (aj)j∈Zn ∈ �, and b = (bj)j∈Zn ∈ �, f (t) = (fj(t))j∈Zn , g(t) = (gj(t))j∈Zn ∈ Cb(R,�), the
space of bounded continuous functions from R into �. {w

j (t) : j ∈ Z
n} and {w

j (t) : j ∈ Z
n}

are two independent two-side real valued standard Wiener processes, linear operator A
and space � will be described in detail in the next section.
The coupled Klein-Gordon-Schrödinger (KGS) system is an important model in non-

linear science. It is encountered in several diverse branch of physics, for example in the
description of the interaction of a scalar nucleon interacting with a neutral scalar meson,
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as in the following nonautonomous KGS equations in R:

i(ut + αu) +�u + uv = f (t,x),

vtt –�v + νvt +μv – β|u| = g(t,x),

where u denotes a complex scalar nucleon field and v represents a real meson field; the
complex-valued function f (t,x) and the real-valued function g(x, t) both are the time-
dependent external sources. By using the Galerkin method, Fukuda and Tsutsumi [] first
studied the coupled KGS equations, and they obtained the existence of global strong so-
lutions. We refer the readers to [–] for the existence of global solutions, asymptotic
behavior, and stability for the KGS system and KGS system on infinite lattices.
Various properties of solutions for lattice dynamical systems (LDSs) have been exten-

sively investigated. For example, the long time behavior of LDSs were studied in [, –];
the traveling wave solutions of LDSs were studied in []; the chaotic properties of solu-
tions for LDSs were examined in []. Lattice dynamical systems play an important role in
their potential applications such as biology [], chemical reactions [], pattern recogni-
tion and image processing [], electrical engineering [], laser systems [], etc. How-
ever, a system in reality is usually affected by external perturbations, which in many cases
are of great uncertainty or have a random influence. These random effects are not only
introduced to compensate for the defects in some deterministic models but also to ex-
plain the intrinsic phenomena. Therefore, there is much work concerned with stochastic
lattice dynamical systems [–]. To the authors’ knowledge, Ruelle [] first introduced
a corresponding generalization of the attractor (random attractor) to the stochastic PDEs.
After that, the study of random attractors gained considerable attention during the past
decade; see [, ] for a comprehensive survey. Bates et al. [] first investigated the ex-
istence of global random attractor for a kind of first order dynamical systems driven by
white noise on lattice Z; then Lv and Sun [] extended the results of Bates to the higher
dimensional lattices. After that, there are several papers considering with stochastic evo-
lution equations in an infinite lattice [, , ]. In this paper, we first extend the result
[] to the higher dimensional lattices, then, by comparing to the case without random
perturbation [] (ε = ), we see the relationship between a random attractor and a global
attractor for a small ε random perturbed Klein-Gordon-Schrödinger lattice system, i.e.
upper semicontinuity of the attractors for a small ε perturbed Klein-Gordon-Schrödinger
lattice system. Roughly speaking, let Aε be the attractor of the perturbed system, A be
the attractor of the unperturbed system; we say that those attractors have upper semicon-
tinuity if

lim
ε→

dist(Aε ,A) = ,

where dist(·, ·) denotes the Hausdorff semidistance.
This paper is organized as follows. In Section , we recall some basic concepts and al-

ready known results related to random dynamical systems and random attractors. In Sec-
tion , we prove the existence of the random attractor for stochastic KGS lattice dynamical
systems of (.) on Z

n. In Section , by comparing to the case without the random pertur-
bation, i.e. ε =  case, we obtain the upper semicontinuity of the attractors.
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2 Preliminaries
In this section, we first introduce the definitions of the random dynamical systems and
random attractor, which are taken from [, ].
Let (H ,‖ · ‖H ) be a Hilbert space, (�,F,P) be a probability space.

Definition (�,F,P, (θt)t∈R) is called a metric dynamical systems, if θ : R × � → � is
(B(R)× F,F)-measurable, θ = I, θt+s = θt ◦ θs for all t, s ∈R, and θtP = P for all t ∈R.

Definition A stochastic process φ(t,ω) is called a continuous random dynamical system
(RDS) over (�,F,P, (θt)t∈R) if φ is (B(R+)×F×B(H),B(H))-measurable, and for all ω ∈ �

• the mapping φ :R+ × � ×H → H is continuous;
• φ(,ω) = I on H ;
• φ(t + s,ω,x) = φ(t, θsω,φ(s,ω,x)) for all t, s≥  and x ∈H (cocycle property).

Definition . A randombounded set B(ω)⊂H is called temperedwith respect to (θt)t∈R
if for a.e. ω ∈ � and all ε > 

lim
t→∞ e–εtd

(
B(θ–tω)

)
= ,

where d(B) = supx∈B ‖x‖H .

Consider a continuous random dynamical system φ(t,ω) over (�,F,P, (θt)t∈R) and let D
be the collection of all tempered random set of H .

Definition . A random set K(ω) is called an absorbing set in D if for all B ∈ D and a.e.
ω ∈ � there exists tB(ω) >  such that

φ
(
t, θ–tω,B(θ–tω)

) ⊂K(ω), t ≥ tB(ω).

Definition . A random set A(ω) is a random D-attractor for RDS φ if
• A(ω) is a random compact set, i.e., ω → d(x,A(ω)) is measurable for every x ∈H and
A(ω) is compact for a.e. ω ∈ �;

• A(ω) is strictly invariant, i.e., φ(t,ω,A(ω)) =A(θtω), ∀t ≥  and for a.e. ω ∈ �;
• A(ω) attracts all sets in D, i.e., for all B ∈D and a.e. ω ∈ � we have

lim
t→∞d

(
φ
(
t, θ–tω,B(θ–tω)

)
,A(ω)

)
= ,

where d(X,Y ) = supx∈X infy∈Y ‖x – y‖H , X,Y ⊂H .

The collection D is called the domain of attraction of A.

Definition . Let φ be a RDS on Hilbert space H . φ is called asymptotically compact if
for any bounded sequence {xn} ⊂ H and tn → ∞, the set {φ(tn, θ–tnω,xn)} is precompact
in H , for any ω ∈ �.

From [], we have the following result.
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Proposition . Let K ∈D be an absorbing set for an asymptotically compact continuous
RDS φ. Then φ has a unique global random D-attractor

A(ω) =
⋂

κ≥tK(ω)

⋃
t≥κ

φ
(
t, θ–tω,K(θ–tω)

)
,

which is compact in H .

Throughout this paper, let n ∈ N be a fixed positive integer. We set

L
 =

{
u = (uj)j∈Zn

∣∣∣j = (j, j, . . . , jn) ∈ Z
n,uj ∈C :

∑
j∈Zn

|uj| <∞
}
,

� =
{
v = (vj)j∈Zn

∣∣∣j = (j, j, . . . , jn) ∈ Z
n, vj ∈R :

∑
j∈Zn

vj < ∞
}
.

For brevity, we use H to denote the Hilbert space L or �, and we equip H with the inner
product and norm as

(u, v) = Re
∑
j∈Zn

ujvj, ‖u‖ = (u,u) =
∑
j∈Zn

|u|, ∀u, v ∈H ,

where vj denotes the conjugate of vj.
In our paper, we introduce the transformation ψ = dvj

dt + σvj with σ = μ

μ+ < min{μ, }
a small positive constant. Then system (.) becomes

i
(
duj
dt

+ αuj
)
– (Au)j + ujvj = fj(t) + εajuj

dw
j

dt
,

dvj
dt

=ψj – σvj, (.)

dψj

dt
+ (μ – σ )ψj +

[
 – σ (μ – σ ) +A

]
vj – |uj| = gj(t) + εbj

dw
j

dt
,

with initial conditions

uj() = uj, vj() = vj, ψj() = vj + σvj,

where u = (uj)j∈Zn ∈ L
, v = (vj)j∈Zn ∈ �, ψ = (ψj)j∈Zn ∈ �, and the linear operator A is

defined by

(Au)j = nu(j,j,...,jn) – u(j–,j,...,jn) – u(j,j–,...,jn) – · · · – u(j,j,...,jn–)

– u(j+,j,...,jn) – u(j,j+,...,jn) – · · · – u(j,j,...,jn+).

In fact, the linear operator A has the following decomposition:

A = A +A + · · · +An,

http://www.advancesindifferenceequations.com/content/2014/1/300
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and there exist bounded linear operators Bk :H →H defined by

(Bku)j =
b∑

l=–b

hk,lujkl , ∀u = (uj)j∈Zn ∈ H,k = , , . . . ,n,

where jkl = (j, j, . . . , jk–, jk + l, jk+, . . . , jn) ∈ Z
n, such that

Ak = B∗
kBk = BkB∗

k , ‖Bk‖ ≤ C (constant), k = , , . . . ,n,

where ‖ · ‖ denotes the norm of operator in the set of linear operators from H into itself
and B∗

k is the adjoint operator of Bk , k = , , . . . ,n, that is,

(
B∗
ku

)
j =

b∑
l=–b

hk,–lujkl , (Bku, v) =
(
u,B∗

kv
)
, ∀u = (uj)j∈Zn , v ∈H,k = , , . . . ,n.

LetW (t) =
∑

j∈Zn ajw
j (t)ej andW (t) =

∑
j∈Zn bjw

j (t)ej, where (aj)j∈Zn , (bj)j∈Zn ∈ �. Here
{ej} denotes the standard complete orthonormal system in �, which means that the jth
component of ej is  and all other elements are . Then W (·) and W (·) are �-valued
Q-Wiener processes. It is obvious that EW (t) =  and EW (t) = . For details we refer
to [].
We abstract (.) as a stochastic ordinary differential equations with respect to time t

in E = L
 × � × �. Let a = (aj)j∈Zn , b = (bj)j∈Zn , v = (vj)j∈Zn , ψ = (ψj)j∈Zn , f = (fj)j∈Zn and

g = (gj)j∈Zn . Then the equations in (.) can be written as the following integral equations:

⎧⎪⎨
⎪⎩
u(t) = u +

∫ t
 [iu(s)v(s) – αu(s) – iAu(s) – if (s)]ds – i

∫ t
 u(s)dW

,
v(t) = v +

∫ t
 [ψ(s) – σv(s)]ds,

ψ(t) =ψ +
∫ t
 [(σ –μ)ψ(s) + (σ (μ – σ ) –A – )v(s) + |u| + g(s)]ds +W .

(.)

For our purpose we introduce the probability space as

� =
{
ω ∈C

(
R,�

)
: ω() = 

}

endowed with the compact open topology []. P is the corresponding Wiener measure
and F is the P-completion of the Borel σ -algebra on �.
Let θtω(·) = ω(· + t) – ω(t), t ∈ R. Then (�,F,P, (θt)t∈R) is a metric dynamical system

with the filtration Ft :=
∨

s≤t F
t
s, t ∈ R, where Ft

s = σ {W (t) –W (t) : s ≤ t ≤ t ≤ t} is the
smallest σ -algebra generated by the random variableW (t) –W (t) for all t, t such that
s ≤ t ≤ t ≤ t; see [] for more details.

3 The existence of a random attractor
In this section, we study the dynamics of solutions of Klein-Gordon-Schrödinger lattice
system under the ε-random perturbation (.). Then we apply Proposition . to prove the
existence of a global random attractor for (.). In order to show the existence of a global
solutions of system (.), we first change (.) into deterministic equations. Due to the
special linear multiplicative noise, the first equation in system (.) can be reduced to an

http://www.advancesindifferenceequations.com/content/2014/1/300
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equation with random coefficients by a suitable change of variable. Consider the process
z(t) = eiεW (t), which satisfies the stochastic differential equation

dz(t) =


z(t)dt + iεz(t)dW .

The process ũ(t) = z(t)u(t) obeys the random differential equation

i
dũ
dt

+ i
(

α –



)
ũ – (Aũ) + ũv – f (t)z(t) = . (.)

Lemma . Assume f (t) = (fj(t))j∈Zn ∈ Cb(R,�). Then the solution of the first equation in
(.) satisfies

‖ũ‖ ≤ e–αt‖ũ‖ + 
α

‖f ‖, t > ,a.a. ω ∈ �, (.)

with ‖f ‖ = supt∈R |f (t)|.

We denote ψ̃(t) = ψ(t) – εW (t), then system (.) can be changed into the following
system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ũ(t) = ũ +
∫ t
 [iũ(s)v(s) – i(α – 

 )ũ(s) – iAũ(s) – if (s)z(s)]ds,
v(t) = v +

∫ t
 [ψ̃(s) – σv(s) + εW (s)]ds,

ψ̃(t) =ψ +
∫ t
 [(σ –μ)ψ̃(s) + (σ (μ – σ ) –A – )v(s) + |u| + g(s)

+ ε(σ –μ)W (s)]ds.

(.)

For each fixed ω ∈ �, system (.) is a deterministic equation, and we have the following
result.

Theorem . For any T > , system (.) is well-posed and admits a unique solution
(u(t), v(t),ψ(t)) ∈ L

(�;C([,T];E)). Moreover, the solution of (.) depends continuously
on the initial data (u, v,ψ).

Proof By the standard existence theorem for ODEs, it follows that system (.) possesses
a local solution (ũ(t), v(t), ψ̃(t)) ∈ C(,T ;E), where [,Tmax) is the maximal interval of ex-
istence of the solution of (.). Now, we prove that this local solution is a global solution.
Let ω ∈ �, from (.) it follows that

∥∥ũ(t)∥∥ +
∥∥v(t)∥∥ +

∥∥ψ̃(t)
∥∥

= ‖ũ‖ + ‖v‖ + ‖ψ‖

– (α – )
∫ t



(
ũ(s), ũ(s)

)
ds – 

∫ t


Im

(
f (s)z(s), ũ(s)

)
ds + 

∫ t



(
ψ̃(s), v(s)

)
ds

+ 
∫ t



(
εW (s), v(s)

)
ds – 

∫ t



(
σv(s), v(s)

)
ds + 

∫ t



(
(σ –μ)ψ̃(s), ψ̃(s)

)
ds

+ 
∫ t



(
g(s), ψ̃(s)

)
ds + 

∫ t



((
σ (μ – σ ) –A – 

)
v(s), ψ̃(s)

)
ds

+ 
∫ t



(|u|, ψ̃(s)
)
ds + 

∫ t



(
ε(σ –μ)W (s), ψ̃(s)

)
ds (taking the real part).

http://www.advancesindifferenceequations.com/content/2014/1/300
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By the definition of the linear operator A, we have

–(Av, ψ̃) = –
n∑
k=

(Akv, ψ̃) = –
n∑
k=

(
B∗
kBkv, ψ̃

)
=

n∑
k=

(Bkv,Bkψ̃)

≤ 


n∑
k=

(‖Bkv‖ + ‖Bkψ̃‖) ≤ nC


(‖v‖ + ‖ψ̃‖).

By the Young inequality, direct computation shows that

– Im(fz, ũ) ≤ 
α

‖f ‖‖z‖ + α


‖ũ‖ ≤ 

α

(‖f ‖ + ∥∥W ∥∥) + α


‖ũ‖,

ε
(
W , v

) ≤ ε

σ

∥∥W ∥∥ +
σ


‖v‖,

(g, ψ̃)≤ 
μ – σ

‖g‖ + μ – σ


‖ψ̃‖,


((

σ (μ – σ )
)
v, ψ̃

) ≤ 
(
σ (μ – σ )

)‖v‖ + μ – σ


‖ψ̃‖,


(|u|, ψ̃) ≤ 

μ – σ
‖u‖ + μ – σ


‖ψ̃‖,

ε
(
(σ –μ)W , ψ̃

) ≤ ε(μ – σ )
∥∥W ∥∥ +

μ – σ


‖ψ̃‖.

Combining the above inequalities with Lemma ., we obtain

∥∥ũ(t)∥∥ +
∥∥v(t)∥∥ +

∥∥ψ̃(t)
∥∥

≤ ‖ũ‖ + ‖v‖ + ‖ψ̃‖

–C

∫ t



(∥∥ũ(s)∥∥ +
∥∥v(s)∥∥ +

∥∥ψ̃(s)
∥∥)ds

+C

∫ t



(‖f ‖ + ‖g‖ + ∥∥W ∥∥ +
∥∥W ∥∥)ds

≤ ‖ũ‖ + ‖v‖ + ‖ψ̃‖ +C

∫ t



(∥∥W ∥∥ +
∥∥W ∥∥)ds

+C

∫ t


‖f ‖ + ‖g‖ ds, (.)

where C, C are constants depending on α, σ , μ, ε, and ‖f ‖. By the Gaussian property
ofW  andW , (.) implied that system (.) admits the global solution (ũ(t), v(t), ψ̃(t)) ∈
L
(�;C([,T];E)). The proof is completed. �

From the definition (θt)t∈R, we know

W (t + h,ω) =W (t, θhω) +W (h,ω), ∀t,h ∈R

and combining the above theorem we have the following result.

Theorem . System (.) generates a continuous random dynamical system (φ(t,
θ–tω))t≥ over (�,F,P, (θt)t∈R).

http://www.advancesindifferenceequations.com/content/2014/1/300
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The proof is similar to that of Theorem . in [], so we omit it.
Now, we prove the existence of a random attractor for system (.). By Proposition .,

we first prove that RDS φ possesses a bounded absorbing set K(ω). We introduce an
Ornstein-Uhlenbeck process in � on the metric dynamical system (�,F,P, θt) given by
a Wiener process:

z(θtω) = –ν

∫ 

–∞
eνhθtω(h)dh, t ∈R,

z(θtω) = –λ

∫ 

–∞
eλhθtω(h)dh, t ∈R,

where ν and λ are positive. The above integral exists in the sense that for any path ω with
a subexponential growth z, z solve the following Itô equations:

dz + νz dt = dW (t),

dz + λz dt = dW (t).

In fact, the mapping t → zi(θtω), i = , , are the Ornstein-Uhlenbeck process. Further-
more, there exists a θt invariant set �′ ⊂ � of full Pmeasure such that:
() the mappings t → zi(θtω), i = , , are continuous for each ω ∈ �′;
() the random variables ‖zi(ω)‖, i = , , are tempered.

Lemma . There exists a θt invariant set �′ ⊂ � of full P measure and an absorbing
random set K(ω), ω ∈ �′, for the random dynamical system (φ(t, θ–tω))t≥.

Proof We use the estimates in Theorem .. By (.), we have

d(‖ũ(t)‖ + ‖v(t)‖ + ‖ψ̃(t)‖)
dt

≤ –C
(∥∥ũ(t)∥∥ +

∥∥v(t)∥∥ +
∥∥ψ̃(t)

∥∥)
+Cρ(θtω),

where ρ(θtω) = ‖f ‖ + ‖g‖ + ‖W (t)‖ + ‖W (t)‖.
By Gronwall’s lemma, it follows that

∥∥ũ(t)∥∥ +
∥∥v(t)∥∥ +

∥∥ψ̃(t)
∥∥ ≤ (‖ũ‖ + ‖v‖ + ‖ψ‖

)
e–Ct

+
∫ t


e–C(t–s)ρ(θsω)ds.

Replace ω by θ–tω in the above inequality to construct the radius of the absorbing set and
define

�(ω) =  lim
t→∞

∫ t


e–C(t–s)ρ(θs–tω)ds =  lim

t→∞

∫ 

–t
e–Csρ(θsω)ds.

Define

R(ω) = �(ω) +

α

‖f ‖∥∥W ∥∥ +
∥∥W ∥∥.

http://www.advancesindifferenceequations.com/content/2014/1/300


Li and Sun Advances in Difference Equations 2014, 2014:300 Page 9 of 16
http://www.advancesindifferenceequations.com/content/2014/1/300

ThenK(ω)�K(,R(ω)) is a tempered ball by the property ofW ,W , and, for any B ∈D,
ω ∈ �. Here,D denotes the collection of all tempered random set of Hilbert spaceH . This
completes the proof. �

Lemma . Let (u, v,ψ) ∈ K(ω), the absorbing set given in Lemma .. Then for every
ε >  andP-a.e.ω ∈ �, there exist T(ε,ω) >  andN(ε,ω) >  such that the solution (u, v,ψ)
of system (.) satisfies

∑
‖j‖>N(ε,ω)

[∣∣un(t, θ–tω)∣∣ + ∣∣vn(t, θ–tω)∣∣ + ∣∣ψn(t, θ–tω)
∣∣] ≤ ε, ∀t ≥ T(ε,ω),

where ‖j‖ =max≤k≤n |jk| for j = (j, j, . . . , jn) ∈ Z
n.

Proof Let η(x) ∈C(R+, [, ]) be a cut-off function satisfying

η(x) = , for all x ∈ [, ]; η(x) = , for all x ∈ [, +∞),

and |η′(x)| ≤ η (a positive constant).
Let M be a suitable large integer. Taking the inner product of (.) with (η( ‖j‖

M )ũj)j∈Zn ,
(η( ‖j‖

M )vj)j∈Zn , and (η( ‖j‖
M )ψ̃j)j∈Zn , we get

d
dt

∑
j∈Zn

η

(‖j‖
M

)
|ũj|

= –α
∑
j∈Zn

η

(‖j‖
M

)
|ũj| –  Im

∑
j∈Zn

η

(‖j‖
M

)
(fjzj, ũj) (taking the real part),

d
dt

∑
j∈Zn

η

(‖j‖
M

)
|vj|

= 
∑
j∈Zn

η

(‖j‖
M

)
(ψ̃j, vj) – σ

∑
j∈Zn

η

(‖j‖
M

)
|vj| + ε

∑
j∈Zn

η

(‖j‖
M

)(
W 

j , vj
)

and

d
dt

∑
j∈Zn

η

(‖j‖
M

)
|ψ̃j|

= (σ –μ)
∑
j∈Zn

η

(‖j‖
M

)
|ψ̃j| – 

∑
j∈Zn

η

( |j|
M

)
(Avj, ψ̃j)

+ 
[
σ (μ – σ ) – 

] ∑
j∈Zn

η

(‖j‖
M

)
(vj, ψ̃j)

+ 
∑
j∈Zn

η

(‖j‖
M

)(|uj|, ψ̃j
)
+ 

∑
j∈Zn

η

(‖j‖
M

)
(gj, ψ̃j)

+ ε(σ –μ)
∑
j∈Zn

η

(‖j‖
M

)(
W 

j , ψ̃j
)
.
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We also use the estimates in Theorem .. Similar to (.), it follows that, for fixed con-
stant Tk > ,

∑
j∈Zn

η

(‖j‖
M

)(|ũj| + |vj| + |ψ̃j|
)

≤ e–C(t–TK )
∑
j∈Zn

η

(‖j‖
M

)∣∣ũj(Tk ,ω)
∣∣

+ e–C(t–TK )
∑
j∈Zn

η

(‖j‖
M

)(∣∣vj(Tk ,ω)
∣∣ + ∣∣ψ̃j(Tk ,ω)

∣∣)

+C

∫ t

Tk
eC(s–t)

∑
‖j‖≥M

(∣∣zj (θsω)∣∣ + ∣∣zj (θsω)∣∣)ds

+C

∫ t

Tk
eC(s–t)

∑
‖j‖≥M

(|fj| + |gj|
)
ds. (.)

Replaceω by θ–tω in (.). Then we estimate each of the terms on the right-hand of (.),
and it follows that

e–C(t–TK )
∑
j∈Zn

η

(‖j‖
M

)(∣∣ũj(Tk , θ–tω)
∣∣ + ∣∣vj(Tk , θ–tω)

∣∣ + ∣∣ψ̃j(Tk , θ–tω)
∣∣)

≤ e–C(t–TK )
[(∣∣u(θ–tω)∣∣ + ∣∣v(θ–tω)∣∣ + ∣∣ψ(θ–tω)

∣∣)e–CTk

+
∫ TK


e–C(TK–s)

(∣∣z(θs–tω)∣∣ + ∣∣z(θs–tω)∣∣)ds

+ e–C(t–TK )
∫ TK


e–C(TK–s)

(|f | + |g|)ds
]
. (.)

Since ‖zi(ω)‖, i = , , are tempered and zi(θtω), i = , , are continuous in t, there is a
tempered function r(ω) > , such that

∥∥z(θtω)∥∥ +
∥∥z(θtω)∥∥ ≤ r(θtω). (.)

Combining (.) with (.), there is a constant T(ε,ω) > TK , such that

e–C(t–TK )
∑
j∈Zn

η

(‖j‖
M

)(∣∣ũj(Tk , θ–tω)
∣∣ + ∣∣vj(Tk , θ–tω)

∣∣ + ∣∣ψ̃j(Tk , θ–tω)
∣∣)

≤ ε


. (.)

Next, we estimate

C

∫ t

Tk
eC(s–t)

∑
‖j‖≥M

(∣∣zj (θs–tω)∣∣ + ∣∣zj (θs–tω)∣∣)ds.
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Let T∗ ≥ 
C

ln( Cr(ω)
Cε

) and N(ε,ω) be fixed positive constants. Then, for t > T∗ + Tk and
M >N(ε,ω), we have

C

∫ t

Tk
eC(s–t)

∑
‖j‖≥M

(∣∣zj (θs–tω)∣∣ + ∣∣zj (θs–tω)∣∣)ds

= C

∫ 

–T∗
eCξ

∑
‖j‖≥M

(∣∣zj (θξω)
∣∣ + ∣∣zj (θξω)

∣∣)dξ

+C

∫ –T∗

TK–t
eCξ

(∣∣zj (θξω)
∣∣ + ∣∣zj (θξω)

∣∣)dξ

≤ C

∫ 

–T∗
eCξ

∑
‖j‖≥M

(∣∣zj (θξω)
∣∣ + ∣∣zj (θξω)

∣∣)dξ +
C

C
r(ω)e–CT∗

≤ ε


+

ε


=

ε


(by the Lebesgue theorem). (.)

Since f (t) ∈ Cb(R,�) and g(t) ∈ Cb(R,�), there exists N(ε,ω) such that for M >
N(ε,ω),

C

∫ t

Tk
eC(s–t)

∑
‖j‖≥M

(|fj| + |gj|
)
ds ≤ ε


. (.)

Therefore, let

T̃(ε,ω) =max
{
T(ε,ω),T∗(ε,ω)} and Ñ(ε,ω) =max

{
N(ε,ω),N(ε,ω)

}
.

Then, for t > T̃(ε,ω) andM > Ñ(ε,ω), we obtain

∑
‖j‖>M

(∣∣ũj(t, θtω)∣∣ + ∣∣vj(t, θtω)∣∣ + ∣∣ψ̃j(t, θtω)
∣∣) ≤ ε.

Direct computation shows that

‖u‖ + ‖v‖ + ‖ψ‖ ≤ 
(‖ũ‖ + ‖v‖ + ‖ψ̃‖) + 

∥∥z(θtω)∥∥.

Therefore, we obtain

∑
‖j‖>M

(∣∣uj(t, θtω)∣∣ + ∣∣vj(t, θtω)∣∣ + ∣∣ψj(t, θtω)
∣∣) ≤ ε.

This completes the proof. �

Lemma . The random dynamical system (φ(t, θ–tω))t≥ is asymptotically compact.

Proof We use the method of []. Let ω ∈ �. Consider a sequence (tn)n∈N with tn → ∞ as
n→ ∞. SinceK(ω) is a bounded absorbing set, for large n, (un, vn,ψn) = φ(tn, θ–tnω)(u, v,
ψ) ∈ K(ω), where (u, v,ψ) ∈ K(ω). Then there exist (u, v,ψ) ∈ E and a sequence, de-
noted by (un, vn,ψn), such that

(un, vn,ψn) → (u, v,ψ) weak in E. (.)

http://www.advancesindifferenceequations.com/content/2014/1/300
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Next, we show that the above weak convergence is actually strong convergence in E.
From Lemma ., for any ε > , there exist positive constants N(ε,ω) and M̃ such that

for n > M̃,

∑
‖j‖>N

(∣∣uin(tn, θtnω)∣∣ + ∣∣vjn(tn, θtnω)∣∣ + ∣∣ψjn(tn, θtnω)
∣∣) ≤ ε


. (.)

Since (u, v,ψ) ∈ E, there exists N(ε,ω) >  such that

∑
‖j‖≥N

(|uj| + |vj| + |ψj|
) ≤ ε


. (.)

Let Ñ(ε,ω) =max{N(ε,ω),N(ε,ω)}, then, from (.), there exists M̃ >  such that for
n > M̃,

∑
‖j‖≤Ñ

(|ujn – u| + |vjn – v| + |ψjn –ψ |) ≤ ε


. (.)

By (.)-(.), we find that, for n > M̃ =max{M̃, M̃},
∥∥uj(tn, θ–tnω) – u

∥∥ +
∥∥vj(tn, θ–tn ) – v

∥∥ +
∥∥ψj(tn, θ–tn ) –ψ

∥∥

=
∑

‖j‖≤Ñ

(∣∣ujn(tn, θ–tnω) – uj
∣∣ + ∣∣vjn(tn, θ–tnω) – vj

∣∣ + ∣∣ψjn(tn, θ–tnω) –ψj
∣∣)

+
∑
‖j‖>Ñ

(∣∣ujn(tn, θ–tnω) – uj
∣∣ + ∣∣vjn(tn, θ–tnω) – vj

∣∣ + ∣∣ψjn(tn, θ–tnω) –ψj
∣∣)

≤
∑

‖j‖≤Ñ

(∣∣ujn(tn, θ–tnω) – uj
∣∣ + ∣∣vjn(tn, θ–tnω) – vj

∣∣ + ∣∣ψjn(tn, θ–tnω) –ψj
∣∣)

+ 
∑
‖j‖>Ñ

(∣∣ujn(tn, θ–tnω)∣∣ + ∣∣vjn(tn, θ–tnω)∣∣ + ∣∣ψjn(tn, θ–tnω)
∣∣)

+ 
∑
‖j‖>Ñ

(|uj| + |vj| + |ψj|
)

≤ ε


+
ε


+
ε


≤ ε.

This completes the proof. �

Now, combining Lemma ., Lemma ., and Proposition ., we can easily obtain the
following result.

Theorem . The random dynamical system (φ(t, θ–tω))t≥ possesses a global random
attractor Aε in E.

4 Upper semicontinuity of attractors
This section studies the upper semicontinuity of random attractors for the stochastic
Klein-Gordon-Schrödinger lattice system. The existence of global attractors for the Klein-
Gordon-Schrödinger lattice system has been obtained by [] for one dimension, and []

http://www.advancesindifferenceequations.com/content/2014/1/300
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for the high dimensional case. We assume A is an attractor corresponding to the Klein-
Gordon-Schrödinger lattice system, i.e., the case ε =  of system (.). By Theorem  of
[], we only need to prove the following lemma for upper semicontinuity of attractors.
In what follows, we take the vector form for brevity.

Lemma . Assume that (uε(t,ω,u), vε(t,ω, v)) and (u(t,u), v(t, v)) are the solutions of
the perturbed lattice system (.) and the unperturbed lattice system (the case of ε =  in
(.)), respectively. Then, for P-almost every ω ∈ � and the absorbing set B, we have

lim
ε→

∣∣uε(t,ω,u) –u(t,u)
∣∣ = , lim

ε→

∣∣vε(t,ω, v) – v(t, v)
∣∣ = , t > ,∀(u, v) ∈ B.

Proof Let γ (t) = uε(t) – u(t), δ(t) = vε(t) – v(t). Then (γ (t), δ(t)) satisfies

i
(
dγ

dt
+ αγ

)
–Aγ + uεvε – uv = εuε

dW 

dt
,

dδ

dt
+Aδ +μ

dδ

dt
+ δ + |u| – |uε| = ε

dW 

dt
.

(.)

Now, we use the change of variables

ρ(t) =
dδ

dt
+ σδ, γ̃ (t) = z(t)γ (t), ρ̃ = ρ(t) – εW (t),

where σ ≤min{μ, } is a positive constant, and z(t) = eiεW  .
Then we change (.) into

i
dγ̃

dt
+ i

(
α –




)
γ̃ –Aγ̃ + uεδz + γ̃ z = ,

dδ

dt
+ σδ = ρ̃ + εW , (.)

dρ̃

dt
+ (μ – σ )ρ̃ +

[
A – σ (μ – σ ) + 

]
δ + |u| – |uε| + ε(σ –μ)W  = .

Taking the imaginary part of the inner product of the first equation in (.) with γ̃ , we
have

d‖γ̃ ‖
dt

+ (α – )‖γ̃ ‖ +  Im(uεδz, γ̃ ) +  Im(γ̃ z, γ̃ ) = . (.)

Taking the inner product of the second and third equation in (.) with δ and ρ̃ , we have

d‖δ‖
dt

+ σ‖δ‖ = (ρ̃, δ) + 
(
εW , δ

)
(.)

and

d‖ρ̃‖
dt

+ (μ – σ )‖ρ̃‖ + 
[
A – σ (μ – σ ) + 

]
(δ, ρ̃) + 

(|uε| – |u|, ρ̃)

+ ε(σ –μ)
(
W , ρ̃

)
= . (.)

http://www.advancesindifferenceequations.com/content/2014/1/300
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Summing up (.)-(.), we get

d
dt

(‖γ̃ ‖ + ‖δ‖ + ‖ρ̃‖) + (α – )‖γ̃ ‖ + σ‖δ‖ + (μ – σ )‖ρ̃‖

= – Im(uεδz, γ̃ ) –  Im(γ̃ z, γ̃ ) – 
(
εW , δ

)
+ 

(|u| – |uε|, ρ̃
)

+ 
[
–A + σ (μ – σ )

]
(δ, ρ̃) – ε(σ –μ)

(
W , ρ̃

)
. (.)

In what follows, we will estimate (.) by term by term. By the definition of the linear
operator A, we have

–(Aδ, ρ̃) =
n∑
k=

(Akδ, ρ̃) =
n∑
k=

(
B∗
kBkδ, ρ̃

)
=

n∑
k=

(Bkδ,Bkρ̃)

≤ 


n∑
k=

(‖Bkδ‖ + ‖Bkρ̃‖) ≤ nC


(‖δ‖ + ‖ρ̃‖).

Using the Young inequality, we have

– Im(uεδz, γ̃ ) ≤ α – 


‖γ̃ ‖ + 
α – 

‖δ‖‖uε‖‖z‖,

– Im(γ̃ z, γ̃ ) ≤ α – 


‖γ̃ ‖‖z‖,

–
(
εW , δ

) ≤ σ‖δ‖ + 
σ

ε
∥∥W ∥∥,


(|u| – |uε|, ρ̃

) ≤ 
∣∣‖uε‖ – ‖u‖∣∣‖ρ̃‖,

–σ (μ – σ )(δ, ρ̃) ≤ μ – σ


‖ρ̃‖ + (μ – σ )‖δ‖,

–ε(σ –μ)
(
W , ρ̃

) ≤ μ – σ


‖ρ̃‖ + ε(μ – ρ)

∥∥W ∥∥.

Therefore, by the above inequalities and Lemma ., we obtain

d
dt

(‖γ̃ ‖ + ‖δ‖ + ‖ρ̃‖) +C
(‖γ̃ ‖ + ‖δ‖ + ‖ρ̃‖) ≤ Cε

∥∥W ∥∥, (.)

where C, C are constants depending on α, σ , μ, n, C, and ‖u‖.
Applying the Gronwall lemma to (.), we get

‖γ̃ ‖ + ‖δ‖ + ‖ρ̃‖ ≤ e–Ct
(‖γ̃‖ + ‖δ‖ + ‖ρ̃‖

)
+Cε

∥∥W ∥∥. (.)

Note that γ̃ = , δ = , and ρ̃ = , so, by (.), we have

lim
ε→

(∥∥γ̃ (t)
∥∥ +

∥∥δ(t)
∥∥ +

∥∥ρ̃(t)
∥∥) = , for all t > ,

which implies that

lim
ε→

γ (t) =  and lim
ε→

δ(t) = , for all t > .

This completes the proof. �
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Theorem . Assume that {Aε(ω)}ε∈(,) are attractors for system (.). Then, for P-almost
every ω ∈ �,

lim
ε→

dist
(
Aε(ω),A

)
= .
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